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Abstract: The advancement of assistive technologies toward the restoration of the mobility of
paralyzed and/or amputated limbs will go a long way. Herein, we propose a system that adopts
the brain-computer interface technology to control prosthetic fingers with the use of brain signals.
To predict the movements of each finger, complex electroencephalogram (EEG) signal processing
algorithms should be applied to remove the outliers, extract features, and be able to handle separately
the five human fingers. The proposed method deals with a multi-class classification problem.
Our machine learning strategy to solve this problem is built on an ensemble of one-class classifiers,
each of which is dedicated to the prediction of the intention to move a specific finger. Regions of
the brain that are sensitive to the movements of the fingers are identified and located. The average
accuracy of the proposed EEG signal processing chain reached 81% for five subjects. Unlike the
majority of existing prototypes that allow only one single finger to be controlled and only one
movement to be performed at a time, the system proposed will enable multiple fingers to perform
movements simultaneously. Although the proposed system classifies five tasks, the obtained accuracy
is too high compared with a binary classification system. The proposed system contributes to the
advancement of a novel prosthetic solution that allows people with severe disabilities to perform
daily tasks in an easy manner.

Keywords: EEG; brain-computer interface; prosthetic finger; decoding finger movement; multi-class
classification

1. Introduction

In 2006, a “Convention on the Rights of Persons with Disabilities” (UNCPRD) was adopted by the
United Nations that recognizes the autonomy and independence of living as basic human rights [1].
In line with this treaty, the system proposed in this paper aims to help people with severe disabilities
restore the mobility of their fingers using Brain Computer Interface (BCI) technology. BCI technology
aims to assist people suffering from severe disabilities in regular everyday activities by proposing
an affordable alternative pathway to regain communication and interaction with their environment.
Over the past decade, the BCI technology has seen a rapid development and it has been applied to a
wide range of fields, especially in rehabilitation engineering or for functional substitution [2–6].

Different types of bio-signals such as EEG [7–10], Magnetoencephalography (MEG) [11,12],
Electrocorticogram (ECoG) [13–15], Functional Near-Infrared Spectroscopy (fNIRS) [16], as well as
Electromyography (EMG) [17] have been used to design BCI systems that decode finger movements.
EEG is the most commonly used technology for the acquisition of brain signals in BCI systems due to
its noninvasive nature, low cost, and high portability [8]. EEG signals corresponding to motor imagery
(MI) are defined in frequency domains as brain activity that is triggered by muscular contractions or
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by thinking about specific tasks. Sensorimotor rhythms (SMRs) activity are registered during motor
imagery and they allow the design of the so-called motor-imagery BCI (MI BCI). SMRs appear in
well-defined locations according to a well known functional map that binds SMRs with the brain lobes
where they took place [18].

Distinct brain activity patterns related to the five fingers’ movements should be identified to
control prostheses. The discrimination of finger movements is a complex task due to physiological
and non-physiological artifacts in the EEG signals [19]. Unlike movements performed by different
parts of the human body, the movements of different fingers of the same hand activate relatively
small and close regions in the sensory-motor cortex area [8]. Furthermore, an advanced classification
strategy that addresses multi-class classification problems is required by such applications. Therefore,
all artifacts must be carefully removed and the signal-to-noise ratio must be enhanced, as well as the
relevant channels containing the useful and non-redundant information must be selected, and an
appropriate classification strategy must be applied to discriminate between different tasks with a high
degree of accuracy.

The vast majority of existing EEG-based BCI systems analyze brain activities to identify a
single finger movement. These systems are unreliable to control prostheses and robotic hands that
are designed for performing tasks that require various skills [8]. Ref. [7] analyzed Event-related
desynchronization (ERD) topography during left or right index finger movement. A degree feature
extraction algorithm was proposed based on the graph theory together with Support Vector Machine
(SVM) to classify two kinds of index finger movement: left or right index finger movement. The average
accuracy of the system was about 62%. Ref. [8] proposed decoding finger movements, including four
thumb-related movements as well as the flexion and extension movements of the index, middle, ring,
and little fingers. The system predicts the movements using the Choi-Williams distribution and a
two-layer classification framework. The system obtained an average classification accuracy computed
over the four fingers across all subjects of 43.5%. Ref. [9] proposed another system that applies the
common spatial pattern (CSP) algorithm to extract features, as well as four classifiers, such as the
random forest, SVM, k-nearest neighborhood (kNN), and the linear discriminant analysis (LDA) to
discriminate between trials. The maximum average accuracy reached by these classifiers is about
54%. Ref. [10] proposed using the principal component analysis (PCA), the Power Spectral Densities
(PSD), and SVM with a Radial Basis Kernel Function (RBF). The average accuracy of the system was
about 77%.

Nevertheless, a few BCI systems have been proposed in the literature to decode the movements
performed by each finger within the same hand [10] and the wrist/grasp-related movements of the
same hand [8,20]. Recently, an investigation has been started to develop new algorithms allowing
researchers to decode the simultaneous movements of the five fingers.

Previous EEG-based studies [7–10] were usually extracting features from the same group of
electrodes for all subjects and for all fingers movements, whereas neuroscience studies mentioned that
the activity is unique in the brain of each person. Moreover, the brain activity is different in the left
and right brain hemispheres during the same motor imagery [7,21]. Thus, there is a growing need to
analyze the brain activity during finger movements and to identify the electrodes that are showing
relevant and significant changes. We present a novel statistical-based approach to identify, for each
subject, electrodes that are relevant to motor imagery tasks of each finger. The selected electrodes
were used as sources to extract relevant features. The experimental results show that the proposed
method is highly competitive compared with the existing studies on a multi-class fingers movements
classification. Five motor imagery tasks are considered in this work, including movements of the
thumb, index, middle, ring, and pinky fingers.

The remainder of this paper is organized as follows. In Section 2, the methodology is presented
and the EEG signal acquisition as well as the signal processing chain are described. In Section 3,
experimental results are presented. Section 4 discusses the results, a conclusion is drawn, and a future
work is indicated.
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2. Materials and Methods

The experiments carried out in this paper were approved by the Targeted Research Program
committee—Disability Research Grant Program at King Abdulaziz City for Science and Technology
(KACST) which granted funding for the research project No 5-18-03-001-0015-10827.

Our methodology focuses on the requirements of a multi-class classification problem for a
successful BCI system that decodes the movement of fingers using EEG brain activity signals. Figure 1
presents the general structure of the proposed system. Firstly, our own dataset was created using,
a g.HIamp from g.tec, an 80 channel amplifier. To do this, volunteers were asked to randomly move
their fingers. Every single finger movement was considered to be a single trial. EEG signals that
correspond to the trials of the subject were recorded during different sessions. Every trial was labeled
distinctively. Afterwards, the recorded data was processed by removing the artifacts to increase the
signal-to-noise ratio (SNR) of the EEG signals. Subsequently, the set of electrodes showing signals that
are relevant to the movements of the fingers was identified. Then, the CSP algorithm was applied
to extract the features that correspond to the finger movements. Finally, an ensemble of one-class
classifiers was used to decode the five finger movements. Every one-class classifier was trained to
detect the movements of a given finger. To avoid over-fitting, every classifier was trained on a portion
of the data set and tested using another portion. The measurement accuracy was used to determine
the performance of every one-class classifier.

Figure 1. General structure of the proposed system.

2.1. Data Acquisition

2.1.1. EEG Signal Acquisition

The EEG signals were recorded using a g.tec g.HIamp amplifier. The signals were captured
through 64 electrodes placed on the scalp according to the international system localization 10–20.
256 Hz was decided as the sampling frequency of the signals and a filtration stage was applied using a
BPF with the type “Chebyshev” to keep the frequency component between 1 Hz and 60 Hz.

2.1.2. Experimental Paradigm

The data used in this project was created locally and consisted of EEG signals recorded from 5 KSU
volunteers aged between 21 and 23 years. All subjects were male and all of them were right-handed.
As for the experiment, subjects were told to sit on a comfortable chair and their right arm was placed
on a table to rest and thus to avoid muscle fatigue. We recorded EEG signals from every subject in
multiple sessions. During every session, the selected subjects were asked to perform individual finger
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movements according to the automated scenario program interface (SPI). The subjects performed
actions that corresponded to the movement of the five fingers and they were told to use only their
right hand. All movements started at a neutral position, with the hand open, the lower arm extended
to around 120 degrees, and the thumb placed on the inner side. Subjects were requested during every
trial to execute sustained movements. For each finger, 180 trials were recorded which were comprised
of 3 to 4 different sessions.

2.1.3. Monitoring the Recording Sessions

Furthermore, a SPI was developed to guide the subjects during the recording of the sessions. It was
responsible for displaying the instructions for the subjects on a screen. The main menu of the SPI and
indicates the general information related to each subject, the scenario mode, the duration of readiness,
the duration of flexing, the duration of waiting, and the number of trials in each session. Once the EEG
recording process was launched, a specific state machine was followed; which included 3 phases:

• Get ready phase: during this phase, a random finger/limb movement was selected and the
corresponding animated picture “gif file” was displayed by the scenario program on the screen.

• Action phase: during this phase, the subject moved the selected finger/limb.
• Rest phase: during this phase, the subject was in a resting state.

The duration of each recording session was as follows. 2 s were set for each phase; the get ready
phase, the action phase, and the reading phase.

2.1.4. Labeling Signals

The recording process was done over four sessions. Each session was continuous and was
discretized into a sequence of six seconds per trial. The first 20 s of each session were discarded due to
the BCI amplifier initialization delay. The EEG signals were subdivided into six-second intervals where
each epoch corresponded to one finger movement. Each interval was labeled with a corresponding
label from the scenario program. This process was repeated for every session and the processed
sessions were concatenated to give each subject a fully labeled signal.

2.2. Artifacts Removal

After labeling the EEG signals, a filter block was applied to remove artifacts. In this way, only the
frequency components related to the intention of finger movement were kept. These frequency
components were often set to be between 8 Hz and 30 Hz [22]. Thus, a finite impulse response filter
was applied with a 4th order, allowing the removal of frequency components outside the band while
maintaining a zero-frequency phase for the signal [23]. Subsequently, a common average referencing
technique was applied to allow the average signal at all electrodes to be calculated and subtracted
from the EEG signal at every electrode for each time point. This step allowed for the discrimination
between the positive and the negative peaks in the EEG signals and for locating the sources of the
signal in the noisy environment that led to an improvement in the SNR [24]. The EEG signals were
converted and computed according to Equation (1).

TCAR(n) = T(n)− 1
‖E‖

‖E‖

∑
k=1

T(k) (1)

where ‖E‖ is the total number of electrodes used in the recording process of one trial T. T(k) is the
EEG signal at the electrode k.

2.3. Selection of Relevant Electrodes

Unlike existing EEG-based studies to detect fingers movements which are extracting features
from a predefined set of electrodes, this work proposes an adaptive method to analyze the brain
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activity during fingers movements and to identify the electrodes that are showing relevant changes.
The identified electrodes were used as signal resources to extract relevant features before the
classification step.

2.3.1. Annotations

• An electrode (e) is an electrical conductor used to acquire brain signals.
• E is the set of electrodes (e) on a cap.
• A motor imagery (m), also called the motor imagery task, is a mental process by which an

individual simulates a given movement action.
• Ψ is a set of motor imagery tasks. The motor imagery tasks which were considered here are the

imaginary movements of the thumb, index, middle, ring and pinky fingers.
• A trial (t) is a set of brain signals that are recorded with a set of electrodes E during a given motor

imagery task m.
• θ is a set of trials. θ= {ti}
• ς is a set of subjects from each of which a set of trials was recorded.
• A rest is a set of brain signals, recorded using a set of electrodes E that corresponds to the mental

state during a resting period. In this study, the resting period corresponds to the portion of a trial
t recorded during the 0–1 s period of t. It is denoted t[0− 1].

2.3.2. Preliminaries

The following set of basic functions are required for the selection of the relevant electrodes:

• σ: For a given motor imagery task mi, this function returns the subset of trials that were recorded
during mi. It is defined as follows:

– σ : Ψ→ P(θ)
– σ(mi) = {tj ∈ θ in a way that tj is recorded during the motor imagery task mi}.

• δ: For a given subject si, this function returns the subset of trials that have been recorded during
the sessions of the subject si. It is defined as follows:

– δ : ς→ P(θ)
– δ(Si) = {tj ∈ θ in a way that tj is recorded during a session of the subject Si}.
– Pow(e, t) is the power, also called the energy, of the electrode e calculated from the trial t.

It is computed using a spectral representation of the trial t with the application of the fast
Fourier transformation. It is measured according to the following expression:

Pow(e, t) = ∑ f∈[8,30] f ∗ FFT(t)[e, f ] (2)

where

FFT[e, f ] =
N−1

∑
n=0

t[n, e]e
−j2πkn

N (3)

The power spectrum of each trial using the FFT function are available online at Supplementary
Materials (Folder S1).

– ERD/ERS(e, t, re f _Power) is defined as the percentage of the power increase or decrease in
the electrode e during the trial t in relation to a reference power re f _Power, according to the
following expression:

ERD_ERS(e, t, re f _Power) =
Pow(e, t)− re f _Power

re f _Power
(4)
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2.3.3. The selection models

Let’s define the following functions:

• The function φ(si, mj) that calculates the subset of trials recorded during the sessions of the subject
si while performing the motor imagery task mj. It is defined as follows:

– φ : Ψ→ P(θ)
– φ(si, mj) = δ(si) ∩ σ(mj)

• The function τ(si, mj, ek) that calculates the subset of φ(si, mj), where changes in the brain activity
of the subject si in the electrode ek are significant during the motor imagery task mj. Brain activity
variations during a given motor imagery are considered significant if they exceed the variation in
power in a reference electrode during the same motor imagery. It is defined as follows:

– τ: ς×Ψ× E→ P(θ)
– τ(si, mj, ek) = {tl ∈ φ(si, mj) such that |ERD_ERS(ek, tl , re f _Power(si, ek)| ≥
|ERD_ERS(re f erenceelec, tl , re f _Power(Si, re f erenceelec)|

∗ Where ref_Power (si, e) is defined as the average power of the electrode e during the
distinct rest periods of si, according to the following expression:

re f _Power(si, e) =
1

‖δ(si)‖∑ t_x∈δ(s_i)Pow(e, t_x[0..1]) (5)

∗ Regarding the reference electrode (re f erenceelec) we selected C3 as the reference for all
electrodes located at the left-brain hemisphere. Moreover, we selected C4 as the reference
for all electrodes located at the right brain hemisphere.

A recent study published in Scientific Reports on 2020 [21] has presented the distribution
of sensorimotor rhythms during hand motor imagery in the right and the left hemispheres.
These distributions confirm neuroscience assumptions saying that brain activity corresponding to left
hand movements is located on the right hemisphere and vice versa. This is why we considered the
electrodes C3 and C4 as references to the electrodes at the left and right hemispheres respectively.

Take for instance a subject si, a motor imagery mj and an electrode ek. The electrode ek is relevant to
the motor imagery mj with respect to the subject si, if the probability, denoted ρ(si, mj, ek), of obtaining
significant brain activity changes in ek when the subject si performs the motor imagery task mj exceeds
a given threshold called the α_threshold. The probability ρ(si, mj, ek) is calculated as follows:

• ρ : ς×Ψ× E→ [0, 1]

• ρ(si, mj, ek) =
‖τ(si ,mj ,ek)‖
‖φ(si,mj)‖

Here:

• ‖τ(si, mj, ek)‖ and ‖φ(si, mj)‖ are the total number of trials of τ(si, mj, ek) and φ(si, mj),
respectively.

Based on the function specifications described above, the following electrodes selector, called the
ε, calculates and returns the set of electrodes that are relevant, for a given subject si, to a given motor
imagery mj. It is defined according to the following expression:

• ε : ς×Ψ→ P(E)
• ε(si, mj) = {Ek ∈ E such that ρ(si, mj, ek) ≥ α_threshold}
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2.4. Feature Extraction

For every finger movement m of a given subject s, we identified a set of relevant electrodes.
These electrodes were used to extract appropriate features using the CSP method that is a well-known
feature extraction technique. This method aims to extract and keep a significant activity or rhythm,
as well as eliminate all redundant EEG signals. These features represent the most significant energy at
the relevant electrodes in the α and β bands in reality; which have the highest likelihood of containing
significant motor imagery information [22]. More theoretical details about the CSP algorithm are
presented in [25].

2.5. Finger Movements Classification

For every Finger movement m, a one-class classifier denoted Cm was designed. The classifier Cm

is responsible for the detection of the movements of the corresponding finger. The classification model
of a given classifier Cm is built including features extracted by the CSP algorithm using the subset
of electrodes that are relevant to the corresponding motor imagery m. As such, each finger had its
classification model, where the signal was copied to the model of each finger as well as each model
was classified based on whether that signal belonged to that particular finger. This approach made the
movement of multiple fingers at the same time possible, as each finger worked independently.

Many classifiers were tested, such as SVM, Logistic Regression, Gaussian Naive Bayes, and LDA.
LDA was more efficient in term of accuracy against the other classifiers. Therefore, the LDA was
selected as the main classifier of the proposed approach.

2.6. Prosthesis Control

The main objective of this work is to control prostheses merely by EEG motor imagery signals.
A complex signal pre-processing is performed on EEG trials to remove artifacts, enhance signal to
noise ratio, and decrease the dimensionality of the EEG signals. Every trial is processed simultaneously
by each one-class classifier. Every one-class classifier applies the CSP algorithm on the set of electrodes
that are relevant to the corresponding finger, to extract relevant features. Based on the extracted
features, the LDA classifier identifies the trial as a target or as an outlier. If a given one-class classifier
has recognized the trial as target, then a control command is sent to the corresponding finger’s actuator.
A finite state machine corresponding to these steps is designed and validated at the simulation stage.

3. Results

The extracted features and their corresponding labels were split into two sets. The first set
was dedicated to the training session and the other for testing purposes. The presented results
were measured according to a 5-fold cross-validation approach. The training set for each finger was
concatenated with 20% of the data from other fingers. However, for the testing set, 50% of the data
from other fingers was added. Algorithm 1 summarizes the data set decomposition process.

The main objective of this section is to demonstrate the efficiency of the proposed method in
regard to distinguishing the movements of the five-finger based on the intention of the user. Until now,
the recording trials were applied directly to the signal processing chain without the application of
the proposed channel selection algorithm. This is the first approach where the EEG features are
extracted using the CSP spatial filter and the LDA algorithm for classification, while maintaining
the same data partition as presented in Algorithm 1. The accuracy of the system fluctuates between
subjects from 52% to 60%, with an average of 57%. This accuracy is poor, which makes the system
inefficient. With the application of the same techniques and the integration of the channel selection
method, the number of channels used during the acquisition are minimized by identifying the relevant
channels and removing the others. Figure 2 represents the identified relevant electrodes for each
finger in all subjects. As depicted in Figure 2, despiteusing 64 channels during the acquisition process,
more than 70% of the channels were removed due to not containing useful information. Furthermore,
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the most sensitive channels were in the left hemisphere and the center of the cortex as the scope of this
study focused on the movements of fingers of the right hand. These results were obtained with an
α_threshold set to 70%.

Algorithm 1: Commented algorithm of the basic steps of feature extraction and classification
problems

Data: θ(ε, Ψ)

Result: Acc: Classification accuracy
for si=1:ς do

for ψi=1:|Ψ| do
[Tr(ψi), Te(ψi)]= split(θ( ε, ψi ),5); . Split data using 5-fold cross validation

for ψi=1:|Ψ| do
Tr(ψi)= concatenate(Tr(ψi),20% of Tr(ψi) ); . Concatenate training data from different
classes

Te(ψi)= concatenate(Te(ψi),50% of Te(ψi) ); . Concatenate test data from different
classes

ztr=CSP(Tr); . Features extraction of the training session;
zt=CSP(Te); . Features extraction of the test session;
Clp= Classifier_algorithm(ztr,Labels(θ)); . Extract classifiers parameters Clp;
Acc= Classifier_algorithm(zte,Label(θ));. Predict classes and compute the system accuracy
Acc;

(a) Common active
thumb channels

(b) Common active
index channels

(c) Common active
middle channels

(d) Common active ring channels
(e) Common active
pinky channels

Figure 2. Relevant Channels for each finger.

Figure 3 shows the spatial filters, obtained with CSP algorithm after identification of relevant
electrodes. The obtained features are available online at Supplementary Materials (Folder S2). These
maps show that the location of relevant electrodes changes from one subject to another and from
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one finger to another for the same subject, as expected from the literature [26]. The features are
generally smoother and physiologically more relevant, with strong weights over the motor cortex
areas, except in some cases where the features have large weights in several unexpected locations from
a neuro-physiological point of view.

Figure 3. Electrode weights obtained for each finger and each subject.

Four different metrics have been used to measure the efficiency of the proposed method to detect
fingers movements. These metrics are: the Accuracy, Precision, Recall, and the F-measure.

The integration of the channel selection algorithm with the same feature extraction as well as
classification algorithms enhanced the accuracy of the system significantly, by more than 20% for
each subject. The obtained system accuracy was 81% overall. Table 1a–e present the significance
test for the five subjects. The column “Raw Accuracy” of these tables shows the accuracy of the
classification process of finger movements using CSP and LDA without our proposed statistical based
channel selection. The results demonstrate the efficiency and the validity of our approach. Table 1f
presents the accuracy obtained for each subject. Despite the system classifying five finger movements
simultaneously, the measured accuracy exceeded 83%, which exceeds all previous literature concerning
EEG and fingers. In fact, with the use of the same approach, multiple finger movements can be detected
simultaneously, in addition to having high model accuracy.
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Table 1. Subject’s statistical testing.

(a) s1 results

Finger Raw
Accuracy

Proposed method

Accuracy Precision Recall F_Measure

Thumb 50 80.35 85.71 83.33 84.50

Index 60.70 80.35 90.32 77.77 83.58

Middle 57.14 83.92 86.48 88.88 87.67

Ring 55.35 85.71 91.17 86.11 88.57

Pinky 57.14 87.50 93.93 86.11 89.85

(b) s2 results

Finger Raw
Accuracy

Proposed method

Accuracy Precision Recall F_Measure

Thumb 66.07 73.21 81.81 75 78.26

Index 58.18 85.45 93.54 82.85 87.87

Middle 61.81 89.09 91.42 91.42 91.42

Ring 56.36 83.63 96.42 77.14 85.71

Pinky 60.71 73.21 86.20 69.44 76.92

(c) s3 results

Finger Raw
Accuracy

Proposed method

Accuracy Precision Recall F_Measure

Thumb 58.62 75.86 78.57 86.84 82.50

Index 53.44 79.31 82.50 86.84 84.61

Middle 55.17 89.65 88.09 97.36 92.50

Ring 53.44 84.48 87.17 89.47 88.31

Pinky 42.1 85.96 91.42 86.48 88.88

(d) s4 results

Finger Raw
Accuracy

Proposed method

Accuracy Precision Recall F_Measure

Thumb 75 69.64 74.35 80.55 77.33

Index 60.71 85.71 85. 94.44 89.47

Middle 50 83.92 81.39 97.22 88.60

Ring 56.36 72.72 72.72 91.42 81.01

Pinky 56.36 78.18 78.04 91.42 84.21

(e) s5 results

Finger Raw
Accuracy

Proposed method

Accuracy Precision Recall F_Measure

Thumb 51.78 76.78 81.08 83.33 82.19

Index 60.71 83.92 82.92 94.44 88.31

Middle 58.92 76.78 75.55 94.44 83.95

Ring 67.85 78.57 76.08 97.22 85.36

Pinky 60.71 76.78 76.74 91.66 83.54
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Table 1. Cont.

(f) Summary of the accuracy by subject

Finger s1 s2 s3 s4 s5

Thumb 80.35 73.21 75.86 69.64 76.78

Index 80.35 85.45 79.31 85.71 83.92

Middle 83.92 89.09 89.65 83.92 76.78

Ring 85.71 83.63 84.48 72.72 78.57

Pinky 87.50 73.21 85.96 78.18 76.78

Average 83.56 80.91 83.52 78.03 78.56

4. Discussion

This research was implemented with the use of a relatively large amount of data instances.
The sessions of the recording will hopefully help other BCI researchers bring further improvements
based on this data. The starting prediction models on the raw data ranged from 52% to 59% and this
was highly improved with intensive cleaning and the addition of a pre-processing phase. Having an
accuracy of 83% proves the quality of the decided approach. Our pre-processing approach showed
high accuracy results by choosing the relevant channels after their comparison with reference channels
and with the exclusion of unimportant channels. The prediction model will get a differentiable dataset
by using this pre-processed sequence along with the feature extraction approach that can be classified
using a machine learning model such as the LDA. The main advantage of giving every finger its
classifier is that it allows the model to predict movements of multiple fingers at the same time, which
has not been done or discussed in previous works. The determination of the flexion angle of the
fingers and distinguishing between different finger movements extracted from both hands could be
investigated in future works, along with improving the accuracy of the current system.

Table 2 presents the accuracy in association with the proposed system and the overall results of
existing methods that are validated according to the online and offline approach. System performance
is significantly improved by the proposed system, achieving a system accuracy of 81% on average
according to the offline approach. Therefore, the proposed finger decoding system outperforms those
described in previous studies in multiple ways. For example, the average accuracy described herein
increased by 4% compared to the best known previous system that was presented in [10]. Moreover,
the proposed system significantly improves the runtime using robust and efficient algorithms in
contrast with the method presented in [7–10].

Table 2. Comparison of the proposed method system with other EEG finger decoding systems.

Studies N◦ of Fingers Signal Processing Chain N◦ of Subjects Accuracy (%)

[7] 2 Band-pass filter & ERD/ERS & SVM 10 ≈62.5

[8] 4 CWD & 2LCF 18 43.5

[9] 5 RF & LDA & SVM & KNN 4 54

[10] 5 PCA & PSD & SVM 11 77

Proposed method 5 Band-pass filter & CAR &CSP & LDA 5 81

A small number of trials for every finger movement are sufficient to train the system for the
on-line scenario before being used by a new user. Indeed, the number of training set could be increased
using data augmentation techniques. The data augmentation technique which we have adopted in this
work consists of decomposing every trial t of a total time T into fragments of an equal small window
size W. Having fragments with small duration does not harm the proposed method since the features
are extracted from the frequency domain of the trial and not from its time domain. Moreover, every



Brain Sci. 2020, 10, 965 12 of 14

two consecutive fragments may overlap. Let’s define O as the overlapping ratio. This ratio determines
how much data are common between two consecutive fragments. Thus, every trial t will be split into
N fragments of a window size W. N is calculated as follows:

N =
T −W
shi f t

+ 1 where shi f t = (1−O)W. (6)

Therefore, if we consider a trail t of 6 s. The trial t could be split into N = (6− 2)/(0.25× 2))+ 1 =

9 fragments of 2 s each with an overlapping ratio of 75%. Thus, five trials of 6 s will be decomposed to
45 trials of 2 s.

5. Conclusions

This study aimed to develop a BCI system for disabled people who are suffering from
motor mobility impairment. The outcomes of this study may contribute to the development of a
next-generation prosthesis, i.e., a brain-controlled prosthesis. Such prosthesis can offer an alternative
method for disabled people to restore their mobility. In this study, a prediction method was developed
that consists of a set of one-class classifiers. An average accuracy of 81% was achieved with the
proposed method. Existing EEG BCI systems decode only single finger movements. In contrast,
different models were trained during the establishment of this system, including the SVM, Gaussian,
Naïve Bayes, Linear Regression, as well as the LDA model. The LDA was the classifier which
obtained the best results. The system was trained and tested using a data-set recorded from volunteers.
These promising results can significantly increase the control of EEG-based BCI technologies and
potentially facilitate their development with rich control signals to drive complex applications.
The detection of continuous finger movements will be the target of the future work associated with
this system.

Supplementary Materials: The following are available online at https://zenodo.org/record/4316450#
.X9MdDrMRWUk. Folder S1: Power spectrum of each finger trial for every subject obtained by applying
the FFT on the temporal signals. Folder S2: CSP weight filter of each trial for every subject obtained by applying
the CSP on the corresponding relevant electrodes.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
BCI Brain Computer Interfaces
SVM Support vector machine
LDA Linear discriminant analysis
RF random forest
kNN k-nearest neighborhood
HCI Human computer interaction
EEG Electroencephalogram
MEG Magnetoencephalography
ECoG Electrocorticogram
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fNIRS Functional Near-Infrared Spectroscopy
EMG Electromyography
UN United Nations
ERPs Event-related potentials
SMR sensorimotor rhythms
CWD Choi–Williams distribution
2LCF Two-layer classification framework
CSP Common spatial pattern
LSTM long short-term memory
CNN convolutional neural network model
RCNN recurrent convolutional neural network
PCA Principal component analysis
PSD Power Spectral Densities
SNR signal-to-noise ratio
SPI Scenario program interface
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