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a b s t r a c t 

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the 

Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope 

is traditionally tedious due to the large number of required measurements that may take several days to 

complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement 

time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, 

the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we 

introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS 

measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured 

random subset of the LDOS can be interleaved with regular topographic images that are used for image registry 

and drift correction. These reference topographies also allow to resume interrupted measurements to further 

improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that 

should remove further hesitation in the implementation of sparse sampling mapping schemes. 
• Accumulative sampling for unknown degree of sparsity 
• Controllably interrupt and resume QPI measurements 
• Scattering wave conserving background subtractions 
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SPECIFICATIONS TABLE 

Subject Area; Physics and Astronomy 

More specific subject area; Condensed Matter Physics 

Method name; Adaptive Sparse Sampling for Quasiparticle Interference Imaging 

Name and reference of original 

method; 

Sparse sampling for fast quasiparticle-interference mapping, Jens Oppliger and 

Fabian Donat Natterer, Physical Review Research 2 , 023117 (2020), 

Resource availability; N.A. 

Broader context 

Sparse sampling for quasiparticle interference (QPI) imaging is a novel scanning tunneling 

microscopy mapping scheme that promises fundamentally shorter measurement times than 

conventional grid spectroscopy [1 , 2] . The speed-up from sparse sampling comes from measuring

far fewer samples than suggested by the Nyquist-Shannon sampling theorem. The condition for 

a successful compressed sensing 1 recovery [3 , 4] is a high degree of signal sparsity in some

representation space. For QPI imaging, the Fourier transform of the local density of states (LDOS)

can be highly sparse [1 , 5] , which incidentally is also the representation space. When sparse sampling

is paired with faster point-spectroscopy [6] , QPI mapping becomes orders of magnitude faster than

conventional grid methods [2] . This leaves the question as to the required sub-sampling as an

unresolved practical issue because the mathematical prescriptions that determine successful recovery 

[7] depend on a-priori insight about the signal-to-noise level and the initially unknown degree of 

signal sparsity. 

Here we introduce an adaptive sparse sampling (ASS) approach through which we iteratively 

increase the amount of sub-sampling during runtime to accumulate LDOS measurements until a 

satisfactory signal quality becomes visible in the preview snapshots of the recovered QPI images.

Our ASS procedure further enables an interruption of QPI imaging at recurring exit points from

which the mapping can be resumed to increase the cumulative amount of LDOS measurements.

The interleaving of regular topographic scans with the sparsely sampled LDOS measurements enables 

image registry and drift correction that may be required due to thermal drift or after repositioning

of the tip in the aftermath of longer interruptions, such as the refilling of one’s cryostat. Through

ASS, an experimenter can design open-ended mapping tasks and tackle the QPI inspection of systems

for which there is only incomplete information available about the sparsity level and noise. Our

ASS method allows to monitor the signal quality in-operando for feedback of ongoing measurements 

and to stop/interrupt measurements at opportune moments. We emphasize here that the number of 

required ASS iterations will, aside from the signal to noise ratio, depend on the degree of sparsity

(number of unique momenta) but not on complexity (relationship between momenta) of the QPI 

information, which some of us discussed earlier for QPI [1] and which is rigorously stated in general

terms for compressive sensing [8] . 

Method detail 

The working principle of our ASS approach is summarized in Fig. 1 , where we first exemplify

the concept using a simulated Shockley surface state consisting of a standing wave modulating the

LDOS, atomic corrugation, and added Gaussian noise. The full LDOS and QPI, shown here to the

left for one energy, is the desired information (ground truth) we seek to recover. The scattered

surface state is modelled using a modified Bessel function of the first kind [9] . The random motion

path overlay indicates the traveling salesperson route for one sparse sampling measurement and the 

dashed box marks the reference topography (or LDOS) that is used for image registry, as described

below. To approach the QPI ground-truth of the surface state ring and the Bragg peaks in an adaptive

measurement scheme by gradually accumulating LDOS measurements, we proceed according to the 

following four steps: 
1 Sparse sampling, compressive sensing, and compressed sensing are used synonymously. 
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Fig. 1. Adaptive sparse sampling concept. The top panels show the quasiparticle interference (QPI) patterns of a simulated surface state. The leftmost QPI pattern is the ground truth 

that we want to adaptively reconstruct from an accumulation of sparsely sampled local density of states (LDOS) measurements. The reconstruction gets gradually better with increasing 

number of cumulative measurements. The bottom panels show the LDOS with the ground truth in the leftmost panel. The orange line indicates the traveling salesperson path that is 

used to obtain the sparsely sampled LDOS measurements in the adaptive sampling scheme. The small insets between the maps illustrate the usage of smaller LDOS or topographic maps 

that can be intersected between adaptive sampling measurements to align the individual measurements for the combined sparse recovery and the red line indicates the drift vector. In 

an actual measurement one should use regular topography scans due to the much shorter acquisition time. The ASS concept allows to pause, resume, or interrupt the measurements, for 

instance when the QPI pattern has a sufficient quality. 
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1 Path generation 

2 Path combination 

3 Mapping and preview 

4 Postprocessing corrections. 

1 Path generation 

Prior to the actual measurement, we prepare the tip travel paths. From all possible locations on a

grid of size N = n × n , we select p -times qN random locations with q ∈ (0 , 1] being a small fraction.

For every subset p , we calculate a near optimal solution to the traveling salesperson path (TSP) using a

genetic [10] or cheapest-insertion [11] algorithm with fixed start and end coordinates. These two fixed

points are shared among all paths to simplify their connection between the individual iterations, and

they help build a catalogue of precalculated paths that can be quickly combined in the preparation

of an actual measurement. Here we limit ourselves to a maximal number of qN = 30 0 0 locations per

path because of the poor scaling of TSP calculations (computational NP-hardness). Note that the choice

of these locations is compatible with informed sampling [1] in which we modify the probability of

selecting a location based on various criteria, such as: proximity to the border, no-go areas, or defects

of high LDOS scattering intensity. The average time for calculating one TSP path segment containing

30 0 0 locations is about 2.5 hours per CPU core (AMD EPYC 7302P) using a genetic algorithm. The

path generation using a cheapest insertion algorithm is faster but results in a slightly longer overall

path length. We precalculated 

∑ 

p = 100 TSP paths of which we typically use 20 to 30 in the present

demonstration, equivalent to 60’0 0 0 to 90’0 0 0 locations at which the full LDOS is measured. 

2 Path combination 

The experiment starts by measuring a regular topography, preferably centered around topographic 

features that may serve as fiducial markers to aid image registry. We then proceed to set up the

path for an ASS experiment where we define the number of TSP path subsets that we measure

consecutively before we scan a regular topography. The reason for enchaining several TSP segments is

the limited number of locations that we can afford to compute for one path and the relatively long

duration of the topographic scans in our early ASS implementation, which consisted of measuring a

full spectrum also for every location in the reference topography. Since full spectroscopic information 

as reference for the topography is not necessary, a regular topography scan would be sufficient

and much faster. The end of the topography scan concludes the first ASS iteration. Since salient

topographic features for image registry may be off-center, we generate a jittery random-walk path 

from the last location of the TSP segment to the start location of the topography scan and another

jittery path from the last location of the topography scan to the start of the next TSP subset. This

allows the system to settle creep that may arise from larger changes in the scan piezo voltage from

repositioning the tip. By default, the ASS routine then proceeds to the next path subsets and records

another topography scan at its end and so forth. The correlation between the reference-topographic

scans yields the effective displacement that occurred from one iteration to the next due to thermal

drift or residual creep. This displacement information is used at the end of the QPI mapping to

accurately assign the correct coordinates to each location, which improves the overall reconstruction 

quality, as discussed further below. 

3 Mapping and preview 

We obtain the QPI information indirectly by first measuring the LDOS at every of the chosen

locations, as described by the previously generated path combination, and then perform a sparse

recovery of the QPI image by solving a basis pursuit denoising problem provided by the sparse least-

squares solver SPGL1 [12 , 13] written in MATLAB. The procedure to recover the QPI pattern from LDOS

measurements is equivalent to our previous sparse sampling implementations [1 , 2] and does not

depend on the ASS method per se. The only difference is that our measurement matrix that feeds the

sparse sampling recovery solver is growing with every iteration; see supplementary materials ( SM )

for a brief mathematical description. We measure the LDOS either via conventional bias spectroscopy 

or via parallel spectroscopy [2] for several energies. All LDOS measurements of one energy are treated



J. Oppliger, B. Zengin and D. Liu et al. / MethodsX 9 (2022) 101784 5 

i  

r  

c  

r  

t  

c  

t  

s  

p  

t  

g  

Q

 

s  

m  

m  

b  

s  

(  

a  

m  

i  

t  

a  

s  

i  

T  

a  

d  

�  

d  

t  

s  

t  

d  

h

 

s  

i  

t  

t  

m  

i  

t  

t  

F  

f  

t  

a  

t  
ndependently to the LDOS at a different energy. In addition to the spectral information, we also

ecord the time at which each spectrum is saved. This timestamp could later serve for displacement

orrection [1] . The series of panels in Fig. 1 shows how more and more LDOS measurements (bottom

ow) are accumulated after every TSP path iteration, leading to a growing measurement matrix. The

op-row shows the QPI image that is obtained from the sparse recovery of the cumulative LDOS. We

an appreciate how the quality of the recovered QPI pattern improves with more sampling. To use

his mapping scheme in an actual measurement, we limit ourselves to the reconstruction of a few

elected energies during the regular topography scans. The sparse recovery computation of the QPI

attern from a 1024 × 1024 grid for a single energy slice takes only a few minutes, leaving sufficient

ime to decide whether to proceed with the mapping or to stop. This preview option is useful to

auge the quality of the QPI mapping and to get a sense for the level of detail already present in the

PI maps. 

4 Postprocessing corrections 

(a) Accounting for tip instabilities: A frequent disturbance in STM investigations are slight and

pontaneous tip-changes that manifest as an abrupt change in the conductance. To salvage such

easurements, we perform a global background correction that conserves both the long-range LDOS

odulations and the LDOS relationship between the measurement locations. Consequently, these

ackground corrections preserve the spatial frequency content in the LDOS from which the QPI

ignature is obtained. We assume that the measured conductance spectra are a convolution of tip

 � T ) and sample ( � S ) density of states ( d I/d V (E) ∝ � S � T ) [14] . If � T changes, this will merely have

n energy dependent multiplicative effect on the conductance. We also assume that we start our

easurements or are able to identify segments with a well-behaved tip that has finite conductance

n the relevant energy interval. The conductances measured for different ener gies/bias voltages are

reated independently. In order to combine the LDOS data, measured for different TSP segments

nd with different tip density of states � T , we proceed as follows: We first calculate for every TSP

egment s the respective mean m s = 

∑ 

k 

� 

k 
S 
� 

k 
T 
/qN and standard deviation σs = 

√ ∑ 

k 

( � 

k 
S 
� 

k 
T 

− m s ) 
2 
/qN

ndependently for all bias voltages and locations k within that TSP segment. We then select one

SP segment as reference (preferably one without tip-changes, which typically is the first one)

nd subtract the individual mean from all other TSP segments, divide by their respective standard

eviation, multiply by the standard deviation of the reference, and add the mean of the reference,

 S � 

′ 
T 

= ( � S � T − m s ) σre f /σs + m re f . We apply this correction to TSP segments that show no tip-changes

uring their measurement, although such data could be handled in a similar way. One could identify

he measurement index at which the tip-change occurred using an edge-detector and then treat one

ub-segment as reference for the remaining sub-segments with the correction just described. Note

hat a different tip configuration might have a detrimental impact on the spatial frequency content

ue to its spatial convolution that inhibits the resolution of high-momenta states. Such states are

owever not relevant to our present demonstration. 

(b) Linear drift correction: As mentioned, the interleaved topographic images serve to create

patial references for the TSP path segments such that the LDOS measurements of distinct ASS

terations can be combined into one measurement matrix for QPI reconstruction. Depending on

he stability of the system or whether the measurement has been interrupted for some time,

he image registry can become essential to ensure the proper spatial relationship between LDOS

easurements, notably between those of distinct TSP subsets. The knowledge of the exact coordinates

s what enables the sparse recovery for QPI imaging. To account for the time-dependence between

he topography images and the different distances between consecutive locations, we can use the

imestamp information t k of every location k that we have recorded alongside the LDOS ( SM ).

ollowing our previous work [1] , we first determine the global displacement vector 
−→ v = ( v x , v y )

rom the image registry between reference topographies and the drift-speed d � v /dt , calculated from

he total time that has passed in-between the reference images. We assume linear displacement and

ccordingly attribute to every location a proportional correction 

−→ 

r i 
′ = 

−→ 

r i + 

d � v 
dt 

( t k − t k −1 ) . This adjusts

he effective coordinates of the LDOS measurements, which helps in the QPI reconstruction because
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it improves the reliability of the spatial relationship in the LDOS modulations. In the ( SM ), we discuss

nonlinear drift and scenarios where these assumptions cease to apply. 

Method validation 

In order to validate the functioning for an actual measurement, we choose the well-known model

system Au(111), which is characterized by a Shockley surface state and a ( 22 × √ 

3 ) herringbone

reconstruction [15] . In our previous work [2] , we have measured the dispersion relation of the

nearly free electron gas using all combinations of conventional spectroscopy, parallel spectroscopy 

and sparse sampling for QPI imaging to ensure that our spectroscopies and mapping modes reproduce

the Au(111) reference signatures. However, in those measurements we had measured all LDOS values 

in a single sweep, that is, not adaptively. We proceed here to reproduce these characteristic Au(111)

signatures using the adaptive sparse sampling implementation. For the present ASS demonstration, 

one iteration consists of 5 random walk segments with 3’0 0 0 measurement locations each followed by

one reference topography. The first iteration is started with an additional topography. Since a reference

topography requires about 20 minutes, it can also be interpreted as an interruption/break of the sparse

sampling mapping scheme. The panels (a)-(c) in Fig. 2 show the evolution of the QPI reconstruction

with an ever-growing number of adaptively sampled LDOS values that are added to the reconstruction

with the applied background correction mentioned previously in the post-processing section. From 

the dispersion plot in panel (a), one clearly notices how more band-structure details emerge with

increasing number of measurements. We also see that the states closer to the reciprocal zone center

appear at lower sampling than high momentum-transfer states, which is related to the effective level

of sparsity at the respective energies in q -space. When the surface state has a higher q -value, it is

represented by more wavevector values simply due to the larger circumference [1] . Similarly, the

herringbone reconstruction is visible from a rather low sampling already, showing the dependence of 

the reconstruction efficiency with sparsity in q -space. We further elaborate on this in the discussion

below. The inverse Fourier transforms of the QPI images are shown in panels (c) and reveal the

spatially resolved LDOS with standing wave patterns and the surface reconstruction. For comparison, 

we also show the same data without background correction in panel (d). The dispersion plots are

perturbed by sudden jumps that are caused by tip-changes, occurring during our measurements. This 

can also be seen in Fig. 2 (e), where we show how the background correction accounts for and removes

sudden changes in the conductance. As mentioned above, this correction is benign with regards to the

spatial wavevector information. Although of lesser quality, the uncorrected QPI reconstruction does 

still show an improvement with increasing ASS iterations, which is crucial for quality assessment

during runtime. 

Discussion und tweaks 

We have demonstrated the mechanism through which QPI measurements can be adaptively and 

sparsely sampled. We now turn to discussing how to generate accompanying quantitative feedback 

that could serve as a quality assessment for the QPI data. To that end, we calculate for every ASS

step the relative mean absolute error (MAE) (SM) between the cumulative measurements with and 

without the latest iteration, which can be done at runtime. As shown Fig. 3 (a) we notice a rapidly

decreasing MAE with progressing ASS iterations, indicating the gradual approaching of the ground 

truth. The insets in (a) relate this quantitative measure to the more familiar QPI pattern for visual

quality assessment. This indicates that the MAE could serve as a useful indicator for the QPI quality,

enabling the numerical tracking of the QPI progress in automated decision-making approaches such as 

reinforcement learning. In panel (b), we apply the MAE evaluation also to our actual QPI measurement

of the Au(111) surface state. The MAE likewise nicely tracks the quality of the QPI reconstruction.

We further notice a dependence on the LDOS energy with regards to MAE improvement, which can

be traced back to the varying degree of sparsity in the QPI pattern for different energies. This can

be seen when comparing the MAE for -551, -395, and 67 meV. The momentum of the energetically

more positive surface state is higher, which translates into a lower sparsity because the surface state

consists of more values due to its larger circumference. 
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Fig. 2. Validation of adaptive sparse sampling using Au(111). (a) Dispersion plots of Au(111), showing the parabolic dispersion of the nearly-free electron like Shockley surface state. A 

background correction, as described in the text, has been applied and the dispersion plots are created from azimuthal averages of QPI patterns, such as the ones shown in (b). The quality 

improves with increasing number of adaptively sampled local density of states (LDOS) measurements. (b) QPI patterns obtained after sparse recovery of adaptively sampled LDOS, showing 

the gradual improving quality with increasing number of measurements. (c) LDOS obtained from an inverse Fourier transform of the QPI patterns in (b). Every ASS increment consisted 

of 3’0 0 0 locations and a reference topography/LDOS was recorded after 5 such ASS increments. (d) Same dispersion plots as in (a) but without background correction applied, showing 

the detrimental effect of tip-changes. (e) Reference topographies/LDOS maps that are intersected between the adaptive sparse sampling loop (interleaving shown by vertical red arrows) 

to align the LDOS measurements for the cumulative sparse reconstruction. The two bottom rows show an example of the LDOS trace before and after the application of our background 

correction. (setpoint: V b = -250 mV, V drv = 400 mV, f drv = 1600 Hz, I t = 1.5 nA, t spc = 20 ms, T = 4.3 K, grid size 1024 × 1024). 
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Fig. 3. Quality of quasiparticle interference reconstruction with increasing sampling fraction. (a) The decreasing relative mean absolute error (MAE) (SM) between two consecutive ASS 

iterations shows how the quality of the QPI reconstruction rapidly increases with growing number of iterations, here demonstrated for the simulated surface state of Fig. 1 with known 

ground-truth. (b) The relative MAE for the actual QPI measurement on Au(111) shown in Fig. 2 for three different energies, follows a similar trend. Since the relative MAE can be calculated 

after every ASS iteration at runtime, it provides feedback on the status of the QPI data and enables an informed decision about how much more sampling would be required. The different 

slopes in the three curves reflect the reduced sparsity at higher energies that requires appropriately more sampling. Note that the data in both (a) and (b) follow a power law behavior as 

indicated by the fitted lines. 
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Up to this point, we have mostly assumed well-behaved systems with a handful of smaller tip-

hanges for which we have introduced a mitigating background correction. We obtain less reliable

esults when nonlinearities start to become prominent, for instance in nonlinear thermal drift,

r nonlinear responses of the piezo-actuators to fast tip-speeds or larger step sizes that produce

ignatures of creep and hysteresis. Procedures on how to account for those piezo related non-

inearities are focus of a forthcoming work . In the ( SM ), we show the breakdown of the linear drift

ssumptions when the time between two consecutive reference topographies becomes too long. 
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