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Abstract

There has been a long history of human usage of the biologically-active phytochemicals in 

Salvia rosmarinus, Zingiber officinale, and Sophora japonica for health purposes, and we recently 

reported on a combination of those plant materials as the PB123 dietary supplement. In the 

present work we extended those studies to evaluate activation of the nuclear factor erythroid 

2-related factor 2 (Nrf2) transcription factor and differential gene expression in cultured HepG2 

(hepatocellular carcinoma) cells treated with PB123. We determined transcriptome changes using 

mRNA-seq methods, and analyzed the affected pathways using Ingenuity Pathway Analysis 

and BioJupies, indicating that primary effects included increasing the Nrf2 pathway and 

decreasing the cholesterol biosynthesis pathway. Pretreatment of cultured HepG2 cells with PB123 

upregulated Nrf2-dependent cytoprotective genes and increased cellular defenses against cumene 

hydroperoxide-induced oxidative stress. In contrast, pretreatment of cultured HepG2 cells with 

PB123 downregulated cholesterol biosynthesis genes and decreased cellular cholesterol levels. 

These findings support the possible beneficial effects of PB123 as a healthspan-promoting dietary 

supplement.
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1. Introduction

Aging and age-related diminishment of the body’s antioxidant defenses are associated with 

a variety of disorders and diseases [1–5]. Dietary composition has significant influence on 

the body’s ability to fight against oxidative stress, which is one of the ways that dietary 

intake plays a role in healthy aging [6, 7]. In the past this was largely attributed to direct 

scavenging of oxidants by compounds consumed in the diet [8–10], but in recent years the 

focus has shifted to endogenous protection mechanisms and to understanding the health 

benefits of dietary components based on their ability to activate endogenous defenses, for 

example by inducing the increased expression of antioxidant enzyme genes [11–14].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates 

the gene expression of a wide variety of cytoprotective phase II detoxification enzymes 

and antioxidant enzymes by engaging the antioxidant-responsive element (ARE) found 

in the promoter regions of these genes. Based on extensive prior work, the ARE is a 

promoter element that regulates the expression of many antioxidant, anti-inflammatory, and 

cytoprotective genes [15–23].

Aging is associated with diminishment of cytoprotective Nrf2 [24–27], which means that 

aging-related stressors coincide with a decreased ability to protect against them [27, 28]. 

Lower nuclear Nrf2 levels have been observed with advanced age in both rats and people 

[24, 27], along with decreased antioxidant defense and repair capabilities [27]. Naturally 

long-lived species like the naked mole-rat have been shown to have markedly elevated 

levels of Nrf2 activation [29]. Total and LDL cholesterol levels tend to increase with age, 

and concomitantly the risk for atherosclerosis and coronary heart disease also tends to 

increase with age [30, 31]. Notably, previous investigations have indicated that dietary 

supplementation with ginger, a Nrf2 activator, correlated with decreased cholesterol levels in 

human subjects [32].

In the present work, we examine effects of the PB123 dietary supplement, a combination of 

phytochemical compounds from Salvia rosmarinus, Zingiber officinale, and the bioflavonoid 

luteolin [33–51]. Rosemary (Salvia rosmarinus) has been utilized against a variety of health 

issues [1], based on reported anti-inflammatory [52], antioxidant [49–51], and antimicrobial 

benefits [53, 54]. Ginger (Zingiber officinale) is a member of the Zingiberaceae family 

of plants with over 2500 years of recorded use in traditional therapies, commonly with 

emphasis on anti-inflammatory, analgesic, and digestive system benefits [55–59]. Luteolin 

(found in many food and vegetable sources) [60–64] has frequently been used as a dietary 

supplement based on reported antioxidant [47], neurological [45], and anti-inflammatory 

benefits [44, 60, 65].

In our prior work, Nrf2-dependent genes were shown to be upregulated in alveolar epithelial 

cells isolated from HIV-1 transgenic rats after dietary administration of PB123 [66]. In the 

present work, we studied the ability of the PB123 combination to activate the Nrf2 pathway 

and upregulate antioxidant, anti-inflammatory, and other cell protective genes in HepG2 

cells, and we determined its protection of cultured HepG2 cells against oxidative stress and 

dyslipidemia.
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2. Materials and Methods

2.1 Materials and Reagents

Plant extracts: ginger root extract from Zingiber officinalis (standardized to 20% gingerols) 

and rosemary extract from Salvia rosmarinus (standardized to 6% carnosol; 15% carnosic 

acid) were obtained from Flavex (Rehlingen, Germany); luteolin (from Sophora japonica, 

standardized to 98% luteolin) was obtained from Jiaherb (Pine Brook, NJ, USA). Solvent 

extracts of PB123 powder were prepared by mixing a 10:5:1 mass ratio of rosemary, 

ginger, and luteolin powders then extracting the mixed powder (50 mg/mL) overnight in 

ethanol and collecting the supernatant [66, 67]. Cell culture: antibiotics and culture media 

powder were obtained from Thermo Fisher Scientific (Waltham, MA, USA). Reagents and 

assays: The intracellular lipid staining assay (Steatosis Colorimetric Assay Kit), ERK1/2 

inhibitor (PD98059, CAS 167869-21-8), and Nrf2 inhibitor (AEM1, CAS 1030123-90-0) 

were obtained from Cayman Chemical (Ann Arbor, MI, USA). The cholesterol assay 

(Cholesterol/Cholesterol Ester-Glo) was obtained from Promega (Promega Corporation, 

Madison, WI, USA). Cumene hydroperoxide (CAS 80-15-9) and all other reagents were 

obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2 Cell Culture

For the genomic, lipid, and cytoprotection experiments we used the human hepatocellular 

carcinoma HepG2 cell line. For Nrf2 activation experiments we used HepG2 cells that 

had been stably transduced with a Nrf2-dependent firefly luciferase gene construct (HepG2-

ARE cells), kindly provided by Dr. S.O. Simmons [68]. HepG2 cells are appropriate for 

the present work because they exhibit normal Nrf2 activation properties [69], lack Nrf2/

KEAP1 mutations, and have previously been shown to be suitable for metabolic studies 

[70]. The HepG2 and HepG2-ARE cells were cultured and maintained by standard methods 

as previously described [67]. Cell viability was determined using a cell counting kit-8 

(CCK8) assay (Dojindo Molecular Technologies, Inc., Rockville, MD, USA). Briefly, cells 

were assayed for viability by adding CCK8 solution, incubating at 37 °C, and measuring 

absorbance at 450 nm using a microplate spectrophotometer (Bio-Tek, Winooski, VT, USA). 

Absorbance values were normalized to the readings from vehicle control cells, and the data 

was presented as viable cells percentage relative to vehicle control cells.

2.3 Nrf2 Reporter Gene Assays

The HepG2-ARE promoter/reporter cells were used for assaying Nrf2 activation, measured 

as relative light units (RLU) as previously described [67]. For synergy experiments, cells 

were treated with combinations of rosemary, ginger, and luteolin extracts and with the 

corresponding concentrations of extracts of each individual agent. PB123 synergy was 

visualized by comparing the Nrf2 activation signal from the PB123 combination with the 

sum of the signals induced by treatments with the individual ingredient extracts with a range 

of concentrations of PB123 extract (1.6, 3.2, 4.8, 6.4, 8 μg/mL) or with the corresponding 

amounts of rosemary extract (1, 2, 3, 4, 5 μg/mL), ginger extract (0.5, 1, 1,5, 2, 2.5 μg/mL), 

and luteolin (0.1, 0.2, 0.3, 0.4, 0.5 μg/mL) alone. Combinatorial Nrf2 activation calculations 

using synergy reference models and data from a checkerboard style layout of combinations 
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of rosemary extract (0–24 μg/mL) and ginger extract (0–12 μg/mL) were performed using 

calculation tools at synergyfinder.org.

2.4 Gene Expression Assays

2.4.1 Cell Culture and RNA Isolation—HepG2 cells were treated for 16h in 24-

well plates with 0 (vehicle control) or 12 μg/mL PB123 (as an extract of 50 mg/mL 

in 100% ethanol), with 4 biological replicates per treatment group. The cell culture and 

RNA isolation was performed as previously described [67]. Briefly, after the treatment 

period the total RNA was isolated from the cells using Trizol, then purified using Qiagen 

RNeasy clean-up columns (Qiagen Inc., Valencia, CA, USA). The concentration of RNA 

in each sample was measured using absorbance at 260 nm (A260) with a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The RNA integrity 

in the samples was determined using Agilent TapeStation 4200 (Agilent, Santa Clara, CA, 

USA) at the University of Colorado Genomics and Microarray Core facility.

2.4.2 mRNA-seq Assays

mRNA-seq Library Preparation.: Samples containing 10–100 ng of total RNA were 

used to prepare the Illumina NGS libraries according to manufacturer’s instructions for the 

NuGEN Universal Plus mRNA-Seq (Tecan Genomics, Redwood City, CA, USA). In this 

method, polyA selection is used to isolate mRNA from total RNA, which is then fragmented 

and primed for creation of double-stranded cDNA fragments, which are then amplified, 

size-selected, and purified for cluster generation.

Sequencing.: The mRNA template libraries were then sequenced as paired end 150 bp 

reads on the Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA) at the University of 

Colorado Genomics and Microarray Core facility (Aurora, CO, USA). We sequenced at a 

depth that provides ~40M 2X150 bases reads per sample.

mRNA-seq Profiling.: The sequencing data was processed for differential gene expression 

as previously described [67]. The computational pipeline for analyzing the derived 

sequences utilized GSNAP [71], Cufflinks [72], and R for sequence alignment and 

determination of differential gene expression [73]. In short, GSNAP was used to map 

the generated reads to the human genome (GRCH38) [71], Cufflinks was used to derived 

expression (FPKM) [72], and R was used to analyze differential gene expression with 

ANOVA, with a false discovery rate (FDR) < 0.05 as the cutoff. The transcriptomic data was 

examined by pathway analysis using Ingenuity Pathway Analysis (Qiagen, Germantown, 

MD, USA). For further profiling, the raw sequencing data was also processed using 

Biojupies ([74, 75]) to identify which pathways of interest were modified by PB123.

2.5 Protein Assays

The Human HMOX1 PicoKine ELISA Kit (Boster Biological Technology, Pleasanton, CA, 

USA) was used to determine heme oxygenase-1 (HMOX1) protein levels in HepG2 cell 

lysates according to the manufacturer’s instructions as previously described [67]. Total 

protein in the lysates was measured using the method of Lowry [76].
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2.6 Total Cholesterol Assays

The total cholesterol level in cultured HepG2 cells was measured using a chemiluminescent 

enzymatic assay kit according to manufacturer’s instructions (Cholesterol/Cholesterol Ester-

Glo™ Assay kit, Promega, Madison, WI). Briefly, after 24 hr of treatment with PB123, the 

medium was removed and the HepG2 cells were washed 2x with PBS then lysed using the 

Cholesterol Lysis Solution. Cell lysate aliquots (50 μl) were loaded onto a white, opaque 

96-well plate along with cholesterol standards of known concentration, 50 μL of Cholesterol 

Detection Reagent with Esterase enzyme reagent was added to each well and incubated 

at room temperature for 1 hour, then luminescence from each well was measured using a 

platereader luminometer.

2.7 Intracellular Lipid Assays

The intracellular lipid level in cultured HepG2 cells was measured using an Oil Red O stain 

based assay kit according to manufacturer’s instructions (Steatosis Colorimetric Assay Kit, 

Cayman Chemical, Ann Arbor, MI). Briefly, HepG2 cells were treated for 24 h with 0, 5, or 

12 μg/mL PB123, then stained with Oil Red O, lysed, and dye extracted using solutions in 

the Steatosis Colorimetric Assay Kit, followed by measurement of the extracted Oil Red O 

dye by absorbance at 492 nm using the platereader to determine relative intracellular lipid 

level.

2.8 Cytoprotection Assays

To evaluate protective effects against oxidative stress, HepG2 cells were pretreated with 

PB123, with or without ERK1/2 inhibition by PD98059, and then challenged with cumene 

hydroperoxide (CH) as previously described [67]. Cytotoxic effects caused by CH were 

determined by measuring cell viability using CCK8 assay as described above.

2.9 Statistical Analysis

Data are presented as the mean ± SEM (standard error of the mean) of multiple replicates. 

Significance of observed differences in the means were evaluated by one-way ANOVA and 

Tukey’s multiple comparisons testing or by Student’s t test for unpaired data using Prism 9 

software (GraphPad Software, version 9.3.0, San Diego, CA, USA). A p value < 0.05 was 

considered statistically significant.

3. Results

3.1 Nrf2 Activation and Synergy

3.1.1 Nrf2 Activation—First PB123 was determined to be nontoxic to HepG2 cells in 

the 0–50 μg/mL range, which exceeded the concentrations used in the rest of the study 

(Figure 1A), by measuring cell viability. Using the HepG2 cell line stably transduced with 

an ARE-promoter/luciferase-reporter construct [68], we determined that PB123 activates 

Nrf2 in a dose-dependent manner (Figure 1B). As expected, addition of the Nrf2-inhibitor 

AEM1 (0.5–5 μM) dose-dependently attenuated the Nrf2 activation (p<0.05) by PB123 (10 

μg/mL)(Figure 2).
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3.1.2 Synergy—Using the HepG2 cell line stably transduced with the ARE-promoter/

luciferase-reporter [68], we found that the rosemary, ginger, and luteolin in PB123 combine 

synergistically for Nrf2 transcription factor pathway activation, with the most notable 

synergy observed between combinations of rosemary and ginger extracts. To model and 

visualize the synergy observed with rosemary and ginger for Nrf2 activation, we measured 

Nrf2 activation in HepG2-ARE cells with checkerboard combinations of rosemary and 

ginger extract concentrations and then used the Zero Interaction Potency (ZIP) and Loewe 

synergy. Both the (A) ZIP and (B) Loewe additive effect reference synergy models showed 

strongly positive synergy scores (synergyfinder.org) (Figure 3).

3.2 Gene Expression and Effects

3.2.1 HepG2 Gene Expression by mRNA-seq Analysis—In the present study the 

expression levels of 170 genes were increased and the expression levels of 247 genes were 

decreased by >2-fold in HepG2 cells treated for 16h with 12 μg/mL PB123, determined by 

mRNA-seq on cell treatment groups with 4 biological replicate samples per group (Figure 

4).

To quantify gene expression changes caused by PB123, we utilized the mRNA-seq approach 

to measure gene expression levels using separately cultured HepG2 cells. Evaluation of 

the dataset using BioJupies showed that the primary transcription factor affected was Nrf2 

(NFE2L2) (Figure 5).

Ingenuity Pathway Analysis (IPA) likewise clearly demonstrated the primary importance 

of the Nrf2 transcription factor pathway in the differential gene expression induced by 

treatment of HepG2 cells with PB123 (Figure 6).

3.2.2 Pathways Involved—PB123 induced Nrf2 activation and upregulation Nrf2-

dependent genes, and BioJupies and Ingenuity Pathway Analysis (IPA) identified the 

key involvement of the Nrf2 pathway for gene expression changes induced by PB123. 

Analysis of differentially expressed genes by IPA revealed that that PB123 upregulates 

genes in the Nrf2 transcription factor pathway and downregulates genes in the cholesterol 

biosynthesis pathway (Figure 6). Likewise, data analysis using BioJupies of upregulated 

and downregulated differentially expressed genes in the PB123-treated HepG2 cells 

indicated that the top affected pathways by Wikipathways analysis included NRF2 pathway 

(up) and Cholesterol biosynthesis pathway (down). The upregulated and downregulated 

Wikipathways results are shown in Figure 7.

3.2.3 Cellular Lipids—PB123 induced downregulation of the Cholesterol Biosynthesis 

Pathway, so we evaluated the individual genes involved in the Wikipathway gene set for 

WP197 by their mRNA-seq gene expression values with 4 biological replicates per group 

(the WP197 pathway and the mRNA expression data are shown together in Figure 8). 

Because the PB123-induced downregulation of the genes in the Cholesterol Biosynthesis 

Pathway was so extensive and consistent, we followed up with examination of PB123-

induced changes in the cellular total cholesterol levels. Treatment (24h) of HepG2 cells with 

PB123 at 5 μg/mL and at 12 μg/mL significantly decreased intracellular total cholesterol 

levels in the cells (Figure 9). In related work, Li, et al., reported that total cholesterol in 
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HepG2 cells was decreased by treatment with 6-gingerol which is one of the most active 

phytochemicals from ginger [77].

Examination of the highly downregulated PPAR signaling pathway WP3942 (Figure 7B) 

along with highly downregulated genes in the volcano plot (Figure 4) indicated a possible 

role for PB123-induced downregulation of the fatty acid binding protein 1 gene FABP1. 

To follow up we evaluated the intracellular lipid droplet levels in HepG2 cells after 

24h of treatment with PB123 (0, 5, and 12 μg/mL). The FABP1 gene was significantly 

downregulated by both 5 and 12 μg/mL PB123 in HepG2 cells compared to control HepG2 

cells (Figure 10A), and the HepG2 intracellular lipid content was significantly reduced by 

both 5 and 12 μg/mL PB123 (Figure 10B).

3.2.4 HMOX1 mRNA and Protein—PB123 treatment of HepG2 cells (24h) increased 

the expression of the HMOX1 gene (Figure 11A). As anticipated from the PB123-induced 

increase of HMOX1 gene expression, levels of intracellular HMOX1 protein were also 

elevated by treatment of HepG2 cells for 16h with 5 μg/mL PB123 (Figure 11B).

3.2.5 Oxidative Stress Protection—To assess cellular antioxidant defenses, we 

utilized the oxidant cumene hydroperoxide (CHP) to challenge HepG2 cells with an 

oxidative stress, with or without Nrf2 activation pretreatment with PB123. In a separate 

experiment, ERK1/2 kinase inhibition with PD98059, a selective and cell permeable 

inhibitor of the MEK/ERK pathway (10 μM PD98059, 30 min prior to treatment with PB123 

or its individual components) was shown to decrease relative Nrf2 activation by PB123 and 

by each of the rosemary, ginger, and luteolin components (Table 1).

Based on that apparent ERK1/2 dependence of the Nrf2 response, the HepG2 cells were 

next cultured with 5 μg/mL PB123 for 16h, with or without 10 μM PD98059, added 30 min 

prior to the PB123, then the media was removed and the cells were washed with PBS prior 

to adding fresh culture media to prevent possible direct scavenging of applied oxidants by 

PB123 components. Next the cells were challenged with cumene hydroperoxide for 6 h and 

cell injury assayed by measuring cell viability. Pretreatment with 5 μg/mL PB123 protected 

against oxidative-stress-induced loss of viability in HepG2 cells that were subsequently 

challenged with 25 μM cumene hydroperoxide (Figure 12), but this protection was blocked 

if the ERK1/2 kinase was inhibited in the cells with PD98059.

4. Discussion

Aging has been associated with decreased ability to respond to stress-induced changes 

in gene expression in both animals [78] and humans [27]. Another key risk factor that 

increases with aging is dyslipidemia, which plays a key role in age-related cardiovascular 

disease [79]. Due to its well-documented role in the regulation of antioxidant and anti-

inflammatory defense mechanisms, Nrf2 activation may play a key role in protection 

against age-related physiological decline. In the present work we show that the PB123 

phytochemical dietary supplement combination based on rosemary extract, ginger extract, 

and luteolin synergistically activates the Nrf2 pathway (Figure 1), with especially strong 

synergy between the rosemary and ginger extracts (Figure 3).
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The logic behind creating Nrf2 activators consisting of a combination of ingredients is 

threefold. First, the complexity of the Nrf2 activation/deactivation pathway is unusually 

great with dozens of control points having been demonstrated, ranging from promoter 

methylation and histone acetylation that regulate transcription of both KEAP1 and NFE2L2 
(encoding Nrf2) genes, to numerous miRNAs that regulate translation of the transcripts [80–

83], and luteolin participates at this epigenetic level of control. Once translated, regulation 

of the two proteins involves the more familiar array of covalent modifications involving 

electrophilic attack on the sulfhydryl groups of Keap1 which permit its release of Nrf2 

[84]. Carnosic acid and carnosol from rosemary excel at this level of control as they 

behave as pro-drugs that possess little electrophilicity themselves but are converted to 

an electrophilic compound by the oxidative conditions at the site of the pathology that 

they are intended to alleviate [35, 85]. By contrast, dimethyl fumarate, an FDA approved 

Nrf2 activator used to treat relapsing multiple sclerosis [86], displays strong electrophilic 

toxicity and alkylating ability [35], much like the classical Nrf2 activator sulforaphane 

[87]. Their toxicity manifests due to non-specific reactivity with cellular protein thiols and 

glutathione depletion. Nrf2 regulation also results from a variety of covalent modifications 

to the Nrf2 protein which include phosphorylation by kinases such as PKC [88], PI3K 

[89], and MAPK [90], plus sumoylation [91] and ubiquitinylation [92], all of which modify 

Nrf2’s stability and ability to translocate to the nucleus. Once in the nucleus numerous 

other events regulate the ability of Nrf2 to regulate ARE/EpRE driven genes. These include 

acetylation/deacetylation of Nrf2 by Creb binding-protein and Sirt1 [93]. Acetylated Nrf2 

was found to have augmented binding to the ARE promoter establishing acetylation as 

another regulatory mechanism for Nrf2 [94]. BACH1 is a negative regulator of Nrf2 and 

silencing it with siRNA increased expression of Nrf2 regulated genes [95]. Furthermore, 

this work suggested an interesting age-dependent difference in the expression profile of 

Nrf2-regulated genes due to increased Bach1 protein in older individuals. What appears to 

be another major controller of Nrf2 activity is the mechanism that ejects it from the nucleus, 

terminating its activity and tagging it for proteasomal degradation. The process is driven 

by activation and nuclear translocation of cytosolic Fyn kinase upon phosphorylation by 

GSK3β. The active Fyn in the nucleus tags Nrf2 for ejection, ubiquitination, and protesomal 

destruction. Interestingly, the process is facilitated by and central to acetaminophen toxicity 

[96]. Luteolin and carnosic acid were found to inhibit the ejection of Nrf2 as follows: 

luteolin and carnosic acid both activate PI3K [89, 97] which not only phosphorylates Nrf2 

to facilitate its translocation to the nucleus but which also activates Akt; Akt phosphorylates 

GSK3β, inactivating it, which prevents it from activating cytosolic Fyn; the inactive Fyn 

remains in the cytosol and cannot enter the nucleus to contribute to the expulsion of Nrf2, 

meaning that active Nrf2 will have a longer duration in the nucleus, increasing its efficiency.

The second advantage of using multiple compounds to activate Nrf2 is that synergy that may 

result. Clearly, the activation of Nrf2 is not a linear pathway with a single rate-controlling 

step. Many of the contributing control points mentioned above may require the cooperation 

of other control points to realize maximal effect. For example, release of Nrf2 from Keap1 

is necessary but not sufficient for a maximal effect—Nrf2’s journey requires covalent 

modification by several possible mechanisms as mentioned above for nuclear entry. We 
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have demonstrated substantial amounts of synergy by combining ingredients with diverse 

contributions to the process of Nrf2 activation [42, 67] as in the present study.

The third logical rationale for using a combination of ingredients to activate Nrf2 lies in the 

appreciation that activation is the result of not only a large number of control points, some 

positive and some negative, but that with a Nrf2 activation network that’s this complicated 

(as opposed to a simple, linear pathway of activation), one may certainly need to combine 

agents that act at multiple key points in the network, with combined minimal toxicity, to 

expect a useful end result. As an example, single compounds that act only to release Nrf2 

from Keap1 may indeed result in a rapid influx of Nrf2 to the nucleus, but it will be followed 

by an increased expulsion of that Nrf2 from the nucleus unless the Fyn-dependent export is 

simultaneously inhibited. Without slowing the exit pathway, Nrf2 stores in the cytosol would 

quickly become depleted, especially in elderly individuals as the rate of Nrf2 synthesis slows 

with aging [78, 98]. The outdated paradigm of “One disease, one drug” that has driven 

recent decades of pharmacological thinking does not apply to network pharmacology [99].

In the present work, examining the upregulation of a well-established Nrf2-dependent gene 

to support PB123-induced Nrf2 activation, we found that the levels of the Nrf2-dependent 

HMOX1 gene (Figure 11A) and HMOX1 protein (Figure 11B) were increased in HepG2 

cells by PB123 treatment. In addition, PB123 and its individual components showed 

ERK1/2 dependence for Nrf2 activation (Table 1) as well as for PB123-induced protection 

against cumene hydroperoxide-induced oxidative stress and loss of cell viability in HepG2 

cells (Figure 12).

The PB123-induced downregulation of genes in the Cholesterol Biosynthesis Pathway (see 

Figure 8) is notable. PB123 treatment decreased the expression of fifteen genes involved 

in cholesterol biosynthesis (ACAT2, HMGSC1, HMGCR, MVK, MVD, IDI1, FDPS, 

FDFT1, SQLE, LSS, CYP51A1, MSMO1, NSDHL, SC5D, and DHCR7) and increased 

the expression of one gene in the pathway (PMVK). This result suggest that biosynthesis 

of cholesterol in HepG2 cells might be decreased by treatment with PB123, which was 

supported in a follow-up experiment demonstrating decreased levels of total cholesterol in 

HepG2 cells cultured with PB123 (Figure 9). Dietary approaches may be useful to help with 

healthy aging, with the goal of attenuating age-related dyslipidemia in combination with 

attenuating age-related oxidative stress and inflammation.

FABP1, also known as liver fatty acid binding protein, has high affinity for fatty acids by 

means of two fatty acid-binding sites [100]. FABP1 plays an important role in fatty acid 

uptake in HepG2 cells [101], leading to hypothesis that FABP1 may contribute to liver 

steatosis. Notably, silencing FABP1 decreased hepatic steatosis, inflammation, and oxidative 

stress in a mouse model of nonalcoholic fatty liver disease (NAFLD) [102]. Further, exercise 

was found to decrease FABP1 gene expression in mice and protect against NAFLD [103], 

and in human subjects urinary FABP1 protein levels were lowest in the fittest subjects, those 

with higher levels of muscle strength and aerobic fitness [104]. Recently, increased FABP1 

levels in human subjects has been identified as a biomarker in diabetic nephropathy [105]. In 

our HepG2 cell experiments, the pronounced downregulation of FABP1 by PB123 (Figure 

10A) was accompanied by a significant decrease in intracellular fatty acid levels in the cells 
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(Figure 10B), similar to the results previously reported in HepG2 cells with FABP1 knocked 

down using antisense RNA [101].

Extensive prior work supports beneficial effects of the individual components of PB123 

(rosemary, ginger, and luteolin) for normalizing lipid and cholesterol levels [106–114]. In 

our current work those benefits are likewise noted, along with the activation of the Nrf2 

transcription factor, beneficial effects on gene regulation, and protection against oxidative 

stress.

5. Conclusions

We found that the PB123 phytochemical combination is a potent Nrf2 activator with 

significant synergy between the rosemary and ginger components. Pathway analyses 

of genes differentially expressed by PB123 treatment of HepG2 cells in mRNA-

seq experiments revealed prominent upregulation of genes in the Nrf2 pathway and 

downregulation of genes in the cholesterol biosynthesis pathway. Further, pretreatment with 

PB123 protected cultured HepG2 cells against an oxidative stress challenge caused by 

exposure to the organic oxidant cumene hydroperoxide. In addition, the downregulation 

of lipid uptake and cholesterol biosynthesis genes were accompanied by decreased 

intracellular lipid levels and decreased total cholesterol levels in PB123-treated HepG2 

cells. The Nrf2 activation, highly synergistic effects between the rosemary and ginger 

ingredients, differential gene expression in pathways that pertain to increased cytoprotection, 

decreased cholesterol synthesis, and decreased intracellular lipid accumulation by the dietary 

supplement PB123 support its use to promote healthy aging.
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Figure 1. 
Effect of PB123 treatment on HepG2 cells. (A) PB123 was not toxic to HepG2 cells, 

measured by treating the cells for 24h with PB123 then determining cell viability by CCK8 

assay. (B) PB123 activated Nrf2 in HepG2-ARE cells in a dose-dependent manner (p<0.05) 

by 5 and 12 μg/mL PB123.
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Figure 2. 
The Nrf2-inhibitor AEM1 dose-dependently blocked Nrf2 activation (p<0.05) induced in 

HepG2-ARE cells by treatment with PB123 (10 μg/mL).
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Figure 3. 
Combinatorial synergy analysis of HepG2 cells treated with Rosemary and Ginger extracts. 

Nrf2 activation by checkerboard combinations of Rosemary and Ginger extracts showed a 

strongly synergistic response as calculated using both (A) the Zero Interaction Potency and 

(B) the Loewe additive effect reference synergy models (synergyfinder.org).
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Figure 4. 
BioJupies was used to generate a Volcano plot of differentially expressed genes by HepG2 

cells treated with PB123 12 μg/ml compared with untreated control HepG2 cells. Red 

indicates upregulated genes and blue indicates downregulated genes. Genes were selected 

with 2-fold change threshold. Gene symbols on the plots are used to mark some of the most 

significant genes changed, showing lipid and cholesterol synthesis genes downregulated and 

Nrf2-dependent genes upregulated.
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Figure 5. 
BioJupies was used to query ENCODE and ChEA consensus transcription factors with 

the DEG from the 12 μg/mL PB123 treatment mRNA-seq dataset and revealed prominent 

dependence on the Nrf2 (NFE2L2) transcription factor.
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Figure 6. 
Ingenuity Pathway Analysis (IPA) indicates that PB123 downregulates genes in the 

cholesterol biosynthesis pathway and upregulates genes in the Nrf2 transcription factor 

pathway.
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Figure 7. 
BioJupies was used to query Wikipathways to reveal the top pathways affected using the 

genes upregulated by PB123 (A) and downregulated by PB123 (B).
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Figure 8. 
Cholesterol Biosynthesis Pathway genes from WikiPathways (WP197, https://

www.wikipathways.org/index.php/Pathway:WP197). In our mRNA-seq dataset we found 

that all of the genes were significantly downregulated (shown in blue) by 12 μg/mL PB123 

in HepG2 cells except PMVK (shown in red) compared to control-treated HepG2 cells 

(p<0.05, n = 4 per group). HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in 

the pathway.
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Figure 9. 
HepG2 total cholesterol. Total cholesterol levels were significantly reduced in HepG2 cells 

by 24 treatment with 5 or 12 μg/mL PB123 compared to untreated control HepG2 cells 

(p<0.05, n = 12 per group).
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Figure 10. 
HepG2 intracellular lipids. We found that (A) FABP1 was significantly downregulated by 

both 5 and 12 μg/mL PB123 in HepG2 cells compared to untreated control HepG2 cells 

(p<0.05, n = 4 per group), and (B) that intracellular lipid content was likewise significantly 

reduced by both 5 and 12 μg/mL PB123 in HepG2 cells compared to untreated control 

HepG2 cells (p<0.05, n = 12 per group).
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Figure 11. 
Heme oxygenase-1 gene expression and protein were increased in HepG2 cells by PB123 

treatment. Treatment of HepG2 cells with PB123 (5 μg/mL, 24h) increased the both the 

levels of HMOX1 gene expression determined by mRNA-seq (A) and the levels of HMOX1 

protein determined by ELISA (B), as expected based on the large PB123-induced increase in 

Nrf2 activation (p<0.05, n = 4 in each case).
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Figure 12. 
PB123 prevented loss of cell viability following challenge with an oxidative stress. 

Cytotoxicity was not observed (cell proliferation measured by CCK8 assay) in HepG2 cells 

treated for 16h with 5 μg/mL PB123 compared to untreated control cells. In HepG2 cells 

treated with 5 μg/mL PB123 or vehicle control for 18h, and then challenged with 25 μM 

cumene hydroperoxide (CH) or untreated control for 6 h, loss of cell viability (toxicity) 

was caused by CH challenge but this toxicity was partially attenuated (p < 0.05) by PB123 

pretreatment. The protective effect of PB123 was blocked (p<0.05) by ERK1/2 kinase 

inhibition (10 μM PD98059, 30 min prior to PB123 treatment).
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Table 1

Decrease of Nrf2 activation with ERK1/2 inhibition.

Nrf2 Activator Alone With ERK1/2 Inhibitor

Rosemary 100% 51 ± 4%

Ginger 100% 58 ± 8%

Luteolin 100% 42 ± 12%

PB123 100% 58 ± 4%
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