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Abstract

Background: The composition vector (CV) method has been proved to be a reliable and fast alignment-free method to
analyze large COI barcoding data. In this study, we modify this method for analyzing multi-gene datasets for plant DNA
barcoding. The modified method includes an adjustable-weighted algorithm for the vector distance according to the ratio
in sequence length of the candidate genes for each pair of taxa.

Methodology/Principal Findings: Three datasets, matK+rbcL dataset with 2,083 sequences, matK+rbcL dataset with 397
sequences and matK+rbcL+trnH-psbA dataset with 397 sequences, were tested. We showed that the success rates of
grouping sequences at the genus/species level based on this modified CV approach are always higher than those based on
the traditional K2P/NJ method. For the matK+rbcL datasets, the modified CV approach outperformed the K2P-NJ approach
by 7.9% in both the 2,083-sequence and 397-sequence datasets, and for the matK+rbcL+trnH-psbA dataset, the CV approach
outperformed the traditional approach by 16.7%.

Conclusions: We conclude that the modified CV approach is an efficient method for analyzing large multi-gene datasets for
plant DNA barcoding. Source code, implemented in C++ and supported on MS Windows, is freely available for download at
http://math.xtu.edu.cn/myphp/math/research/source/Barcode_source_codes.zip.
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Introduction

The mitochondrial cytochrome c oxidase subunit I (COI) has

been proposed as the ‘‘DNA barcode’’ region for species

identification in the animal kingdom [1,2]. Since then, a variety

of animal groups, such as insects, fishes, birds and amphibians [3–

7] have already been successfully barcoded with high rates of

species discrimination (.90%) [8]. However, the relatively low

nucleotide substitution rate in the plant mitochondrial genomes

significantly reduces the species discrimination power of COI in

plants [9]. Furthermore, with the high structural reorganization in

plant genomes [9], searching for a single global DNA barcoding

marker, analogous to COI in animals, for plants has been

extremely difficult. As a result, the Plant Working Group of the

Consortium for the Barcode of Life (CBOL) proposed to use two

coding genes, matK and rbcL, in the plastid genome as the core

DNA barcoding markers to discriminate terrestrial plant species

[10]. Yet the species discriminatory power of this matK+rbcL

combination was only about 70%, which is much lower than the

success rates of species discrimination reported in animals [11].

Kress et al. [9] suggested that the trnH-psbA spacer region should

be added as the third core DNA barcoding marker because this

three-locus marker could provide a ‘‘better estimate of species

identity’’, and it is very easy to be amplified by PCR across

terrestrial plants using a pair of universal primers. This

matK+rbcL+trnH-psbA combination, with two coding regions plus

one non-coding region, seems to be the most promising DNA

barcoding strategy to discriminate terrestrial plant species up to

date.

Multiple alignment of large single-locus DNA barcoding

datasets is always time consuming and requires high computing

power [12], and the Barcode of Life Data Systems (BOLD) has to

divide the large barcode dataset into several ‘‘sub-projects’’ with a

size limit of 5,000 specimens each for analysis [13]. The latest

multi-locus approach, either the matK+rbcL or matK+rbcL+trnH-psbA

combination, suggested for plant DNA barcoding would further

challenge the computing capacity of alignment algorithms. In

particular, including the non-coding region trnH-psbA as one of the

core DNA barcoding markers is problematic, as base insertions

and deletions (indels) are commonly found. In fact, inverted

repeats have been reported in trnH-psbA among gymnosperms

[14]. Such indels and repeats could make sequence alignment
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ambiguous because assigning gaps to DNA sequences is highly

subjective [15], and there is no consensus on what defines a

‘‘good’’ or ‘‘best’’ multiple alignment [16]. Kress et al. [9] were

also concerned about the fallacy in aligning trnH-psbA sequences

from highly divergent taxa, and suggested that the non-coding

sequences should be aligned in nested groups before combining

with the coding sequences for global alignment. This multi-step

multiple alignment protocol would make the already problematic

alignment process even more troublesome and time-consuming,

especially for large DNA barcoding datasets. Moreover, this

process often has to be repeated whenever a new sequence is

added to a dataset. The ultimate solution is to develop a fast and

effective alignment-free analytical method to handle the multi-

locus datasets for plant DNA barcoding projects.

Our previous studies [12,17] show that the composition vector

(CV) method is a fast and reliable alignment-free approach for

analyzing large sequence datasets, including those of non-protein-

coding genes, such as rRNA. Briefly, the CV method is a simple

correlation analysis based on composition vectors derived from

either DNA or amino acid sequences. First, the CV of each

sequence is obtained by determining the frequencies of short DNA

strings, and then the pairwise distance between the CVs is

calculated. Finally, a distance tree using the neighbor-joining (NJ)

method is generated based on the distance matrix. So far, only

single-locus datasets have been tested with the CV method in our

studies. To handle multi-locus datasets from plant DNA barcoding

projects, the CV method has to be modified. In this study, an

adjustable-weighted algorithm for the vector distance according to

the pairwise ratio in sequence length of the candidate genes is

incorporated. Accordingly, the distance matrix for each gene

segment generated by the CV method is weighted before

combining for further analysis. Three datasets, matK+rbcL dataset

with 2,083 sequences, matK+rbcL dataset with 397 sequences and

matK+rbcL+trnH-psbA dataset with 397 sequences, were tested in

the present study. The two 397-sequence datasets were from the

CBOL Plant Working Group [10], while the 2,083-sequence

dataset was largely based on Little’s dataset [18]. These datasets

were chosen because they include the most promising DNA

markers proposed for plant barcoding, and they also contain the

largest number of plant DNA sequences published so far. The

objective of this study was to evaluate how well the modified CV

method could handle the multi-locus DNA barcoding datasets for

plants, and the results showed that the success rates of grouping

sequences at the genus/species level based on the modified CV

approach are always higher than those based on the traditional

analytical method.

Methods

The 397-sequence dataset analyzed in the present study

contains three loci, matK, rbcL and trnH-psbA, from 99 genera

and 220 species, and is available in CBOL Plant Working Group

[10]. The 2,083-sequence dataset, which is largely based on the

dataset of Little [18], was kindly provided by Dr. Damon P. Little

of the New York Botanical Garden, and it contains two loci, rbcL

and matK, from 977 genera and 1,737 species.

The basic principle of the composition vector (CV) method was

fully described previously [19–23], including its application in

DNA barcoding [12,17], and phylogeny of chloroplasts [22,24],

large dsDNA viruses [25,26] and fungi [27]. Briefly, for a sequence

of a gene of length L, the frequency of the appearance of

oligonucleotide strings of a fixed length K is calculated. The total

number of possible types of such strings is 4K and the total number

of K-strings is (L2K+1). The frequency of each of the K-strings in a

given DNA sequence is determined by sliding through the

sequence, shifting one nucleotide position at a time. The observed

frequency p(a1a2… aK) of a K-string a1a2… aK is n(a1a2… aK)/

(L2K+1), where n(a1a2… aK) is the number of times that a1a2…

aK appeared in this sequence. For a certain K, we put the

frequencies of all possible K-strings in a fixed order to obtain a

composition vector of dimension 4K for each sequence. The

correlation C(A,B) between two sequences A and B is determined

by taking the projection of one vector on another, and the distance

between the two is defined as D = (12C)/2. In the modification to

handle multi-locus dataset, the pairwise distance from each gene is

weighted according to their sequence length before combining

distances for subsequent analysis. For instance, in the case of two

genes, if we use lengene1(i) to denote the length of gene1 in species

‘‘i’’, and so on, and define

lengene1zgene2(i,j)~lengene1(i)zlengene2(i)zlengene1(j)zlengene2(j)

Then we define the weights of gene1 and gene2 in a pair of taxa i and

j as

weightgene1(i,j)~½lengene1(i)zlengene1(j)�=lengene1zgene2(i,j)

weightgene2(i,j)~½lengene2(i)zlengene2(j)�=lengene1zgene2(i,j)

It can be seen that the weights of two genes in a pair of taxa i

and j are independent on the string length K (meaning that for any

value of K, the weights are the same). If we consider string length

K1 for gene1 and K2 for gene2 and have obtained the CV distances

Dgene1,K1(i,j) and Dgene2,K2(i,j) as in our previous studies [12,17],

we define the weighted CV distance based on gene1 and gene2

between species i and species j as

Dweight(i,j)~weightgene1(i,j)Dgene1,K1(i,j)z

weightgene2(i,j)Dgene2,K2(i,j)

By this equation, the distance matrices from each gene marker

based on different string length K can be combined together, and

the neighbor-joining (NJ) [28] tree construction based on the

weighted, combined distance matrix from all selected genes or loci,

can then be performed by Phylip 3.66 [29]. A summary chart on

the workflow of the newly modified CV method is shown in

Figure 1.

To determine the best length of string (K) used in the CV

analysis, the distance matrices for individual gene from K = 6 to 20

were generated. Then, the best K for individual gene was

determined according to the success rate of grouping sequences

correctly at the genus/species level (see below). Finally, the

distance matrix, D(i, j), generated from the best K for each selected

gene was used in the combined analysis. The CV/NJ tree of each

dataset generated from the combined distance matrices was then

compared to the corresponding K2P/NJ trees constructed using

the traditional methodology with sequence alignment constructed

as follows. First, the DNA sequences for each gene segment were

aligned using MUSCLE [30], and the aligned datasets were

combined for analysis. Finally, the NJ tree was constructed using

Mega 5 [31] based on Kimura 2-parameter (K2P) distance model

[32].

To compare the grouping effectiveness of the CV/NJ tree and

K2P/NJ tree from each of the three datasets, we estimated the

CV Analysis of Multi-locus Plant Barcoding Data
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percentage of sequences that could be successfully grouped at the

genus/species level as well as the percentage of species with

multiple sequences that could be successfully grouped (Table 1).

The first percentage refers to grouping success of sequences at the

genus/species level, i.e., all the sequences from species within the

same genus or those from multiple individuals of a given species

have to be clustered together as a group without including any

sequence from other genera or species. The second percentage

value refers to grouping success of species with multiple sequences

where the sequences from a given species have to be grouped

together without including any sequence from other species.

Results

For the 397-sequence dataset [10], the best K value of 14 was

selected for both the matK and rbcL regions, and K of 8 was selected

for the trnH-psbA region. In the CV/NJ trees, the success rates of

grouping sequences at the genus/species level for the combinations

of matK+rbcL and matK+rbcL+trnH-psbA were 77.2% and 81.7%,

respectively (Table 1). The corresponding values for the K2P/NJ

trees were 70.7% and 68.1%. In terms of the success rates of

grouping species with multiple sequences in the CV/NJ trees, the

values were 70.6% and 77.5%. For the K2P/NJ tree, they were

62.7% and 60.8%. In the study by the CBOL Plant Working

Group [10], the success rates of species discrimination, which were

restricted to species where multiple individuals were sampled from

congeneric species with the discrimination considered successful if

the minimum uncorrected interspecific p-distance is larger than

the maximum intraspecific distance, are 71.6% for both the

matK+rbcL and matK+rbcL+trnH-psbA combinations.

For the 2,083-sequence dataset, the best K value of 14 was

selected for both the matK and rbcL regions. The success rates of

grouping sequences at genus/species level were 55.4% and 55.3%

for CV/NJ and K2P/NJ, respectively (Table 1). In terms of the

success rate of grouping species with multiple sequences, the

corresponding values were 52.5% and 44.6%.

Discussion

The CV method has been proved to be an efficient algorithm to

analyze large single-locus DNA barcoding datasets [12,17]. In the

present study, the CV method has been modified for handling

multi-locus datasets for plant DNA barcoding, and it achieves the

highest grouping success in the matK+rbcL+trnH-psbA dataset.

Therefore, we believe that our method is suitable for analyzing

multi-locus barcoding datasets in plants. In fact, our analysis shows

that the CV method always outperforms the traditional method,

i.e., K2P/NJ, in grouping sequences to genus/species in both the

matK+rbcL and matK+rbcL+trnH-psbA datasets tested in this study.

For the 397-sequence dataset, both matK+rbcL and

matK+rbcL+trnH-psbA datasets were tested. For the matK+rbcL

combination, the success rate of grouping sequences to genus/

species with the CV/NJ method is higher than that using the

K2P/NJ method by 6.5%. With the addition of the trnH-psbA

spacer region, the success rate using the CV/NJ method increases

by 4.5% to 81.7%. Unlike the result from the CV/NJ method,

Figure 1. Workflow of the modified composition vector method for analyzing multi-locus datasets.
doi:10.1371/journal.pone.0042154.g001

Table 1. The grouping effectiveness of the K2P/NJ and CV/NJ methods for the three plant barcoding datasets.

% Success in grouping sequences to species/genus
% Success in grouping species with multiple
sequences

Dataset N1 K2P/NJ method CV/NJ method N2 K2P/NJ method CV/NJ method

397-sequence (matK+rbcL) 383 70.7% 77.2% 102 62.7% 70.6%

397-sequence (matK+rbcL+trnH-psbA) 383 68.1% 81.7% 102 60.8% 77.5%

2,083-sequence (matK+rbcL) 1,319 55.3% 55.4% 204 44.6% 52.5%

N1 – total number of sequences from genera with multiple species or species with multiple individuals. N2 – total number of species with multiple sequences.
doi:10.1371/journal.pone.0042154.t001
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adding the trnH-psbA spacer region in the K2P/NJ method does

not improve the grouping effectiveness, which actually decreases

by 2.6%. By using the traditional methods which are based either

on direct measurement of pairwise distance from global align-

ments [10] or the K2P/NJ method used in the present study,

adding one more gene, i.e., the trnH-psbA spacer, does not enhance

the discriminatory or grouping power. For instance, a success rate

of 71.6% was reported for both the matK+rbcL and

matK+rbcL+trnH-psbA combinations [10]. Moreover, the average

species discriminatory power in plant barcoding was only about

70% for all possible seven-locus combinations [10]. The saturation

of discriminatory power found among the different marker

combinations may be caused by the poorly aligned sequences

from the non-protein-coding regions. In contrast, since the CV/NJ

method does not require DNA sequence alignment, adding more

gene regions, especially non-protein-coding regions, would

enhance the grouping power as shown in the present study.

For the 2,083-sequence dataset based on the matK+rbcL

combination, as in the 397-sequence dataset, the success rate of

grouping sequences in CV/NJ method is always higher than that

found in the K2P/NJ method. However, the grouping effective-

ness is significantly lower (by about 20%) in the 2,083-sequence

dataset than in the 397-sequence dataset. The weak grouping

effectiveness found in the 2,083-sequence dataset may be caused

by the presence of a large number of single taxon sequences, i.e.,

those from species or genus that have no other sequences in the

dataset. There were 764 single taxon sequences found in this

dataset, yet many of these sequences were found to cluster within

groups consisting of species with multiple individuals, or multiple

congeneric species, thus resulting in low grouping effectiveness.

The aberrant phylogenetic positions of some of these problematic

single taxon sequences found in the CV/NJ and K2P/NJ trees

might result from poor sequence data or DNA contamination

from other species. Further, we could not exclude the possibility

that some of these single taxon sequences are the result of

misidentification of species, such that some of the sequences with

wrong species names were actually assigned to their correct species

or congeneric group based on DNA barcoding. Further, it should

be noted that the dataset of Little [18] available for public

download actually contains 1,745, not 2,083 sequences. The

smaller dataset exclude 338 sequences from multiple individuals of

the same species. Thus, this dataset could not be used in the

present study as we aim to analyze for grouping effectiveness at the

species level. It should be noted that the grouping success reported

in the present study could not be compared directly with the

success species ‘‘discriminatory rates’’ based on global alignment

method [10,18] because, in the latter method, the correct species

identification relies on the ‘‘barcode gap’’ that is based on inter-

and intra-specific genetic distances. As a result, failure in

identifying a query sequence would not affect the species

discriminatory result on the other queries since the method is

based on pairwise matching algorithm. Our CV/NJ method,

however, is a tree-based method, and any sequences that do not

match the others from the same taxon lead to failure in grouping.

Thus in our study, the grouping success from the K2P/NJ method

and CV/NJ method reported in the present study can be

compared directly, and clearly the CV/NJ method always

outperforms the K2P/NJ method.

In alignment-free methods of sequence analysis based on DNA

strings, a critical factor is the length of the string, K, for analysis. In

our previous CV barcoding studies [12,17], we followed the method

of Pevzner [33] to determine the best K value for the CV analysis. In

preliminary studies of the present work, we obtained the best K

value using Pevzner’s method [33] for the three datasets, but the

grouping effectiveness of these CV/NJ trees is low. For instance, the

best K value is 9 for the rbcL dataset according to this method yet the

grouping effectiveness at the genus/species level of the tree based on

this value is only 64.4%, which is substantially lower than 68.2% for

the tree with a K value of 14. Thus Pevzner (2000)’s method [33]

was not adopted in estimating the best K value in this study. The

reason why Pevzner (2000)’s method [33] failed to estimate the best

K is yet to be explored. In order to search for the best K value, CV/

NJ trees from each individual gene from K = 6 to 20 were generated

in the present study, and the K value with the highest grouping

effectiveness at the genus/species level was selected as the value for

that particular gene region in the combined analysis. Although this

method was assumed to be the best approach in determining the

best K, it was very time-consuming. One of the advantages of using

the CV method is its fast analytical speed, so that the slow rate-

determining step of searching for the best K value is undesirable. We

suggest using a preset K value for a particular gene region until we

develop an automated tool for selecting the best K value. In fact,

while the best K value may vary among different gene markers (i.e.,

14 for rbcL and matK and 8 for trnH-psbA), it appears that it remains

unchanged among different datasets of the same gene marker, since

the best K value of 14 was found in rbcL or matK for both the 397-

sequence and 2,083-sequence datasets. Thus we believe this K value

can be adopted to analyze any other datasets of these two genes.

However, if a new gene region, other than matK, rbcL and trnH-psbA,

is added to the plant DNA barcode combination, the best K value

for that particular gene has to be determined by searching for the

best CV/NJ tree among those generated from different K values.

The major modification of our modified CV method is to

incorporate an adjustable-weighted algorithm for the vector

distance according to the ratio of sequence length found between

a pair of taxa in the candidate genes. In fact, our preliminary studies

show that the CV/NJ trees with the weighted distance could always

provide a higher grouping effectiveness than the CV/NJ trees

without using the weighted distance. For instance, the grouping

effectiveness of sequences to genus/species for the matK+rbcL dataset

using the weighted distance was 0.7% higher than the correspond-

ing value without using the weighted distance. This distance

weighting process is critical, especially when the length variation

among the selected genes in a multi-locus dataset is high. Besides the

variable lengths found in different gene regions, the different

nucleotide substitution rates among the selected gene regions would

also affect the discriminatory power in the combined analysis. This

difference should be taken into account for further improvement of

analyzing barcoding dataset using the CV approach. In the present

study, we demonstrated the power of the CV method in analyzing

large DNA barcode datasets of multiple gene regions, regardless of

the type of gene markers used. In the tested datasets, the CV/NJ

method always gives higher grouping success (in terms of sequences

or species) than the conventional method of K2P/NJ. To conclude,

the modified CV/NJ method can be adopted as an effective and fast

tree construction algorithm in analyzing multi-locus DNA barcode

datasets.
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