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Abstract
Objective To review instruments used to assess disease stability or progression in persons with multiple sclerosis (pwMS) 
that can guide clinicians in optimizing therapy.
Methods A non-systematic review of scientific literature was undertaken to explore modalities of monitoring symptoms 
and the disease evolution of MS.
Results Multiple outcome measures, or tools, have been developed for use in MS research as well as for the clinical manage-
ment of pwMS. Beginning with the Expanded Disability Status Scale, introduced in 1983, clinicians and researchers have 
developed monitoring modalities to assess all aspects of MS and the neurological impairment it causes.
Conclusions Much progress has been made in recent decades for the management of MS and for the evaluation of disease 
progression. New technology, such as wearable sensors, will provide new opportunities to better understand changes in 
function, dexterity, and cognition. Essential work over the decades since EDSS was introduced continues to improve our 
ability to treat this debilitating disease.

Keywords Multiple sclerosis · Monitoring modalities · Function · Dexterity · Cognition

Introduction

Multiple sclerosis (MS) is an inflammatory neurologic dis-
ease with a varied presentation, and diagnosis is made clini-
cally [1–4]. Once diagnosed, the type and speed of symptom 
progression in MS vary, making the clinician’s job of assess-
ing disease evolution and treatment responses a perpetual 
challenge.

Multiple outcome measures, or tools, have been devel-
oped for use in MS research and clinical management of 
persons with MS (pwMS). Such tools have been designed 
to help determine the progression and severity of dis-
ease, including inflammatory activity [clinical relapses 
or new magnetic resonance imaging (MRI) lesions] and 

neurodegeneration (progression in absence of relapses). 
These tools are also used to identify evidence of a response 
to treatment. To ensure effective use, the practicing clinician 
must first gain an understanding of the benefits and down-
sides of each tool to determine whether to incorporate it into 
a patient’s evaluation and therapeutic decisions. If the tool is 
to be incorporated, the clinician must then consider how to 
effectively implement it and interpret the results. Currently, 
only a few of the tools in existence are commonly used in 
research and patient management [5].

Here we provide an overview of tools that can be used 
to evaluate the functional (Table 1) and neuroanatomical 
(Table 2) components of MS, highlighting new data on 
potential MS biomarkers and how they may be utilized by 
clinicians in the future. Some patient-reported outcome 
tools are presented in Table 3 for reference, but they are 
not detailed in this review. Our aim is to enable clinicians 
to more accurately assess stability or progression in pwMS 
and to guide treatment optimization, even in subclinical 
progression.

The different instruments are presented in three catego-
ries: functional, describing evaluations of motor, ambula-
tion, and cognitive performance; anatomical, reviewing 
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imaging of the brain, spinal cord and retina; and biological, 
addressing the evolving area of biomarkers.

Methods

A non-systematic review of scientific literature was under-
taken to explore modalities of monitoring symptoms and the 
disease evolution of MS. We searched PubMed in Jan-Feb 
2020 using the following terms and limiting to English lan-
guage and humans and papers since January 2000: “multiple 
sclerosis” and “Expanded Disability Status Score”, “Timed 
25-Foot Walk”, “Six-Minute Walk Test”, “Timed Up and 
Go”, “9-Hole Peg Test”, “Symbol Digit Modalities Test”, 
“Low-contrast letter acuity”, “magnetic resonance imaging”, 
Optical Coherence Tomography”, “biomarkers”, and “neu-
rofilament”. A similar procedure was followed in April–May 
2021 to include “Multiple Sclerosis Functional Composite” 
and “Paced Auditory Serial Addition Test”. A manual search 
of papers included was also done to identify other possi-
ble references, including some that were relevant from the 
period before January 2000.

Functional instruments

Expanded Disability Status Score (EDSS)

The EDSS was introduced in 1983 to quantify neurologi-
cal impairment in pwMS [6]. It is used to score patients 
across eight functional groupings on a step scale of 0–10. 
The disability scoring can be simplified to mild [≤ 4.5; able 
to walk without any aid (considered fully ambulatory)], 
moderate [5–6.5; ranging from ambulatory without aid or 
rest for ~ 200 m to requiring constant bilateral assistance 
(canes, crutches, or braces) for walking ~ 20 m without rest-
ing], and severe (7–10; ranging from being unable to walk 
beyond ~ 5 m even with aid, to death) [6]. Natural history 
studies based on EDSS have shown an accelerated phase of 
progression beginning around a score of 4.0 [7–9]. In an MS 
population treated at a clinic in Ontario, Canada, Weinshen-
ker et al. observed that patients spent the shortest mean times 
at EDSS 4 and 5 (1.22 and 1.25 years, respectively) than at 
any other EDSS score [9].

Since its introduction, EDSS has been a standard instru-
ment for assessing patients with MS and charting status 
changes. It is widely used in clinical trials to assess the effec-
tiveness of clinical interventions and in the routine clinical 
assessment of disease progression in pwMS [10]. A second 
assessment of EDSS change is generally done at a mini-
mum of 3 months to confirm that the progression was not 
temporary for trials of 2- to 3-year duration [11]. Moreover, 
confirmed persistence of progression at 3 months accurately 
estimates irreversible progression in 70% cases at 5 years 6M
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(i.e., may result in the identification of temporary disability 
changes in 30%). More accurate evaluation of irreversible 
disability is seen when extending the confirmation periods 
(6 months, 74%; 12 months, 80%, 24 months, 89%) [12]. 
Limitations such as low sensitivity to change and under-
representation of fatigue, visual function, and cognitive 
impairment, however, have been noted and discussed [13]. 
The functional groupings of EDSS are largely contingent 
on non-linear loss of ambulatory ability and do not include 
scoring for loss of cognition or other neurological impair-
ments. Although EDSS retains its place in the language of 
MS assessment, numerous instruments and tests have been 
proposed and validated to fill patient monitoring gaps.

Multiple sclerosis functional composite (MSFC)

The multiple sclerosis functional composite (MSFC) is a 
multidimensional, three-component scale to assess the 
degree of functional impairment in MS patients. It was 
developed by the National MS Society (NMSS) in 1994 to 
address the limitations and unidimensionality of other func-
tional status outcomes [10, 14]. After a rigorous analysis 
of candidate outcome measures, the following tests were 
included: Timed 25-Foot Walk (T25W) for leg function and 
ambulation, 9-Hole Peg Test (9HPT) for arm and hand func-
tion, and Paced Auditory Serial Addition Test (PASAT) for 

cognitive function, all of which are described separately in 
this publication. An integrated MSFC score is calculated 
using z scores from the three components. The entire com-
posite measure takes approximately 20 min to complete [15].

The primary goal for creating the MSFC was to develop 
a new clinical outcome measure for use in MS clinical trials 
[15], and it has proven a useful outcome in Phase 3 trials 
of disease-modifying agents for MS as both a primary and 
secondary outcome measure [10].

There has been robust support for the validity of the 
MSFC, with studies showing correlation with disability 
as measured by the EDSS, disease course and patient self-
report measures of symptoms and QoL. Some studies have 
also shown better correlation between MSFC and MRI 
measures of cerebral lesion burden and atrophy than seen 
with the EDSS, but this correlation is inconsistent [10, 16].

A systematic literature review evaluating the validity 
of the MSFC compared with the EDSS found that while 
the EDSS has some documented weaknesses in reliability 
and sensitivity to change, the MSFC is limited in its learn-
ing effects of the PASAT, the z score method used to cal-
culate the total score, low acceptance among patients and 
lack of a visual dimension [10]. Both tools are suitable for 
detecting the effectiveness of clinical interventions and to 
monitor disease progression. Of the two measures, EDSS 
appears to be the more widely used in clinical trials and 

Table 2  Commonly used tools for the assessment of neuroanatomical change in individuals with multiple sclerosis

MRI magnetic resonance imaging, MS multiple sclerosis, OCT optical coherence tomography

Test Function tested Utility Interpreting results

MRI [81] MS disease activity in the brain ∙ Routine clinical practice (diagnosis, 
monitoring disease progression, progno-
sis); primary or secondary endpoint in 
intervention trials[82, 87]

∙ New MRI lesion formation indicates 
active inflammation/active disease in 
relapsing MS and may indicate poor treat-
ment outcome

∙ Presence of gadolinium-enhancing and 
spinal cord lesions at diagnosis predict 
long-term development of secondary pro-
gressive MS and physical disability and 
may influence initial treatment selection

OCT [100] Neurodegenerative changes in the retina ∙ Routine clinical practice and clinical trials ∙ Thinning of retinal nerve fiber layer indi-
cates MS disease progression [99, 101]

Table 3  Commonly used 
patient-reported outcome tools

MSQOL-54 54-item Multiple Sclerosis Quality of Life questionnaire; MFIS Modified Fatigue Impact 
Scale, MS multiple sclerosis, SF-36 36-item Short Form Health Survey

Test Function tested Summary

MSQOL-54 [134] Patient-reported quality of life ∙ Based on SF-36 with additional MS-specific 
items

MFIS [135, 136] Fatigue ∙ Assessment of patient fatigue in terms of physi-
cal, cognitive, and psychosocial function

SF-36 [137, 138] Patient-reported quality of life ∙ Generic life questionnaire with limited utility for 
MS parameters aside from cognitive function
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its international acceptance facilitates comparison of data 
between studies [10]. Despite some limitations, both instru-
ments are accepted as endpoints although MSFC is often 
used as a secondary parameter [10].

Gait

Timed 25‑foot walk (T25FW)

The T25FW has been used to measure gait speed in pwMS 
for > 3 decades in both clinical and research settings [17]. 
It was initially part of the Ambulatory Index [18], support-
ing MS research and clinical practice, and was subsequently 
incorporated into the MSFC for use in clinical trials [8]. 
The T25FW has been used to assess interventions in drug 
and rehabilitation trials and is useful to assess ambulation 
changes in the clinical setting [19]. The T25FW is conducted 
using a premeasured, linear, unobstructed, 25-foot distance. 
From an initial standing position, the individual is instructed 
to safely walk the measured distance as quickly as possible, 
going past the end measurement to avoid slowing down at 
the end. A second measurement follows. Use of assistive 
devices to accomplish the task is permitted. The time (in 
seconds) to complete each segment is recorded and then 
averaged to obtain a score. Speed can also be calculated in 
feet per second [19].

A recent meta-analysis of T25FW studies identified 50 
articles that included 6303 individuals with MS and 1377 
healthy controls, providing evidence for the utility of the 
T25FW as a gait assessment in MS [20]. Individuals with 
MS were 55% slower in the T25FW than healthy controls 
(mean difference − 2.4 s), with an effect size of − 0.92. 
Performance on the T25FW was worse in those with greater 
impairment as individuals with mild MS were 51% faster 
than those of individuals with moderate to severe MS (mean 
difference − 5.5 s), with an effect size of − 1.02. In addition, 
performance on the T25FW was worse in individuals with 
progressive MS compared with those who had a relapsing 
clinical course. Those with a relapsing course had a 67% 
faster completion on the T25FW (mean difference − 13.4 s), 
with an effect size of − 1.36. All of these effect sizes are 
indicative of clinically meaningful differences [20].

Standardized scoring of the T25FW calculates a z score 
[8]. Because this scoring system is challenging to understand 
and implement in clinical practice [21], alternative methods 
of interpreting meaningful change have been suggested. For 
instance, a minimum detectable change of 2.7 s in T25FW 
time has been described [22]. A time of 6 to 7.99 s corre-
lates with meaningful life changes due to disability, whereas 
a time of ≥ 8 s is associated with a permanent disability, 
use of a walker, and inability to perform daily tasks [17]. 
However, an approximately 20% change in the time needed 
to complete the T25FW has most often been described as a 

meaningful change [19, 23, 24] and was used in MS clinical 
studies of dalfampridine for the improvement of walking 
speed [24–26]. Minimum detectable changes of 21–36% 
have been calculated in some studies, with the variation 
explained by differences in MS severity [28, 27].

The T25FW correlates well with EDSS (Spearman coeffi-
cient 0.56; 95% CI 0.55–0.58) [21]. Nevertheless, some limi-
tations have been suggested. For instance, directions pro-
vided must be clear and consistent in order to have the best 
evaluation of the individual’s speed [8]. In addition, scores 
on the T25FW separated by 1 week have been observed to 
be consistently faster the second week, indicating a prac-
tice effect [29]. Researchers have also noted a floor effect, 
by which results in patients with less disability are similar 
to those of healthy controls [21]. Also, as the T25FW is 
solely a measure of speed, gait quality is not captured and 
clinicians need other measures to evaluate fall risk, endur-
ance, and balance. Indeed, some recognize that the T25FW 
is particularly effective as part of a group of evaluations in 
MS rather than a standalone test [21].

Six‑minute walk test (6MWT)

The 6MWT is a measure of motor fatigue validated in 1982 
as a quicker alternative to the 12-min walk test for evaluating 
pulmonary function [30]. It was validated for MS in 2008 
[30] and since then has been broadly incorporated into clini-
cal practice and has more recently been used as a primary 
outcome measure in clinical trials of interventions aimed at 
improving gait in MS [31]. For MS, general modifications 
made to the original American Thoracic Society guidelines 
include suggestions for rest during testing (participant may 
lean against a wall) and standardization of language for 
encouragement from evaluators [30, 32]. Since performance 
on 6MWT is influenced by pulmonary function [32], it is 
may be preferable to consider it as a measure of walking 
endurance rather than a true measure of motor fatigue.

The 6MWT includes a measured course, either continu-
ous or with a defined turning point, that is indoors, flat, and 
without obstacles. The participant walks at a maximum safe 
speed for 6 min, and the distance traveled is recorded. An 
examiner may walk behind the individual with a measuring 
wheel without setting a pace, and participants may use their 
current walking assistance device if it is regularly used [30, 
32]. When validated in MS patients, to maximize effort and 
better assess motor fatigue, the script for the 6MWT was 
modified from that used in patients with pulmonary orders; 
namely, by eliminating instructions for permitted rest during 
testing, emphasizing speed and excluding encouragement 
phrases. Modified 6 MW instructions were read prior to each 
walk. Subjects used their typical assistive device and walked 
back and forth in a 175-foot hallway, pivoting at each end 
of the hall. The floor was marked in 8.5-foot increments. 
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Distances walked during each minute and total distance were 
recorded [30].

Measurement of the first minute of the 6MWT compared 
to the final minute has been described as a way of identifying 
motor fatigue, with a 15% decrease in distance during the 
first minute to distance during the final minute indicating 
motor fatigue [33]. The minimum detectable change in the 
6MWT has been reported to be 88 m, and a 20% change 
from one measurement to the next is clinically relevant [22].

A meta-analysis of studies employing the 6MWT iden-
tified 34 articles with results from 2683 pwMS and 521 
healthy controls, confirming the utility of the 6MWT as 
a measure of endurance in MS [34]. On average, pwMS 
walked 177.92 m less than healthy controls, for a mean effect 
size of − 1.87 [standard deviation (SD) 0.17; p < 0.001]; 
pwMS with mild disability walked 185.19 m farther than 
pwMS with moderate to severe disability, for a mean effect 
size of 1.83 (SD 0.10; p < 0.001). Moderators of response 
were evident. The design of the course, continuous versus 
straight with 180º turns at either end, impacted the effect 
size, with larger effects between individuals with or without 
MS and mild or moderate to severe disability noted when 
a continuous course was used. In addition, a larger effect 
size was noted between pwMS and healthy controls when 
encouragement/feedback was provided [34].

Results from the 6MWT have been shown to correlate 
with results on the T25FW [35, 36], and correspondence 
with EDSS scales has been reported. Using a conveni-
ence sample, European researchers demonstrated that after 
physical rehabilitation, individuals with MS and an EDSS 
score ≤ 6.5 had better changes in scores with the 6MWT than 
with the T25FW (0.64 vs 0.59) [37]. In addition, individu-
als identified as having moderate to severe disability (EDSS 
4.5–6.5) rather than mild disability (EDSS ≤ 4) showed 
superior responsiveness in the 6MWT compared with the 
T25FW (0.62 vs 0.57). Hence, longer walking tests such 
as the 6MWT may be a more sensitive measure than the 
T25FW in detecting improvements in walking after physi-
cal rehabilitation in patients with mild and moderate-severe 
levels of disability.

Balance

Timed Up and Go (TUG)

Balance is impaired in pwMS, and impairment can be more 
severe than it is in individuals with other conditions such 
as Parkinson’s disease [38]. TUG is a measure of balance 
originally designed in 1986 for the frail elderly [39]. The test 
used primarily to monitor the effects of treatment in clini-
cal practice[35] is performed beginning with the individual 
in a seated position in a two-armed chair. The individual 
is instructed to rise from the chair, walk to a mark that is 

10 feet (3 m) from the chair, turn, and return to a seated 
position in the chair. Time is measured in seconds from the 
initial seated position to the return to sitting. The individual 
should use any walking aid that they require in daily life 
and wear their regular footwear, but no assistance is allowed 
during the test [39]. The test may be repeated and the aver-
age time recorded. Some data suggest that a single attempt 
is sufficient for evaluation [40], while other data support the 
averaging of two consecutive measures [41].

TUG evaluates multiple aspects of daily living function-
ality: standing up, sitting down, and turning, in addition to 
walking speed. Test–retest reliability and reproducibility 
have been confirmed [35, 42], and TUG has been shown to 
be reliable and responsive with no detected learning effect 
[41]. TUG significantly correlates with EDSS (score 2.0–6.5 
and no relapse within 30 days) and T25FW in individuals 
with MS and is a stronger predictor of EDSS score than 
the T25FW [35]. TUG also strongly correlates with other 
measures of functionality, disability, and ambulatory mobil-
ity in pwMS, and significantly correlates with balance and 
self-reported balance confidence [43]. TUG times strongly 
correlate with 6MWT times [44] and with balance measure-
ments among individuals with MS and low-minimal disabil-
ity [45]. In adults with mild MS (EDSS ≤ 4) at two university 
hospital outpatient centers, the mean TUG test time was 7.7 
(range 5.0–12.5; SD 1.7) seconds [41]. Time to completion 
for females was 32% longer than for males (time difference 
1.9 s, p < 0.05). The minimum detectable change reported 
for TUG was 10.6 s [40].

Although a study of the Khuzestan MS Patients’ Society 
(Iran) demonstrated that TUG test scores were predictive 
of falls in individuals with MS [46], other MS studies show 
that TUG is unable to discriminate between those with and 
without a fall history [47–49].

Dexterity

9‑Hole Peg Test (9‑HPT)

Impaired function of the upper extremities is a common con-
sequence of MS [50, 51]. The 9-HPT is an evidence-based, 
standardized, quantitative test of hand and arm function that 
was first published in 1971 [52, 53] and was later incor-
porated into the MSFC [8]. To perform the timed test, an 
individual is instructed to use one hand to insert nine pegs 
into a block with nine holes [52]. Once the pegs are in the 
holes, the individual removes them, one at a time, and places 
them in a container. The score can be recorded as time taken 
or speed (pegs per second) for dominant and non-dominant 
hands individually [50].

The 9-HPT has high inter- and intra-rater reliability [54]. 
In 69 individuals with MS, intra-class correlation coefficient 
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values for test–retest reliability over 1 week ranged from 
0.902 to 0.972, exceeding the threshold for strong reli-
ability (intra-class correlation coefficient > 0.80) [50]. 
However, performance on the 9-HPT may be sensitive to 
practice effects, and three or four administrations should be 
given prior to a baseline assessment if accurate assessments 
of change over time are needed [16, 54]. The majority of 
improvement on 9-HPT occurs within the first 2 months fol-
lowing a clinical MS relapse, but improvements have been 
observed for up to 12 months following a relapse [55].

Increases in 9-HPT score are associated with long-term 
MS-related disability [21, 56]. A 20% increase in 9-HPT 
score indicates a clinical impact [53], with changes in 9-HPT 
associated with diverse functional domains on Guy’s Neuro-
logical Disability Scale, including sexual, mood, upper- and 
lower-limb disabilities, and fatigue [56]. In a study involving 
105 people with MS treated with slow-release fampridine, 
minimal clinically important difference for 9-HPT from pre- 
to post-treatment was 3.0 s (or 10.7% [range 0.0–15.3%]) 
[57]. Minimal detectable change for the 9-HPT is smaller for 
speed measures than for time measures in the non-dominant 
hand (20.5% and 29.1%), dominant hand (18.6% and 19.4%), 
and globally (mean of both hands; 12.2% and 15.9%) [50].

The 9-HPT may be particularly sensitive in detecting 
clinical changes in individuals with progressive MS [58]. 
A cohort study conducted among such individuals revealed 
that early changes in 9-HPT score (identified over an initial 
1–2 years) were significantly associated with walking limi-
tations ≥ 5 years later [59]. In patients with MS, changes in 
9-HPT score have been linked with grey matter damage in 
the cerebellum, frontal cortex (specifically, Brodmann area 
44), and spinal cord; and with damage to white matter in 
brain areas such as the corpus callosum, cerebral peduncles, 
internal capsule, and posterior thalamic radiations [60–62].

Cognition

Symbol Digit Modalities Test (SDMT)

Changes in cognitive function are commonly observed in 
pwMS at any age; prevalence ranges from 34 to 65% in adults 
and is approximately 33% in individuals aged < 18 years 
[63]. Cognitive impairment, typically in the form of reduced 
information-processing speed, occurs in all MS phenotypes 
and may anticipate progression/conversion to secondary pro-
gressive MS or more severe disability (EDSS 4.0) [63, 64]. 
Identifying these deficits in their onset can support early 
therapeutic intervention [63]. Indeed, cognitive impairment 
at initial diagnosis predicts disability progression and con-
version to secondary progressive MS [63, 64].

The SDMT takes about 5 min to administer. The subject 
receives a reference key and has 90 s to pair specific num-
bers with given geometric figures, being scored on accuracy. 

Scores are not subject to interpretation by the test adminis-
trator. Results are minimally affected by the individual’s age, 
sex, and educational status; and the test shows only modest 
practice effects [21, 65]. In addition, the SDMT shows no 
evidence of skewing, or floor or ceiling effects [21]. The 
SDMT is included in the Brief Repeatable Neuropsychologi-
cal Battery, the Brief International Cognitive Assessment for 
Multiple Sclerosis, and the Minimal Assessment of Cogni-
tive Function in MS [63, 65]. The SDMT could serve as a 
replacement for the PASAT in clinical trials or other settings 
where a comprehensive assessment is needed [65].

Baseline cognitive screening with the SDMT (or alterna-
tive) when the patient is clinically stable is recommended 
as a minimum requirement for all adults and children 
aged ≥ 8 years. Baseline value could then be used to evaluate 
changes in therapy or following relapse and recovery cycles 
[63]. Clinically significant difference on the SDMT has been 
defined as a 4-point score change, 10% reduction in score, 
score change of 0.5 SDs, or use of Reliable Change Indices 
[63]. Annual cognitive re-assessment with the same instru-
ment is recommended for pwMS [63]; evidence from a long-
term study in patients treated with natalizumab suggests a 
practice effect when SDMT is performed on a monthly basis 
[66].

Data from longitudinal studies ranging from 1 to 3 years 
have shown progressive decline in cognitive functioning in 
pwMS, suggesting that cognition could decline over longer 
periods of time (10–20 years) [63]. Furthermore, correlation 
between EDSS progression and reduction in SDMT perfor-
mance has been demonstrated [67, 64]. Patient’s education 
level should be considered when making decisions based on 
test results [68].

A meta-analysis of studies performed in healthy subjects 
associated regions of the frontoparietal attentional network 
and occipital cortex, cuneus, precuneus, and cerebellum with 
performing the SDMT [69]. In addition, a systematic litera-
ture review found six studies with statistically significant 
confirmation of an association between decreases in SDMT 
and brain volume loss [70]. Consequently, damage to these 
brain areas or evidence of brain volume loss may indicate 
increased likelihood of cognitive impairment occurring in 
such individuals and highlight the importance of early ini-
tiation of disease-modifying therapy [70]. Another meta-
analysis showed significant correlations between SDMT 
and volume of T2 lesions (r =  − 0.45; p < 0.001) and brain 
atrophy (r =  − 0.54; p < 0.001) [71].

The SDMT has been found to be the most sensitive indi-
vidual cognitive measure for use in MS. Its many positive 
features make is especially useful in clinical practice to 
identify at-risk pwMS [72]. Some suggest it should also be 
considered the measure of choice for MS trials in assessing 
cognitive processing speed [72].
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Paced auditory serial addition test (PASAT)

The PASAT is a useful cognitive tool with high sensitivity to 
detect sustained attention and information processing speed 
alterations [73]. It was originally developed to assess the 
effects of traumatic brain injury on cognitive functioning 
and subsequently was shown to have clinical utility in detect-
ing impairments in cognitive processing in patients with a 
wide variety of neuropsychological syndromes [74]. It is a 
commonly employed neuropsychological test in pwMS and 
has been added as a cognitive test to several widely used 
batteries in this setting, such as the Brief Repeatable Neu-
ropsychological Battery (BRN-B), the Minimal Assessment 
of Cognitive Function in Multiple Sclerosis (MACFIMS), 
and the MSFC.

For the PASAT, patients have to add pairs of digits 
by adding each digit to the immediately preceding one.
[73]. Since its original format, specialized versions of the 
PASAT have been developed to cater to specific populations 
and presentations (aurally/visually). In MS patients, the 
PASAT-3 is used as part of the MSFC, where each digit is 
presented for either 3 or 2 s.[74]. The PASAT has good inter-
nal consistency and test–retest reliability [74]. Limitations of 
the PASAT include practice effects that impact reliability, a 
predisposition to ceiling effect, the impact of inherent math 
ability, and test-related anxiety [75]. It is generally not used 
either in clinical practice or clinical trials [75].

Comprehensive examination of the psychometric qualities 
of the PASAT compared with SDMT revealed the SDMT 
to be superior to the PASAT in terms of assessing cogni-
tive processing speed, reliability, sensitivity, practicality and 
cost-effectiveness [72].

Vision

Low‑contrast letter acuity (LCLA)

LCLA is the leading evaluation of vision loss in patients 
with MS [76]. It uses a Sloan low-contrast chart to meas-
ure visual dysfunction. Sloan LCLA charts show gray let-
ters of decreasing size against a white background. Each 
letter correctly identified is given 1 point, for a maximum 
score of 70. A change of 7 points is considered clinically 
meaningful [76]. This test was first validated by Balcer et al. 
[77], in a study comparing acuity at four contrast levels in 
pwMS and healthy volunteers. The study demonstrated a 
high level of inter-rater agreement (intra-class correlation 
coefficient 0.86 ± 0.95) and confirmed LCLA as a reliable 
test of both acuity and neurological dysfunction. Subsequent 
research with LCLA has associated it with MRI-confirmed 
T2 lesions and brain atrophy [78]. Additionally, decreased 
LCLA scores have been correlated to retinopathy, visual 

evoked potentials latency, and vision-related quality of life 
in patients with MS [79].

LCLA has advantages over the Pelli-Robson contrast sen-
sitivity chart which has letters of uniform size that decrease 
in contrast [76, 80]. LCLA charts that decrease letter size 
permit better assessment of impairments in low-contrast 
vision at different letter sizes. [76]. LCLA also has advan-
tages over the high-contrast visual acuity (HCVA) test a 
measure considered a standard outcome in many ophthal-
mologic disorders which has proven a suboptimal measure 
of visual dysfunction in MS [76]. The advantages of LCLA 
over these other commonly used charts in MS patients mean 
that Sloan LCLA has proven a useful visual outcome meas-
ure in MS clinical trials [76].

Anatomical instruments

Magnetic resonance imaging (MRI)

MRI is an objective measure of MS disease activity in the 
central nervous system, which is more common than clini-
cal relapses by an average ratio of 10–15:1 [81]. The role of 
MRI in MS has developed exponentially as the technique 
has evolved. MRI offers by far the most sensitive technique 
for detecting MS lesions and has proved to be a powerful 
tool across the whole spectrum of MS management in the 
clinical setting, from diagnosis, monitoring disease activity/
clinical status, and prediction of prognosis; it has also proven 
a useful adjunctive outcome measure in trials of disease-
modifying therapies (DMTs) [82].

Diagnosis MRI has become a well-established tool for 
diagnostic purposes and facilitates the early diagnosis of 
MS; it is performed after clinical examination and history 
taking, facilitating early disease-modifying treatment. The 
McDonald diagnostic criteria for MS include specific MRI 
requirements for the demonstration of lesion dissemination 
in space and time [83].

The diagnostic utility of MRI is high, with sensitivity and 
specificity of up to 87 and 73 percent, respectively, for the 
McDonald criteria requirement of dissemination in space 
[84]. MRI detects many more MS lesions than computed 
tomography (CT), and it is able to detect MS demyelinat-
ing plaques in regions that are rarely abnormal on CT [85]. 
Most lesions visualized by MRI correlate with pathologic 
lesions [85].

Prognosis and  disease progression monitoring A role of 
MRI in monitoring relapsing MS disease progression has 
evolved with use, and the evolution will continue with the 
development of new techniques that increase the sensitivity 
of the instrument.
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In an early meta-analysis by Kappos et al. [86], the stand-
ard deviation of the number of gadolinium-enhancing (Gd+) 
lesions predicted relapse rates in the next year. However, 
the researchers found no statistically significant association 
between Gd+ lesion count at study initiation and EDSS score 
at 1 or 2 years [86], A subsequent meta-analysis suggested 
that MRI findings could serve as an alternative endpoint to 
relapses in clinical trials of MS [87].

New lesion formation is the best MRI biomarker of active 
inflammation in relapsing MS and predicts poor outcome 
during interferon treatment [81]. A study of patients with 
early-onset clinically isolated syndrome (n = 178) pro-
vided evidence that baseline Gd+ and spinal cord lesions 
are independently associated with secondary progressive 
MS at 15 years and showed a consistent association with 
EDSS [88]. Based on these findings, the authors concluded 
that spinal cord lesions observed on MRI anticipate poor 
outcomes, disease progression, and relapse-onset MS [88]. 
Findings from MRIs may, therefore, be useful for discussing 
long-term prognosis and treatment plans with patients [88]. 
Despite their diagnostic utility, MRI lesion scans are difficult 
to quantify and pathology must be interpreted [81].

In addition to imaging lesions, MRI can be used for volu-
metric analysis of both whole and regional brain atrophy, 
which anticipates worsening ambulatory and cognitive func-
tion in pwMS [89]. Data from a 3-year prospective observa-
tional study in an MS population (n = 1052) showed a sig-
nificantly increased prevalence of cognitive impairment in 
patients with brain atrophy and high lesion volume. Patients 
with brain parenchymal fraction < 0.85 and T2 lesion vol-
ume > 3.5 mL were more likely to have cognitive impair-
ment compared with patients with brain parenchymal frac-
tion > 0.85 and T2 lesion volume < 3.5 mL (odds ratio 6.5; 
95% CI 4.4–9.5) [90]. In an MRI study in 61 patients with 
relapsing–remitting MS, those with cognitive impairment 
had significant differences in MRI-detected markers of brain 
atrophy [91]. Volumetric analysis has also correlated whole-
brain atrophy with dysarthria (r = 0.46; P < 0.001) [92].

Data from observational studies have confirmed that 
thalamic atrophy is highly predictive of cognitive decline 
and neurodegenerative processes [93–95]. A recent study in 
patients with secondary progressive MS provided evidence 
that atrophy of the corpus callosum also predicts cognitive 
decline, with detriment to employment [96].

Assessing treatment response in clinical trials Most often, 
clinical trials of pharmacologic treatments include MRI 
findings as a secondary outcome measure, using changes 
in the amount and size of T2-hyperintense and contrast-
enhanced T1-hypointense lesions [97]. One meta-analysis 
of MS intervention trials assessed the effect of treatment 
on lesion burden. The analysis of 31 studies revealed that 
treatment effects on MRI lesions over 6–9 months can be 

predictive of relapses over 12–24 months. Furthermore, new 
or enlarging T2-hyperintense lesions and contrast-enhanced 
T1-hypointense lesions were associated with the number of 
relapses and MRI was subsequently suggested as a primary 
outcome measure for treatment trials [87].

Optical coherence tomography (OCT)

OCT is a simple office-based measure that uses near-infrared 
light for rapid cross-sectional imaging of the back of the eye 
[98]. Visualization of retinal tissue is of specific interest in 
MS because axons comprise a tissue layer in the retina, the 
retinal nerve fiber layer (RNFL) [99]. Moreover, this is a 
unique location within the central nervous system to assess 
axonal volume exclusively as the ganglion cell axons are 
unmyelinated (therefore, the volume change of myelin is a 
non-factor). OCT allows visualization of neurodegenerative 
changes in the retina and has the potential to be a useful tool 
for measuring the impact of treatment on neurodegenera-
tion in pwMS [100]. Advantages of OCT over MRI include 
accessibility and technical ease [100]. The OCT can be per-
formed at lower cost and with a shorter image duration.

Time domain was the first OCT technique used in pwMS 
[101]. Spectral OCT has become the preferred technique 
because it facilitates visualization of additional retinal layers 
and quantification of their thicknesses [98]. RNFL thickness 
indicates axonal injury independent of myelin sheath pres-
ence or thickness [102].

A meta-analysis of studies on time domain OCT and MS 
published through May 2010 included 32 studies [99]. When 
compared with healthy controls, RNFL loss was− 7.08 (95% 
CI − 8.65 to − 5.52) μm in pwMS with no history of optic 
neuritis and − 20.38 (− 22.86 to − 17.91) μm in pwMS 
with associated optic neuritis. An updated meta-analysis 
for data published on spectral OCT and MS through April 
2016 included 40 studies [101]. Comparing eyes of pwMS 
with and without associated optic neuritis, the inner nuclear 
layer was thinner in individuals with optic neuritis-associ-
ated MS than those without. The RNFL layer was thinner 
in both populations compared with the RNFL thickness in 
healthy controls. Atrophy of the ganglion cell layer and inner 
plexiform layer was greater in all pwMS (with and without 
associated optic neuritis) than in healthy controls and was 
greater in individuals with MS associated with optic neuritis 
than in those without.

For pwMS from a single center who had OCT results 
available, a lower total macular volume at baseline was 
associated with a higher 10-year EDSS score [103]. This 
association was stronger in the lowest one-third of the base-
line macular volume score and for those individuals with 
relapsing–remitting MS [103]. For each 1-year increase in 
the duration of disease, there was an associated decrease of 
0.2% in the superficial vascular plexus; and overall, lower 
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density was associated with higher EDSS scores [104]. In 
addition, optic nerve diameter and RNFL thickness were 
significantly lower in individuals with an EDSS score > 2 
than in those with an EDSS score ≤ 2 [105]. Moreover, 
researchers have shown correlations between diminished 
RNFL thickness on OCT and MRI volumetric degeneration 
of the corpus callosum [106] and brain parenchymal fraction 
and cerebrospinal fluid (CSF) volume [107] and correlation 
between rates of ganglion cell + inner plexiform layer and 
whole brain atrophy [108]. These findings provide evidence 
that ocular damage occurs simultaneously to brain atrophy 
in pwMS.

Some studies indicate that OCT may be less sensitive 
than visual-evoked potentials (VEP) for detecting lesions of 
the visual pathway in early relapsing–remitting MS patients 
[109]. However, the two techniques may be useful when used 
complementarily since VEP may be a better tool for detect-
ing early demyelinating lesions whereas OCT may be a bet-
ter tool for monitoring axonal loss and neurodegeneration.

Biological instruments

Specific biological markers that can assist the clinician in 
monitoring specific MS treatments, such as natalizumab and 
interferon beta, have been reviewed elsewhere [110, 111].

Biological biomarkers under investigation for prognostic 
use in MS include oligoclonal bands (OCBs) and chitinase-
3-like protein 1 (CHI3L1) [112]. Levels of immunoglobulin 
G (IgG) OCBs and neurofilaments in CSF have been shown 
to anticipate conversion of demyelination symptoms to clini-
cally isolated syndrome [113]. Prospective analysis of MRI 
data in the Swedish Multiple Sclerosis Registry-associated 
OCBs with whole-brain atrophy and decreased white mat-
ter [114]. In addition, retrospective and prospective studies 
have shown: numerical differences in disease severity based 
on the number of IgG OCBs [115], significantly higher lev-
els of disease activity in patients with versus without IgM 
OCBs [116], and aggressive disease development in patients 
with IgM OCBs [117]. The glycoprotein CHI3L1 has also 
been shown to be predictive of long-term impairment and 
CDMS in patients whose first demyelinating event was optic 
neuritis [118] and in patients with monophasic neurological 
symptoms [119]. However, these markers may not be useful 
in routine clinical practice.

One of the more promising biomarkers for monitoring 
disease progression in MS is neurofilament light chain 
(NfL). Neurofilaments—cytoskeletal components of neu-
rons—are abundant in axons and include heavy, medium, 
and light chain filaments [120]. In patients with axonal dam-
age, neurofilament concentrations increase to abnormal lev-
els [121]. Increased NfL concentrations in CSF have been 
observed in individuals with MS compared with healthy 
controls [122, 123]. Moreover, elevated concentrations of 

NfL in CSF correlate with measures of MS disease progres-
sion [124] and treatment effects [123, 125].

Advances in the technological assessment of NfL con-
centrations have facilitated the measurement of NfL in 
the serum (sNfL). Recent evidence suggests that sNfL has 
the potential to be useful in the monitoring of response to 
disease-modifying therapy in individuals with MS [124, 
126–128]. Validation of a reliable assay coupled with fur-
ther clarification of the relationship between sNfL and dis-
ease progression or treatment monitoring may position this 
biological marker as a routine assessment of MS activity.

Summary

Since the introduction of the EDSS in 1983, numerous tests 
and instruments have been developed for the assessment 
of patient function and progression of MS. These instru-
ments have enhanced the ability of the clinician to identify 
changes in pwMS that otherwise might be missed in a purely 
clinical assessment. Early identification of patient conditions 
that require symptomatic interventions or optimization of 
disease-modifying therapies may result in better outcomes. 
Moreover, these instruments are objective measurements of 
the disease evolution. Rather than evaluate and comment 
on all available instruments, we have focused on those that 
are most useful in clinical practice based on ease of admin-
istration, objective quantitative results, and applicability in 
clinical practice.

As complexity and heterogeneity are hallmarks of MS, 
the diagnosis and management of the disease require a 
combination of clinical scales, imaging techniques and 
laboratory findings to monitor and quantify symptomatic 
complications as well as underlying pathological events. 
Each technique has advantages and deficiencies and none 
is an ideal outcome measure; thus, a combinatory approach 
of both clinical rating scales and imaging techniques can 
help to provide a more holistic picture of disease progres-
sion. Rating scales targeted at specific variables (e.g. motor 
strength, spasticity, walking ability) can provide informa-
tion about the symptomatic impact of the disease to the 
individual patient while MRI is able to provide information 
about the underlying pathology as well as essential prog-
nostic detail. For diagnostic purposes, MRI evidence plays 
a supportive role in what is ultimately a clinical diagnosis of 
MS, since MRI abnormalities can be associated with other 
diseases and non-specific MRI lesions are also common in 
the general population. CSF analysis of oligoclonal bands, 
visual evoked potentials, and OCT can all be used to sup-
port diagnosis in patients with typical presentation who have 
insufficient clinical and MRI evidence to confirm the diag-
nosis [83].
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In addition to the instruments discussed in this review, 
new tools continue to be validated for use in pwMS. Elec-
tronic self-assessment instruments provide innovative oppor-
tunities for patient engagement in the clinical setting. The 
Performance Speed Test (PST) employs tablet software for 
patient-administered screening of cognitive dysfunction 
[129], and the MS Performance Test (MSPT) is tablet-based 
with modules for cognition and motor function [130, 131]. 
The Multiple Sclerosis Partners Advancing Technology and 
Health Solutions (MS PATHS) initiative, a learning health 
system being developed by institutions in 10 countries in 
collaboration with Biogen, is using the MSPT to standardize 
information related to patient care in MS clinical practices 
[132].

Wearable biosensors will also open new avenues for col-
lecting patient data on ambulation, balance, and physical 
activity or function. New technologies will add real-life 
details that will allow clinicians to better understand dis-
ease progression in their patients and personalize treatment. 
Ultimately, though, these technologies cannot take the place 
of clinical evaluations by trained health care providers using 
the validated modalities discussed in this review. In addition 
to providing standardized methodology to record patient his-
tory, these modalities are well understood by the MS com-
munity. Essential work over the decades since EDSS was 
introduced continues to improve our ability to treat this 
debilitating disease.
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