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Abstract

Although we have entered the era of personalized medicine and tailored therapies, drugs that target 

a large variety of cancers regardless of individual patient differences would be a major advance 

nonetheless. This review article summarizes current concepts and therapeutic opportunities in 

the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously 

used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to 

inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial 

metabolism. However, here we consider only those drugs which predominantly inhibit oxidative 

phosphorylation.
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1 Introduction

Cancer is one of the most devastating and intractable diseases. For example, it is the 

second causing deaths in the United States [1]. During the last decade, substantial progress 

has been made in genetic diagnostics, especially in the area of exome and whole-genome 

sequencing [2]. Moreover, the development of RNA sequencing is enabling elucidation 

of the function of genetic variants whose pathogenic relevance has been unclear [3,4]. 

These technical advances have also led to significant cost reductions, thus providing the 

foundation for personalized / precision medicine in the treatment of cancer [5]. However, 

because of the enormous heterogeneity and numerous inter-individual genetic differences, 
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new therapies usually target only very small patient cohorts. An emerging broad-spectrum 

approach to cancer therapy depends on the fact that many tumors are characterized by 

enhanced glycolysis and low but mostly functional oxidative phosphorylation (OXPHOS), a 

phenotype first described by the Nobel laureate Otto Warburg more than 80 years ago [6,7]. 

Therefore, metabolic therapies have the potential to be applied against a vast array of tumor 

entities.

There is increasing evidence that several drugs with potent antitumor activity act via 
targeting mitochondrial aerobic metabolism. Possible targets include the five OXPHOS 

complexes, mitochondrial translation, and mitochondrial biogenesis. Other parameters of 

mitochondrial function such as mitochondrial morphology may also be impacted by these 

drugs, but the experimental evidence is sparse and inconclusive in terms of therapeutic 

significance.

The Warburg effect describes the abnormality wherein cancer cells generate energy 

predominantly via glycolysis even if sufficient oxygen is present. It seems a paradox that 

tumors use inefficient glycolysis instead of OXPHOS for energy production, but there are 

several explanations for why the principal pathway of ATP generation is reprogrammed in 

cancer cells. Foremost, aerobic glycolysis is not as inefficient as is often assumed. Although 

it is correct that the amount of ATP generated per molecule of glucose is low, the rate of 

glucose metabolism is high in cancer cells. The production of lactate from glucose occurs 

10–100 times faster than the complete oxidation of glucose in mitochondria, therefore ATP 

production is similar [8].

Many tumors are characterized by low OXPHOS. However, the reasons for this pathology 

differ between cancer entities. Some tumors carry pathogenic mutations in mtDNA-

encoded complex I subunits (e.g. renal oncocytomas) or nuclear-encoded complex II 

subunits (e.g. pheochromocytomas and paragangliomas); others show a reduction of all 

OXPHOS complexes, with a reduction of mtDNA copy number; and still others have low 

mitochondrial mass [9–13]. The genetic cause of this downregulation remains elusive in 

many cases. Many entities show a homogenous reduction of OXPHOS, such as oncocytic 

tumors, neuroblastomas, renal cell carcinomas and astrocytic brain tumors [10,11,14]. 

However, only a subset of carcinomas and melanomas is OXPHOS deficient, the others 

retaining a functional OXPHOS system [15–20]. The OXPHOS dependence of certain 

cancer subtypes is influenced either by genetic alterations and/or tumor microenvironment. 

For example, KRAS driven in lung cancer showed increased glucose contribution to the 

tricarboxylic acid (TCA) cycle relative to normal lung tissue [21]. Furthermore, alterations 

in components of the SWI/ SNF chromatin complex including SMARCA4 are frequently 

detected in lung cancer. Tumors with SMARCA4 mutations are characterized by enhanced 

OXPHOS as well as respiratory capacity and are therefore sensitive to OXPHOS inhibition 

[22]. In contrast to Phosphatase and tensin homolog (PTEN) wild type prostate cancer cells, 

mitochondria of PTEN-null cells consume ATP through complex V, instead of producing it, 

which resulted in genotype specific sensitivity to complex I inhibition in vitro [23].

BTB and CNC homology1 (BACH1), a haem-binding transcription factor that is increased 

in expression in tumors from patients with triple negative breast cancer, decreases glucose 
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utilization in the TCA cycle and downregulates expression of OXPHOS genes. Thus, 

BACH1 gene expression inversely correlates with OXPHOS gene expression in tumors from 

patients with breast cancer [24].

Moreover, cancer cells have the capacity to use a variety of substrates to fuel the 

mitochondrial respiration (fatty acids, glutamine, lactate, acetate…) [25–28]. This has been 

demonstrated for example in vivo in human cancer patients and diverse animal models via 
infusion of 13C-labelled substrates [25–27].

Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation 

to the extent that metabolic intermediates are redirected away from several other critical 

metabolic processes, including ribose and glutathione synthesis [29]. The metabolic 

adaptation of cancer cells to chronic acidosis causes a shift from glucose to glutamine 

metabolism and glutamine fueled OXPHOS in different tumor cell lines [30]. Furthermore, 

lactate produced by enhanced glycolysis can also be used as a metabolic fuel by oxidative 

cancer cells [26,31,32] but also nearly all normal tissues [27].

In all these scenarios the tumor microenviornment has to be taken in consideration. The 

tumor microenvironment is characterized by different factors such as an increased level 

of lactate and/or CO2, produced by tumor cells. As shown in lung cancer, a hypercapnic 

tumor environment reduces mitochondrial respiration, leading to chemoresistance [178]. 

Cancer-associated fibroblasts (CAFs) are the major cellular stromal component of many 

solid tumors. For example in prostate cancer (PCa), CAFs establish a metabolic symbiosis 

with PCa cells, contributing to cancer aggressiveness through lactate shuttle. Cancer cells 

are even able to hijack CAF-derived functional mitochondria through the formation of 

cellular bridges [179].

In this article, we discuss the therapeutic potential of targeting mitochondrial energy 

metabolism and the mechanisms behind the various approaches.

Many FDA-approved drugs initially used for the treatment of noncancer illnesses are now 

being repurposed for tumor therapy in light of increased knowledge about their mechanisms 

of action. Drugs with minimal side effects on whole-body metabolism exploit the Warburg 

effect in cancer cells. However, certain traditional chemotherapeutics may act by inhibiting 

aerobic mitochondrial energy metabolism. This review focuses on very concrete changes of 

mitochondrial energy function. Only FDA-approved drugs that affect specific mitochondrial 

components or functions - OXPHOS complexes; oxygen consumption; enzymatic activity; 

mitochondrial replication, transcription or translation; mitochondrial fission and fusion; or 

mitochondrial biogenesis - are considered for their ability to target tumor metabolism (Fig. 

1).

2 Antimicrobial agents

Growing clinical and pre-clinical evidence indicates that many commonly used 

antimicrobial (AM) therapeutics such as antibiotics, antiparasitics and antifungal drugs 

have anticancer effects against a wide spectrum of solid tumors and blood cancers (e.g. 

breast, brain, cervix, lung, kidney, ovary, retinoblastoma, multiple myeloma and leukemia). 
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As shown in various studies, the underlying anticancer mechanisms of AMs are linked to 

their effects on key proteins involved in glycolysis, the response to DNA damage, protein 

degradation, angiogenesis, autophagy, the cell cycle and different signaling pathways [33–

39]. However, a particularly important aspect of the anticancer effects of AM therapy 

is the interference with mitochondrial function [38,40–51] (Table 1). The endosymbiotic 

hypothesis proposes that mitochondria originated from bacteria; consequently, several 

antibiotics target these cellular organelles, too. AMs alter mitochondrial function by 

reducing mitochondrial biogenesis, altering mitochondrial morphology, lowering ATP 

production and increasing the level of reactive oxygen species (ROS), ultimately resulting 

in energy stress and anti-proliferative and pro-apoptotic effects. In vitro studies showed 

that cancer cells depleted of mitochondrial DNA (ρ0) are resistant to AMs in terms 

of suppression of cell proliferation or induction of apoptosis, emphasizing that AMs 

specifically target mitochondria [41,43–47,52]. In fact, AMs can cause mitochondrial 

dysfunction in both normal [53] and cancer cells [36,38,40,41,43,44,46,48,49,54–62], 

although rapidly dividing malignant cells with high energy demands are more sensitive 

to AMs [38,42,43,54,56,58–61,63,64] (Table 1).

Examples of AMs that suppress cancer by altering mitochondrial aerobic metabolism 

are provided below in more detail. Members of the Tetracycline and Chloramphenicol 

family of commonly used antibiotics inhibit both mitochondrial and bacterial translation 

[36,38,41,43,46,49,50,57–59,65]. Consistent with inhibition of mitochondrial translation, 

these antibiotics reduce the activities of OXPHOS complexes I, IV and V, which contain 

mitochondrially encoded subunits [41,46,59,60]. The antibiotic Bedaquiline, originally 

developed to eradicate aerobic bacteria, targets mitochondrial and bacterial ATP synthase 

[54,55]. Atovaquone, an antimalarial drug, is an inhibitor of OXPHOS complex III 

[62,66]. Ivermectin, a treatment for many types of parasites, inhibits complex I activity 

[42,44]. Pyrvinium pamoate, an anti-pinworm and anti-malarial medication, inhibits the 

mitochondrial NADH-fumarate reductase system, which is composed of complex I and 

II [39,45,67,68]. Itraconazole, a broad-spectrum anti-fungal agent, binds to mitochondrial 

protein voltage-dependent anion-selective channel 1 (VDAC1) and reduces the level of ATP 

production [69,70]. Additionally, other classes of antimicrobial agents such as quinolones, 

aminoglycosides, β-lactams and oxazolidinones also cause mitochondrial dysfunction in 

mammalian cells [53,71], although their effects on aerobic metabolism in cancer cells are 

barely investigated.

Remarkably, pre-clinical and clinical studies revealed that AMs such as Doxycycline, 

Tigecycline, Azithromycin, Chloramphenicol, Atovaquone and Bedaquiline can effectively 

target cancer stem cells (CSCs) of different types of cancers [36,54,57,72–74] (Table 1). 

For example in CML, Tigecycline targets the more oxidative, long-term leukemic stem 

cells that are hardly sensitive to Imatinib, a protein kinase inhibitor used in CML therapy, 

which targets more mature progenitors [51]. CSCs are associated with cancer initiation, 

progression, metastasis, tumor recurrence and drug resistance. Interestingly, CSCs have a 

high level of reliance on mitochondrial function [73–77]. For example, breast cancer-derived 

CSCs express an abundance of mitochondrial proteins involved in beta-oxidation, ketone 

body metabolism, mitochondrial biogenesis, the stress response to hypoxia, and inhibition 

of autophagy/mitophagy [74,77]. Interestingly, Farge et al. reported that an OXPHOS-
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dependent energetic flexibility may be more responsible for chemoresistance rather than 

cellular quiescence or stage of maturity of CSCs. Based on in vitro and in vivo findings, 

chemoresistant AML cells showed high OXPHOS status compared to AML chemosensitive 

cells. In this context, Tigecycline sensitized high OXPHOS AML cells to the chemotherapy 

[50].

In conclusion, AMs are promising as part of a multimodal treatment regimen to improve 

the efficacy of classic anticancer therapies and to overcome CSC-based drug resistance. 

Combinations of AMs can sensitize cancer cells and CSCs to classic chemo or radiation 

therapies [36,41,43,58,66,74]. Although most data support the potent anticancer mechanisms 

of AMs, caution is required. Some clinical studies have shown associations between certain 

AMs and increased cancer risk, likely due to altered organ microbiota, attenuated immune 

surveillance and increased inflammation [79–82].

3 Antidiabetic drugs

Metformin (N,N-dimethylbiguanide) is an inexpensive generic drug and one of the 

most commonly used therapies for type 2 diabetes. Indeed, it accounts for around 120 

million prescriptions per year worldwide. Its long track record of tolerability and known 

pharmacokinetics assure an excellent safety profile [83].

The antidiabetic effect of Metformin derives from its capacity to lower the blood 

glucose concentration by (i) inhibiting hepatic gluconeogenesis [84], (ii) improving insulin 

sensitivity in muscle and (iii) lowering the free fatty acid concentration in plasma [85].

A retrospective study suggests Metformin may reduce cancer mortality [86]. Different 

metabolic pathways are involved in the antitumorigenic effects of Metformin. Metformin 

leads to activation of AMP-activated protein kinase and inhibition of mammalian target 

of rapamycin, which results in inhibition of cell proliferation [87]. Moreover, Metformin 

lowers the blood concentration of insulin and insulin-like growth factor 1; the latter factor is 

often involved in tumor progression [87,88].

Another promising feature of Metformin is its capacity to target OXPHOS [89]. Evidence 

suggests Metformin may exert its anti-diabetic effects by targeting complex I of the 

mitochondrial respiratory chain [90]. Indeed, new studies show that Metformin inhibits the 

activity of complex I in a wide range of cancers [91–95] (Table 2). Moreover, Metformin 

reduces the oxygen consumption in different cancer models [91–94,96–99] (Table 2), likely 

through complex I inhibition. Similarly, ATP production is reduced by Metformin in a 

broad range of cancers [94,98,100,101]. In other cases, changes in the expression levels of 

complex I transcripts [102,103], and a lower NADH/NAD ratio were reported [99]. Recent 

findings suggest that the antiproliferative effect of Metformin is determined by the metabolic 

environment of the tumor, which can dramatically alter the sensitivity to Metformin [99]. 

Overall, the most common effects of Metformin on cancer progression are reduced tumor 

growth and higher apoptotic rate (Table 2).

Other biguanides have also shown anticancer effects. For example, Phenformin is 

considerably more potent than Metformin in abrogating the electron transport chain in 
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leukemia cells [104]. However, Phenformin has been withdrawn from clinical use because 

it can cause severe lactic acidosis, and several fatal cases have been reported [105]. For 

this reason, studies of its anticancer effects have waned. In colorectal cancer, Phenformin 

inhibits complex I and oxygen consumption, and increases cancer cell radiosensitivity [106]. 

Phenformin has also been shown to reduce tumor growth in cancer models characterized 

by OXPHOS deficiency [107]. Moreover, Phenformin and Oxamate, an inhibitor of lactate 

dehydrogenase, synergistically decrease respiration and ATP production. Likewise, cell and 

tumor growth are inhibited by this drug combination [108].

Canaglifozin, another antidiabetic drug, inhibits complex I and cell growth in prostate and 

lung cancer and it has a synergetic effect with radio- and chemo-therapy [109].

Pioglitazione, also targets mitochondria, inhibits oxygen consumption and shows an anti-

proliferative effect in combination with the glycolysis inhibitor 2-deoxyglucose (2DG) 

[110].

In summary, antidiabetic drugs suppress tumor growth in a broad range of cancer models by 

targeting mitochondrial complex I (Table 2). For this reason, these drugs could potentially 

play a primary role in a multi-target metabolic treatment strategy to increase the efficacy of 

standard therapies or reduce their side effects through a low-dose regimen approach.

4 Classic antitumor agents

Mitochondria can promote or negate the anticancer effects of many commonly used 

chemotherapeutic drugs. For example, they are essential for exploiting the pro-apoptotic 

effects of certain drugs, but they are sometimes responsible for the development of drug 

resistance. In this part of the review, we focus on antitumor agents that specifically target 

mitochondrial OXPHOS or biogenesis (Table 3).

For decades cisplatin (CPT) has been widely used for the treatment of different types of 

cancer. In isolated rat mitochondria, CPT induced increased state 2 and 4 respiration [111]. 

In different gastrointestinal cancers, CPT interferes with mitochondrial bioenergetics by 

increasing the permeability of the inner mitochondrial membrane, promoting mitochondrial 

uncoupling, and decreasing OXPHOS function [112]. Along these same lines, rats treated 

with a single dose of CPT showed a reduction of state 3 respiration and inhibition of 

complex I and ATP synthase activity [113].

Doxorubicin (DOX) is one of the most effective and widely used anticancer drugs. Its 

efficacy could be even higher, but the clinical dosage is limited due to the development 

of delayed, cumulative and dosage-dependent cardiotoxicity [114,115]. DOX has high 

affinity for cardiolipin, an inner mitochondrial membrane phospholipid, resulting in an 

elevated concentration of the drug in mitochondria [116]. Moreover, DOX intercalates 

into mtDNA, causing disruption of genes coding for subunits of OXPHOS complexes 

[117]. The main cause of the DOX-associated cardiotoxicity is the overproduction of 

ROS by cardiac mitochondria, coupled with mitochondrial membrane depolarization and 

mitochondrial dysfunction. In general, treatment with DOX has been associated with 

decreased expression of some OXPHOS proteins, or with OXPHOS defects, and increased 
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mitochondrial-mediated apoptosis [114,118]. Interestingly, a recent in vitro study showed 

that preconditioning of cardiomyoblasts with a single nanomolar exposure to DOX induced 

a beneficial mitochondrial adaptation. The preconditioned cells were less susceptible to 

DOX toxicity when treated with a second, higher dose of DOX, compared to non-pretreated 

cells. Nine days after the nanomolar DOX administration, cells showed increased expression 

of some OXPHOS subunits, but not increased mitochondrial biogenesis [115].

In colon cancer cells treated with DOX, the expression profile of genes involved in 

mitochondrial energy metabolism was significantly changed. Interestingly, DOX effects 

were abrogated by complex I deficiency, but not complex II, suggesting that DOX binds to 

complex I to initiate the apoptotic process [119].

The multi-kinase inhibitor Sorafenib (SFB) is also able to inhibit mitochondrial respiration 

[120,121]. In neuroblastoma cells, SFB induced loss of mitochondrial transmembrane 

potential and destabilization of complex I [121]. SFB administered to four children with 

relapsed and refractory neuroblastoma showed antitumor effects in all four cases, without 

major adverse effects, although after a short stabilization time, tumor progression was again 

observed [122]. Addition of the glycolytic inhibitor 2-DG strongly increased the cytotoxicity 

of SFB in rat hepatocholangiocarcinoma and mouse melanoma cell lines, compared to cells 

treated with vehicle or SFB alone [120].

Tamoxifen (TAM) is a nonsteroidal anti-estrogenic compound that is widely used in the 

treatment of estrogen-dependent cancers, including estrogen receptor-positive breast cancer 

[123]. In breast cancer cells, TAM induced cytochrome c release from mitochondria, 

reduced the mitochondrial membrane potential and OXPHOS activity, and increased cell 

death [123]. In isolated rat liver mitochondria, TAM reduced OXPHOS activity and 

interfered with mitochondrial membrane polarization/depolarization fluctuations in a dose-

dependent manner [124]. Moreover, TAM significantly inhibited complex I activity by 

targeting the flavin mononucleotide site of complex I [125]. In addition, TAM significantly 

inhibited DNA topoisomerase and mtDNA synthesis, leading to progressive depletion of 

mtDNA in the liver of mice treated for more than 12 days [126]. Interestingly, TAM-

resistant breast cancer cells show a “dormant” profile, with high mtDNA depletion and a 

very low respiration, compared to TAM-sensitive breast cancer cells [127].

Recently, TAM has been conjugated with a tag that selectively delivers it to mitochondria 

(MitoTam). MitoTam has been proven to inhibit complex I and to be more effective in 

reducing the growth of breast cancer xenografts in vivo compared to TAM, especially 

of xenografts expressing high levels of human epidermal growth factor receptor 2, an 

oncogene associated with development of resistance and poor prognosis, and implicated in 

upregulation of complex I activity in breast cancer [128]. MitoTam kills cancer cells without 

inducing senescence, and increases the amount of cell death of senescent cells, compared to 

other chemotherapeutics. Usually, senescent cells, including senescent cancer cells, are able 

to escape the immune system; thus, MitoTam is a promising new molecule for the treatment 

of breast cancer, and it is currently entering a phase I clinical trial [129].
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5 Other FDA-approved agents and some novel compounds

This section focuses on compounds which do not belong to the categories discussed above 

and which could be repurposed for cancer therapy based on their anti-mitochondrial effects. 

In addition, several novel compounds targeting mitochondrial bioenergetics are discussed.

Cancer growth and proliferation rely on intracellular iron availability, thus iron has been 

suggested as an anticancer target. Iron is also essential for mitochondria, which utilize this 

metal for synthesis of cofactors involved in the function of oxidation-reduction enzymes, 

and for DNA synthesis and repair [130,131].

Deferiprone (DFP) is an orally administered iron chelator used clinically for the treatment 

of thalassemia, Friedreich’s ataxia and kidney disease. DFP is also able to reduce the 

proliferation and migration of metastatic and non-metastatic prostate cancer cells. Moreover, 

DFP lowered the respiration rate as well as the expression and activity of mitochondrial 

aconitase in these cells [131] (Table 4).

VLX600, a recently designed iron chelator, interferes with intracellular iron metabolism. 

Iron chelation leads to inhibition of mitochondrial respiration, bioenergetic failure and cell 

death. VLX600 enhances the glycolytic pathway and decreases respiration and oxygen 

consumption [48,132,133]. Inhibition of mitochondrial respiration with VLX600 reduced 

human colon carcinoma cell growth in vitro, and mouse colon tumor xenograft growth 

in vivo, both in cells with or without K-Ras mutation [48]. Moreover, VLX600 has been 

reported to inhibit the growth of breast cancer and colon carcinoma cells, both in 3D 

spheroids and in 2D monolayers, and to be more potent than other iron chelators [132,133] 

(Table 4). VLX600 was tested in vivo with other compounds that are routinely used for 

clinical management of colon carcinoma patients. Synergy was observed with irinotecan and 

oxaliplatin, whereas additive effects were shown in combination with 5-fluorouracil [132]. 

In gastrointestinal stromal tumors, VLX600 increased the antitumor effect of Imatinib [134]. 

A phase I clinical trial performed on different types of advanced refractory carcinomas 

showed that VLX600 is generally well tolerated [135].

Another metal with important functions in cancer cell proliferation and invasion is copper. 

Tetrathiomolybdate (TM) is a copper-chelating drug currently used in the treatment 

of copper overload disorder. TM has also shown antitumor effects by reducing both 

angiogenesis and mitochondrial ATP production. TM reduces mitochondrial respiration via 
inhibition of the copper-dependent mitochondrial activity of complex IV and degradation 

of Hypoxia-inducible factor 1α [136,137]. Prolonged copper depletion (by another copper 

chelator, triethylene tetramine) caused mitochondrial damage, oxidative stress and apoptosis 

in neuroblastoma cells in vitro [138]. Similarly, neuroblastoma cells treated with TM 

showed reduced mitochondrial respiration and cell proliferation [139]. Moreover, TM 

showed high specificity, selectively inhibiting neuroblastoma cell growth, and not the growth 

of normal fibroblasts and neuronal cells [139] (Table 4).

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed 

drugs worldwide (e.g. Aspirin, Ibuprofen, and Diclofenac). It is widely accepted that 

Aspirin, in particular, reduces the risk of developing cancer [140]. Besides the anti-
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inflammatory properties of NSAIDs, based on their inhibition of prostaglandin-synthesizing 

cyclooxygenase 1 and 2 [141], these compounds are considered to possess antitumor 

activity by inducing apoptosis via mitochondrial dysfunction and ROS production [142–

144]. However, only a few studies have looked in detail into the effects NSAIDs may 

have on mitochondrial respiration in cancer models. The results indicate that a reduction 

of mitochondrial bioenergetics triggering oxidative stress seems to be the underlying 

molecular mechanism contributing to the reduced cell proliferation and thus apoptosis 

caused by NSAIDs. For example, Diclofenac produced strong inhibition of complex I 

in colorectal adenocarcinoma cells, followed by Piroxicam, Aspirin, Indomethacin, and 

Ibuprofen [145]. More specifically, complex I inhibition due to Aspirin and Indomethacin 

has been linked to reduced ATP production and cell proliferation in liver cancer and 

colorectal adenocarcinoma, respectively [146,147]. Moreover, in BRAF V600E mutated 

melanoma cells Diclofenac reduced proliferation partly due to inhibition of respiration 

[148]. However, the potency of those NSAIDs to reduce complex I activity is positively 

correlated with gastrointestinal side effects, except in the case of Diclofenac, which is 

relatively safe in terms of gastrointestinal toxicity but very potent in inhibiting complex I 

[145]. Besides inhibiting complex I, Aspirin also affects complex IV activity, leading to 

reduced ATP production and consequently reduced cell proliferation of human hepatoma 

cells [147] (Table 4).

Cannabinoids are another group of compounds which have gained interest for their 

use in cancer treatment and which are currently used to relieve cancer-associated pain 

and chemotherapy-induced nausea and vomiting [149]. Besides their palliative effects, 

phytocannabinoids, synthetic cannabinoids, and enhancers of endogenous cannabinoids have 

all been reported to possess antitumor activity. The major anti-cancerogenic effects shown 

in vitro and in vivo include reduction of proliferation, induction of apoptosis and autophagy, 

inhibition of invasion and angiogenesis, enhancement of tumor immune surveillance, and 

improved chemosensitivity to anticancer drugs [149,150]. Regarding the induction of 

apoptosis, cannabinoids have been reported to induce mitochondrial damage and increase 

ROS production [151–153]. However, as in the case of NSAIDs, less is known about 

the direct effects of cannabinoids on mitochondrial respiration and bioenergetics in cancer 

cells. Whyte et al. investigated the effect of Δ9-tetra-hydrocannabinol (Δ9-THC) and Δ8-

tetrahydrocannabinol (Δ8-THC) on mitochondrial respiration in an in vitro model of human 

oral squamous cell carcinoma with high resistance to chemotherapeutic drugs [154]. The 

respiration of Tu183 cells decreased dose-dependently after Δ9-THC and Δ8-THC treatment, 

with the former being more efficacious in inhibiting oxygen consumption. As a consequence 

of reduced respiration, Δ9-THC decreased cellular ATP levels by 64% compared to control 

cells (Table 4). A possible mechanism by which Δ9-THC interferes with mitochondrial 

respiration could be its potential to interfere with mitochondrial respiratory chain complexes, 

as shown in mitochondria isolated from rat heart and liver [151,152]. However, caution is 

needed with respect to Δ9-THC. Even though cannabinoids have a favorable drug safety 

profile, the current clinical use of Δ9-THC is limited to its psychoactivity [149]. Thus, 

nonpsychoactive cannabinoids, such as cannabidiol, could represent an alternative to Δ9-

THC.
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Anti-epileptic drugs as well as antidepressants are known to cause mitochondrial toxicity 

and thus can be contraindicated in patients with mitochondrial diseases [155]. Regarding 

cancer, however, the mitochondrial toxicity of those drugs could selectively kill cancer cells 

at certain concentrations. For instance, the anti-epileptic drug Valproate reduced respiration 

and led to dysfunctional mitochondrial ATP production in hepatocellular carcinoma cells 

accompanied by increased cell death [156]. The tricyclic antidepressants Clomipramine, 

Norclomipramine, Amitriptyline and Doxepin significantly reduced cellular respiration of 

astrocytoma cells [157] (Table 4).

Besides well-characterized and often prescribed drugs, like the ones described so far, two 

novel compounds, IACS-010759 and BAY 87-2243, have been claimed to be antitumor 

agents based on their ability to selectively inhibit complex I activity in vitro and in 
vivo. The former has been studied in preclinical models of OXPHOS-dependent acute 

myeloid leukemia (AML), low-glycolytic glioblastoma and neuroblastoma as well as 

OXPHOS enriched melanoma brain metastasis [158,159]. IACS-010759 robustly inhibited 

cell viability and induced apoptosis, most likely due to OXPHOS inhibition leading to 

energy depletion and reduced nucleotide biosynthesis. In vivo, treatment of AML and brain 

cancer with IACS-010759 resulted in potent inhibition of tumor growth at well-tolerated 

doses (Table 4). Based on these findings, the effects of IACS-010759 on relapsed/refractory 

AML and solid tumors are currently under investigation in phase I clinical trials. Another 

small molecule selectively targeting mitochondrial respiration is BAY 87-2243. Inhibition 

of mitochondrial complex I by BAY 87-2243 leads to decreased mitochondrial respiration, 

cellular ATP levels, and thus cell death in melanoma cells. Furthermore, BAY 87-2243 

reduced tumor growth in several BRAF-mutant mouse xenografts and patient-derived 

melanoma mouse models [160] (Table 4). Another new small molecule inhibitor of 

OXPHOS is Gboxin, which interacts with OXPHOS complexes and thereby seems to inhibit 

complex V. It decreases growth of glioblastoma cells in vitro and in vivo. Furthermore, a 

wide range of cancer cell lines were Gboxin-sensitive whereas non tumor cells were not 

affected. Only one medulloblastoma cell line and primary mouse malignant peripheral nerve 

sheath tumor cells were Gboxin resistant. In various glioblastoma models treatment with 

Gboxin for over one month did not lead to obvious toxicity, making this novel compound a 

promising candidate for metabolic targeting of a wide range of cancers [161].

6 Discussion

The broad variety of tumor entities and plethora of inter-individual differences highlight the 

importance of identifying therapies able to effectively target pathologies shared by numerous 

cancer types. Since many solid cancers exhibit the Warburg effect, metabolic therapies 

potentially could eradicate tumors regardless of their genetic background. Although, 

numerous studies have shown that drugs which interfere with mitochondrial function 

can have antitumor effects, it remains to be demonstrated whether drugs which increase 

mitochondrial function might also have beneficial effects on tumor therapy. It seems that 

many cancers have low but functional OXPHOS and are sensitive to changes (up or down) 

of mitochondrial energy metabolism. Therefore, it is not surprising that fenofibrates initially 

used for lowering blood lipid levels and known to increase mitochondrial biogenesis show 

antitumor properties [162,163]. The therapeutic efficacy of inhibitors of mitochondrial 
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energy metabolism might be explained by the fact that tumors frequently have low residual 

OXPHOS activity that can be further repressed in the tumor cells to deleterious levels by 

various drugs. However, increasing mitochondrial mass and concomitant OX-PHOS activity 

might influence drug resistance [164]. In addition, it is not clear if respiring tumors or 

tumors with high metabolic flexibility, as for example subgroups of melanomas, are prone 

to inhibition of aerobic mitochondrial energy metabolism [15,17,165,166]. A recent study on 

brain melanoma metastasis indicated that also cancer tissues with a high OXPHOS content 

can be targeted by OXOHOS inhibitors [159].

Some “old” and “new” drugs might be of special interest because of their widespread 

use and/or beneficial effects on the overall health of cancer patients. Long-term follow-up 

studies showed that regular daily Aspirin use reduces the incidence, distant metastasis and 

mortality of some cancers after approximately 5 years [167–169]. A “new” drug class that 

might be of special interest for cancer patients are cannabinoids. It is known that they can 

positively influence mood, appetite and pain [170], three factors which are very important in 

advanced-stage tumor patients [171]. A limitation of new compounds inhibiting OX-PHOS 

is that their safety still needs to be demonstrated in preclinical but also clinical studies. For 

example a clinical study with BAY 87-2243 in cancer patients was prematurely terminated 

due to the occurrence of adverse events (re-occurrence of the adverse event vomiting despite 

dose reduction and change in formulation of the compound; Clinical-Trials.gov Identifier: 

NCT01297530).

Regardless of the mode of downregulation of aerobic mitochondrial energy metabolism, 

complex I seems to be affected in almost all instances. Also, downregulation of 

mitochondrial biogenesis, replication, transcription and translation, and mtDNA deletion and 

depletion all can cause reduction of complex I. In addition, the supercomplex organization of 

the respiratory chain leads to the paradox that most complex III defects also cause secondary 

loss of complex I assembly and activity [172,173]. NDUFS1, a subunit of mitochondrial 

complex I can be cleaved by caspase 3. Therefore, complex I can play an important role 

in apoptosis [174]. The killer lymphocyte protease granzyme A accesses the mitochondrial 

matrix to cleave NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase 

complex I [175]. Natural killer lymphocytes represent the first line of defense against tumor 

cells [176]. Low levels of complex I and complex I defects seem to confer a growth 

advantage and anti-apoptotic state on tumor cells; however, total knock down of complex I 

with the reported drugs seems to be deleterious to tumor cells.

The treatment with OXPHOS inhibitors might not only target cancer cells but also 

cancer associated cells such as immune cells. For example, T-regulatory cells induce their 

OXPHOS in an acidic environment and thereby might promote immune tolerance during 

tissue injury and impair anti-cancer immunity [177]. In this way, cancers can hijack a 

physiologic mechanism of self-tolerance. Thus, OXPHOS inhibitors might exert their anti-

proliferative effects in vivo by different mechanisms.
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7 Conclusion

Inhibition of aerobic mitochondrial energy metabolism represents an attractive therapeutic 

opportunity against cancer, and repurposing of “old” drugs in tumor therapy holds the 

potential to effectively kill a broad variety of tumor entities, especially when combined with 

classic therapeutics.
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Abbreviations

AM antimicrobial therapeutic

AML acute myeloid leukemia

AMP adenosine monophosphate

ATP adenosine triphosphate

BACH1 BTB and CNC homology1

CAFs Cancer-associated fibroblasts

CPT cisplatin

CSC cancer stem cell

DFP Deferiprone

DOX Doxorubicin

DNA Deoxyribonucleic acid

FDA Food and Drug Administration

mtDNA mitochondrial deoxyribonucleic acid

NAD nicotinamide adenine dinucleotide

NSAID Non-steroidal anti-inflammatory drug

OXPHOS oxidative phosphorylation

PCa prostate cancer

PTEN Phosphatase and tensin homolog

RNA ribonucleic acid

ROS reactive oxygen species
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SFB Sorafenib

TCA tricarboxylic acid

TAM Tamoxifen

TM Tetrathiomolybdate

VDAC1 voltage-dependent anion-selective channel 1

2DG 2-deoxyglucose

Δ9-THC Δ9-tetrahydrocannabinol

Δ8-THC Δ8-tetrahydrocannabinol
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Fig. 1. 
Targeting mitochondrial aerobic metabolism by FDA-approved agents for cancer treatment. 

Abbreviations: I, Complex I; II, Complex II; III, Complex III; IV, Complex IV; V, Complex 

V. OXPHOS, oxidative phosphorylation; mtDNA, mitochondrial DNA; Mitoribosome, 

mitochondrial ribosome; VDAC1, voltage-dependent anion-selective channel 1.
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Table 1
Effects of FDA-approved anti-microbial agents on mitochondrial aerobic metabolism of 
cancer cells in in vitro, preclinical and clinical studies.

Type of cancer Type of study Effects on mitochondrial aerobic 
metabolism

Effects on cancer progression Ref

Atovaquone

Breast In vitro ↓ Complex III, ↓ respiration, ↓ ATP 
production, ↓ MIT mass

↓ CG & CSCs [62]

Squamous cell carcinoma, 
colon, lung & pharynx

In vitro/in vivo + /- radiation 
treatment

↓ Complex III, ↓ respiration ↓ CG & TG, ↑ sensitization to 
radiation

[66]

Bedaquiline

Breast In vitro ↓ Respiration,
↓ ATP production

↓ CSC propagation & survival, a 
little or no effect on viability of 
cancer / normal cells

[54]

Lung In vitro/in vivo ↓ Respiration,
↓ ATP production

↓ CG & TG, ↑ apoptosis [55]

Chloramphenicol

Multiple myeloma In vitro ↓ ATP production ↓ CG, ↑ apoptosis [56]

Doxycycline

Breast In vitro
+/- chemotherapy

↓ MIT biogenesis ↓ hypoxic CSCs, ↑ sensitization to 
chemotherapy

[74]

Breast In vitro
+/- radiation treatment

↓ Protein synthesis,
↓ respiration & ATP production

↑ sensitization CSCs to radiation [36]

Breast Clinical No change in level of MIT marker ↓ Stemness markers, no difference 
in level of proliferation

[72]

Cervical In vitro/in vivo ↓ Respiration,
↓ ATP production

↓ CG & TG, ↑ apoptosis [35]

Glioblastoma In vitro / in vivo +/- 
chemotherapy

↓ Respiration,
↓ ATP production

↓ CG & TG, ↑ sensitization to 
chemotherapy

[58]

Glioma In vitro ↓ Protein synthesis,
↓ respiration

↓ CG [65]

Itraconazole

Glioblastoma In vitro/in vivo Interaction with VDAC1 ↓ CG & TG [70]

Ivermectin

Chronic myeloid 
leukemia

In vitro / in vivo ↓ Complex I activity,
↓ respiration

↓ CG & TG, ↑ apoptosis [42]

Glioblastoma In vitro/in vivo ↓ Complex I, ↓ respiration,
↓ ATP production

↓ CG & TG, ↑ apoptosis [44]

Renal In vitro/in vivo ↓ Respiration, ↓ ATP production ↓ CG & TG, ↑ apoptosis [64]

Pyrvinium pamoate

Breast, pancreatic, colon 
& cervical cancer

In vitro/in vivo
+/- glycolysis inhibitor

↓ ATP production ↓ CG & TG, ↑ apoptosis [39]

Lymphoma In vitro ↓ Complex I, ↓ respiration,
↓ ATP production

↑ Apoptosis [47]

Phase-chronic myeloid 
leukemia

In vitro / in vivo
+/- targeted therapy

↓ Respiration,
↓ ATP production

↓ CG & TG, ↑ effect of targeted 
therapy

[45]

Myeloma / 
erythroleukemia

In vitro ↓ Complex I, ↓ respiration,
↓ ATP production

↓ CG [67]

Tetracycline analogues (doxycycline & COL-3)
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Type of cancer Type of study Effects on mitochondrial aerobic 
metabolism

Effects on cancer progression Ref

Adenocarcinomas of 
alveolar, pancreatic & 
colon

In vitro ↓ MIT protein synthesis,
↓ complex IV activity

↓ CG, higher cytotoxicity of 
COL-3 compared to doxycycline

[59]

Tigecycline

Acute lymphoblastic 
leukemia

In vitro / in vivo+/- 
chemotherapy

↓ Respiration,
↓ ATP production

↓ CG & TG, ↑ apoptosis, ↑ 
sensitization to chemotherapy

[52]

Acute myeloid leukemia In vitro / in vivo ↓ MIT protein synthesis,
↓ respiration, ↓ complex I & IV 
activity

↓ CG & TG, targeting leukemia 
stem cells

[60]

Acute myeloid leukemia In vitro / in vivo+/- 
chemotherapy

↓ MIT mass, ↓ respiration ↓ CG & TG, ↑ apoptosis, ↑ 
sensitization to chemotherapy

[50]

Chronic myeloid 
leukemia

In vitro ↓ MIT protein synthesis,
↓ respiration

↓ CG, ↑ apoptosis, overcoming 
drug resistance

[38]

Chronic myeloid 
leukemia

In vitro/in vivo +/- targeted 
therapy

↓ MIT protein synthesis,
↓ respiration

↓ CG, ↓ TG in combination with 
protein kinase inhibitor

[51]

OXPHOS-Large B-cell 
lymphoma

In vitro ↓ Complex I, ↓ respiration ↓ CG [49]

Lung In vitro/in vivo ↓ Respiration,
↓ ATP production

↓ CG & TG, ↑ apoptosis [61]

Ovarian In vitro / in vivo + /- 
chemotherapy

↓ MIT protein synthesis, ↓ 
respiration

↓ CG & TG, ↑ sensitization to 
chemotherapy

[43]

Retinoblastoma In vitro/in vivo ↓ MIT protein synthesis,
↓ respiration, ↓ activities of 
complex I & IV,
↓ ATP production

↓ CG & TG, ↑ apoptosis [46]

Renal cell carcinoma In vitro/in vivo
+/- chemotherapy

↓ MIT protein synthesis, ↓ activities 
of complex I, IV & V

↓ CG & TG, ↑ sensitization to 
chemotherapy

[41]

Abbreviations: CG, Cell growth; CSC, Cancer stem cell; MIT, mitochondrial; TG, Tumor growth; VDAC1, voltage-dependent anion-selective 
channel 1. Signs: &, and; ↓, Decrease; ↑, Increase; +, In combination with; -, Without.
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Table 2
Effects of FDA-approved anti-diabetic agents on mitochondrial aerobic metabolism of 
cancer cells in in vitro, preclinical and clinical studies.

Type of cancer Type of study Effects on mitochondrial aerobic 
metabolism

Effects on cancer progression Ref

Canagliflozin

Prostate & lung In vitro/in vivo
+/- radiation & chemotherapy

↓ Complex I activity, ↓ ATP production ↓ CG [109]

Metformin

Breast In vitro ↓ Complex I activity, ↓ respiration ↓ CG [92]

Breast, gastric & 
osteosarcoma

In vitro/in vivo +/- glycolysis
inhibitor

↓ ATP, ↓ expression of components of 
complex I

↑ Cell death, ↓ TG in combination 
with glycolysis inhibitor

[101]

Breast Clinical ↑ OXPHOS relevant gene transcription 
in a subset of patients

Resistant to metformin treatment 
in subset of patients with 
OXPHOS transcriptional response

[102]

Colon In vitro/in vivo ↓ Complex I activity,
↓ respiration

↓ CG & TG [93]

Leukemic cells In vitro/in vivo ↓ Complex I activity,
↓ respiration,
↓ ATP production

↓ CG & TG, ↑ apoptosis [94]

Lung, Colon In vitro ↓ ATP production,
↓ respiration

↓ CG [98]

Ovarian In vitro/in vivo/clinical Alteration in MIT metabolism in 
patient and mouse ovarian tumors, ↓ 
ATP

↓ Cell viability, ↓ TG [100]

Ovarian In vitro ↓ Respiration ↓ CG [97]

Prostate In vitro
+/- glycolysis inhibitor

↓ Complex I activity ↑ Apoptosis & arrest of cell cycle [95]

Prostate In vitro/in vivo ↓ Respiration ↓ CG [91]

Thyroid In vitro/in vivo ↓ Respiration ↓ TG [96]

Breast, cervical, 
lung, bone

In vitro/in vivo ↓ Complex I activity,
↓ respiration

↓ CG, ↓ TG [99]

Pioglitazone

Prostate In vitro
+/- glycolysis inhibitor

↓ Respiration ↓ CG, ↑ efficacy + glycolysis 
inhibitor on spheroid model

[110]

Abbreviations: CG, Cell growth; MIT, mitochondrial; TG, Tumor growth. Signs: &, and; ↓, Decrease; ↑, Increase; +, In combination with; -, 
Without.
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Table 3
Effects of FDA-approved antitumor agents on mitochondrial aerobic metabolism of 
cancer cells in in vitro and preclinical studies.

Type of cancer Type of study Effects on mitochondrial aerobic 
metabolism

Effects on cancer 
progression

Ref

Cisplatin

Gastrointestinal cancer In vitro OXPHOS uncoupling,
↑ state 2, 3 & 4 respiration

↑ Apoptosis [112]

Doxorubicin

Colon In vitro Modulation OXPHOS genes ↑ Apoptosis [119]

Sorafenib

Neuroblastoma In vitro Destabilization of complex I, ↓ 
respiration

↑ Apoptosis [121]

Tamoxifen

Breast In vitro/in vivo mitochondrially 
targeting tamoxifen

↓ Complex I ↓ TG, ↑ general cell death [128]

Abbreviations: TG, Tumor growth. Signs: &, and; ↓, Decrease; ↑, Increase.
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Table 4
Effects of further FDA-approved agents and some novel compounds on mitochondrial 
aerobic metabolism of cancer cells in in vitro and preclinical studies.

Type of cancer Type of study Effects on mitochondrial aerobic 
metabolism

Effects on cancer 
progression

Ref

Antiepileptic drugs

Valproate

Liver In vitro ↓ Respiration,
↓ ATP production

↓ CG [156]

Cannabinoids

Δ9 -tetrahydrocannabinol and Δ8 -tetrahydrocannabinol

Oral squamous cell carcinoma In vitro ↓ Respiration,
↓ ATP production

↑ Apoptosis [154]

Chelating agents

Deferiprone

Prostate cancer In vitro ↓ Respiration,
↓ ATP production

↓ CG & cell migrations [131]

Tetrathiomolybdate

Endometrial adenocarcinoma In vitro
+/- glycolysis inhibitor

↓ Complex IV activity,
↓ respiration

No effect on CG without 
combination with glycolysis 
inhibitor

[136]

Neuroblastoma In vitro
+/- Akt kinase inhibitor

↓ Respiration,
↓ ATP production

↓ CG [139]

VLX600

Colon carcinoma In vitro/in vivo (+ /-K-Ras 
mutation)

↓ Respiration ↓ CG & TG in combination 
with tigecycline

[48]

Colon carcinoma In vitro/ex vivo/in vivo ↓ Respiration, ↓ compelex I, II & IV 
activities

↓ CG, ↓ TG [132]

Colon carcinoma & breast 
cancer

In vitro ↓ Respiration, ↓ complex IV activity ↓ CG [133]

Gastrointestinal stromal 
tumor
Non-steroidal anti-
inflammatory drugs 
(NSAIDs)

In vivo ± Imatinib ↓ Respiration ↓ CG & TG, ↑ apoptosis [134]

Aspirin

Liver In vitro ↓ Complex I & IV activities,
↓ ATP production

↓ CG [147]

Diclofenac

Melanoma In vitro
+/- vemurafenib

↓ Respiration ↓ CG [148]

Indomethacin

Colorectal adenocarcinoma In vitro ↓ Complex I activity,
↓ ATP production

↓ CG [146]

Novel compounds

BAY 87-2243

Melanoma In vitro/in vivo ↓ Complex I activity,
↓ ATP production

↓ CG, ↓ TG [160]
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Type of cancer Type of study Effects on mitochondrial aerobic 
metabolism

Effects on cancer 
progression

Ref

IACS-010759

Acute myeloid leukemia, low 
glycolytic glioblastoma & 
neuroblastoma

In vitro/in vivo ↓ Complex I activity,
↓ ATP production

↓ CG, ↓ TG, ↑ survival [158]

Brain metastasis of MAPK 
inhibitor-resistant intracranial 
melanoma

In vivo ↑ Survival; ↓ brain metastasis [159]

Gboxin

Glioblastoma In vitro/in vivo ↓ Respiration, ↓ complex V activity ↓ CG, ↓ TG, ↑ survival [161]

Abbreviations: CG, Cell growth; TG, Tumor growth. Signs: &, and; ↓, Decrease; ↑, Increase; +, In combination with; –, Without.
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