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Amelioration of the Protein Expression
of Cox2, NFkB, and STAT-3 by Some
Antioxidants in the Liver of Sodium
Fluoride–Intoxicated Rats

Ahlam Alhusaini1, Laila Faddaa1, Hanaa M. Ali2,3 , Iman Hassan1,
Nagla F. El Orabi1,4, and Yieldiz Bassiouni1

Abstract
The present study aimed to explore the efficiency of N-acetyl cysteine (NACC) or thymoquinone (TMQ) alone or in combination in
the downregulation of inflammatory molecule expression and decreasing hepatic injury in response to sodium fluoride (SF). Sodium
fluoride upregulated serum alanine and aspartate transferases activities, tumor necrosis factor a and hepatic malondialdehyde and
nitric oxide levels, and the expression of cyclooxygenase 2, nuclear factorkB cell, and signal transducer and activator of transcription 3.
In contrast, hepatic glutathione level, superoxide dismutase activity, and nuclear factor erythroid 2-related factor 2 expression were
decreased. However, the concurrent treatment with antioxidants, alone or in combination, modulated the levels of these para-
meters. Histopathological examination revealed that SF treatment resulted in focal areas of massive hepatic degeneration and many
degenerated hepatocytes, whereas the treatment with TMQ or NACC exhibited moderate improvement in cellular degeneration
of the liver with many abnormal cells. Rats receiving a combination of TMQ and NACC showed marked improvement in cellular
degeneration of liver with apparently normal hepatic architecture with very few degenerated hepatocytes. The results also revealed
that the combination of TMQ and NACC is the most effective regimen in ameliorating SF toxicity, suggesting their efficacy against
the toxicity of fluoride compounds. Their activities might be mediated via multiple molecular pathways.
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Introduction

Sodium fluoride (SF), a pollutant, is used as an insecticide and

antihelminthic agent.1,2 Fluoride can be present in the soil,

water, and vegetation. It has been reported that chronic fluoride

toxicity causes joint stiffness.3-6 Its deleterious effects on the

reproductive system and kidney tubules are well-documented.7-9

It is known as a double-edged sword, and hence, it is an essen-

tial trace element in small doses to prevent dental caries and

osteoporosis. Conversely, high doses cause harmful effects. It

interferes with the metabolism of macromolecules,10,11 inhibits

the activity of enzymes involved in glycolysis and Krebs

cycle and fatty acid oxidation, and suppresses the formation

of polypeptides that block DNA synthesis.12 The mechanism

of fluoride-induced pathogenesis is accompanied by reactive

oxygen species (ROS) and peroxyl and hydroxyl radical for-

mation, resulting in oxidative stress (OS), apoptosis, and

DNA damage.13,14

N-acetylcysteine (NACC) is a small molecule containing a

thiol group and has an antioxidant effect. It can access intra-

cellular compartments.15 Its therapeutic efficacy is contributed

to the existent of the cysteinyl thiol group; the ability of thiol
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group to scavenge oxygen-free radicals is well established.15

N-acetylcysteine raises the intracellular concentrations of

cysteine and in sequence decreases reduced glutathione

(GSH) level.

Numerous active constituents from herbal and medical plants

are widely documented for their favorable effects. Thymoqui-

none (TMQ) is known as an antioxidant and free radical scaven-

ger.16 Thymoquinone exhibits various pharmacological and

immunomodulatory actions17 and also has anti-inflammation,

antioxidant,18 and antitumorigenic activities against different

cancer diseases.19,20 Its protective role against oxidative damage

of many organs induced by free radical-producing agents such as

doxorubicin-induced cardiotoxicity and carbon tetrachloride-

induced hepatotoxicity was well studied.21-23

The aim of this study is to explore the efficiency of NACC

and/or TMQ alone or in combination in the downregulation of

inflammatory molecule expression and hepatic injury in

response to SF toxicity. Another aim is to study the influence

of cyclooxygenase 2 (Cox2), nuclear factor kB (NFkB), signal

transducer activator of transcription 3 (STAT-3), and nuclear

factor erythroid 2-related factor 2 (Nrf2) protein expressions in

SF toxicity and treatments.

Materials and Methods

Chemicals

All chemicals (high analytical grade) were purchased from

Sigma and Merck (St. Louis, Missouri, United States); SF,

NACC, and TMQ were purchased from Sigma Chemical Co

(St Louis, Missouri). Commercial kit for the assay of alanine

aminotransferase (ALT) was purchased from Randox (United

Kingdom). Primary and secondary antibodies for COX-2, NF-

kB, STAT-3, and Nrf2 were purchased from Santa Cruz Bio-

technology (California, USA).

Experimental Animals

Fifty Wistar adult male albino rats weighing 170 to 210 g were

kept at a temperature of 20�C to 22�C. The rats were procured

from the Experimental Animal House, Faculty of Pharmacy,

King Saud University, Saudi Arabia. They were fed with stan-

dard rat pellet chow with free access to tap water ad libitum.

The experimental protocol was approved by the Experimental

Animal Ethics Committee at the same University. After 1 week

of acclimation, rats were divided into 5 groups, each of 10 rats.

Experimental Design

Fifty rats were allocated into 5 groups, each of 10 rats; the first

group was the normal control and was given distilled water,

the second group was intoxicated with 10 mg/kg SF24 once

daily, the third group was treated with TMQ at a dose of

10 mg/kg/d intraperitoneally,25 the fourth group was treated

with 20 mg/kg/d of NACC,26 and the fifth group was treated

with TMQ and NACC. All treatments were given daily along

with SF for 1 month.

Rats were killed; serum was separated by blood centrifuga-

tion at 3000 rpm for 20 minutes. Some livers were homoge-

nized in phosphate buffer to yield 20% homogenates. The

homogenates were centrifuged for 20 minutes at 3000 rpm at

5�C and were kept at �80�C. Other parts of the livers were

rapidly frozen under liquid nitrogen for Western blotting.

Three livers from each group were kept in 4% formalin for

histopathological examination.

Biochemical Serum Analysis

Determination of serum content of ALT and aspartate
aminotransferase. The content of ALT and aspartate aminotrans-

ferase (AST) was determined using the kits obtained from

Randox.

Determination of lipid peroxidation (malondialdehyde) in the hepatic
tissues. The degree of lipid peroxidation in the liver tissue was

determined according to the method of Uchiyama and

Mihara.27

Determination of hepatic GSH content. The content of GSH was

determined by the method of Ellman.28

Determination of hepatic total nitrite content (nitric oxide). The total

nitrite content was measured according to the method of Mosh-

age et al.29

Determination of superoxide dismutase activity. The activity of

superoxide dismutase (SOD) was measured according to the

method of Marklund and Marklund.30

Determination of tumor necrosis factor level. The level of tumor

necrosis factor a (TNF-a) in the serum was measured using a

high-sensitive rat enzyme-linked immunosorbent assay kit

(Immuno-Biological Laboratories Co, Ltd, Takasaki-Shi,

Gunma, Japan).

Histological Analysis

The liver samples were stored in 4% paraformaldehyde

embedded in paraffin wax. Thinly sliced sections were used

for the histopathological examination using hematoxylin and

eosin (H&E) stain.

Western Blot Analysis

Western blotting was performed to determine the expression of

COX-2, NF-kB light-chain enhancer of activated B cells,

STAT-3, and Nrf2. The proteins bands were visualized using

the ECL-Plus detection system (Amersham Life Sciences, Lit-

tle Chalfont, Buckinghamshire, United Kingdom), according to

the manufacturer’s instruction. Positive immunoreactive bands

were quantified densitometrically and compared with that of

the control.31 Liver sections were homogenated in lysis buffer

(20 mM) 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid,

N-(2-Hydroxyethyl)piperazine-N0-(2-ethanesulfonic acid),

(HEPES), 2 mM MgCl2, 1 mM EDTA, 1 mM dithiothreitol
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(DTT), 0.1% sodium dodecyl sulfate, 1 mM phenylmethane

sulfonyl fluoride, pH 7.4 on ice. The supernatants were har-

vested by centrifugation at 12 000g at 4�C for 10 minutes.

Protein concentrations were determined by a Bradford assay.

Protein (20 mg) was separated on a 12% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and transferred to

polyvinylidene fluoride membranes.

Statistical Analysis

The data are expressed as mean + standard error of the mean.

Comparisons between different groups were performed by the

1-way analysis of variance, followed by Tukey-Kramer multi-

ple comparisons test. The level of significance was set at P <

.05, P < .01, and P < .001. The statistical analyses were con-

ducted using the software GraphPad Prism version 5 (Graph-

Pad Prism, San Diego, California) and SPSS version 21 (IBM).

Results

Effect of SF and TMQ or/and NACC on the levels of serum

ALT and AST (Figure 1) revealed the effect of SF, TMQ, or

NACC and their combination on serum liver function. Sodium

fluoride exposure resulted in a significant increase in the activ-

ity of ALT and AST. Coadministration of TMQ or/and NACC

resulted in a significant decrease in these activities compared to

the control group (Figure 1). Also, serum TNF-a was markedly

increased upon SF intoxication and ameliorated by the antiox-

idants in question.

Effect of SF and TMQ or/and NACC treatments on hepatic

tissue administration of SF evoked significant increment in

hepatic malondialdehyde (MDA; P < 0.001) and nitric oxide

(NO) levels compared to the control group. The TMQ and/or

NACC administration to SF-intoxicated rats alleviated the

enhanced MDA and NO levels in the liver tissue (Figure 2).

The activity of SOD and the level of GSH in the liver homo-

genates were reduced significantly (P < .001) in response to SF

treatment. Ingestion of TMQ and/or NACC to SF-intoxicated

rats successfully restored their values matched to the control

group (Figure 2).

Western Blot

Western blot analysis results indicated that SF administra-

tion induced a significant elevation in COX-2, NF-kB, and

STAT-3 with concomitant significant depletion in Nrf2 pro-

tein expressions in hepatic tissue compared with control

(P < .001), while TMQ and/or NACC administration alle-

viated the activation of COX-2, NF-kB, and STAT-3

expressions and increased the expression of Nrf2 compared

with an SF-treated group (P � .001; Figure 3). Of the afore-

mentioned measured parameters, the treatment with the

combination of TMQ and NACC was the most effective

regimen in ameliorating SF toxicity.

Histological Examination

Figure 4 presents light photomicrographs of H&E-stained

sections of the liver. Liver of control rat revealed normal

hepatic architecture, normal hepatocytes, and blood sinusoids.

Sodium fluoride treatment caused focal areas of massive

hepatic degeneration and many degenerated hepatocytes,

while TMQ administration caused mild improvement in the

hepatic changes with many degenerated cells. Liver from rat

receiving NACC also showed moderate improvement in hepa-

tic cellular degeneration with many abnormal cells, whereas

liver from rat receiving TMQ and NACC showed the marked

improvement in the hepatic cellular degeneration with appar-

ently normal hepatic architecture with very few degenerated

hepatocytes.

Figure 1. Liver function enzymes (ALT and AST) and inflammatory marker (TNF-a) in hepatic tissues of rats in control, SF-intoxicated, and all
treated groups. Data are presented as mean + SEM (N ¼ 6). þþþP � .001 versus control and ***P � .001 versus SF-intoxicated group. ALT
indicates alanine aspartate; AST, aspartate transferase; TNF-a, tumor necrosis factor a; SEM, standard error of the mean.
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Discussion

Fluoride, one of the most dangerous environmental pollutants,

disrupts metabolic pathways at toxic doses.32 Its effect on many

organs, such as liver, pancreas, lungs, heart, skeletal muscles,

and kidney, is well established.33-36 In the present study, SF

increased the activity of serum ALT and AST and the level of

TNF-a, hepatic MDA, and NO with contaminant decrease in

GSH level and SOD activity. Liver dysfunction after SF admin-

istration is due to increased OS, leading to liver injury. Abnor-

mal levels of some serum biomarkers, such as ALT and AST,

are attributed to the destruction of the membrane structure of

the hepatic cells, leading to a noticeable increase in ALT activ-

ity.37 Lipid peroxidation is the essential index of OS, and MDA

is the end product of lipid peroxidation and reflects the degree

of lipid peroxidation.11

Glutathione is an antioxidant toward ROS and is considered

as a primary indicator of the OS.35 Chen et al38 and Liu et al39

reported that in broiler chickens, high dietary fluoride increases

the MDA content in their serum. The present data showed that

the activity of SOD and GSH level were significantly decreased

in the liver after SF treatment. This finding designated that SF

can induce the high generation of ROS and reactive nitrogen

species. Herein, NO level was significantly increased in the

liver after treatment with SF compared with the control group.

The analogous observation was gained by Zhou et al40 and Liu

et al39 who reported that fluoride-induced OS is involved in the

morphological damage and dysfunction of the liver in female

mice and elevated serum NO levels in chicks, respectively.

The elevated NO level induced by fluoride could disrupt

protein functions, affect energy metabolism, reduce adenosine

triphosphate and NADPH, and cause DNA damage and react

with superoxide anions (O2
�), to produce peroxynitrite

(ONOO–), which is responsible for oxidation and destruction

and hence cytotoxicity.41,42 This anion is capable to diffuse

across plasma cell. Based on the presence of iron, thiols, and

SOD, peroxynitrite undergoes 3 types of reactions, leading to

depletion of thiols radical, chain peroxidation, and nitrosyla-

tion of proteins.43

The bioactivities of TNF-a are mediated through the activa-

tion of the NF-kB pathway.44 The crucial role of TNF-a in

many diseases is that the mediation of organs injury is well-

documented.45,46

Figure 2. Oxidative stress and antioxidant biomarkers (MDA, SOD, GSH, and NO) in hepatic tissues of rats in control, SF-intoxicated, and all
treated groups. Data are presented as mean + SEM (N ¼ 6). þþþP � .001 versus control and ***P � .001 versus SF-intoxicated group. GSH
indicates glutathione; MDA, malondialdehyde; NO, nitric oxide; SEM, standard error of the mean; SOD, superoxide dismutase.

4 Dose-Response: An International Journal



Herein, SF induced a significant rise in hepatic NF-kB,

COX-2, and STAT-3, while Nrf2expression was decreased;

this is in agreement with the findings of Afolabi et al,47

Gutowska et al,48 Jain et al,49 and Mukhopadhyay et al,50 who

declared that fluoride affected the previous parameters in the

same manner.

Cyclooxygenase expression is linked with inflammation51

and is released by a variety of pro-inflammatory stimulus.52,53

It was documented that Nrf2 is the key manager of all cellular

oxidation–antioxidation system at the transcriptional level.54

From the current investigation, it can be concluded that the

consumption of TMQ or/and NACC to SF-intoxicated rats

Figure 3. A, Western blot analysis of the expression of NF-kB, COX-2, STAT3, and NrF2 proteins in control, SF-intoxicated, and all treated
groups. B, The densitometry analysis of the expression of NF-kB, COX-2, STAT3, and NrF2 proteins in control, SF-intoxicated, and all treated
groups. (Data corrected by b-actin and expressed as protein/b-actin). Data are presented as mean + SEM (N¼ 6). þþþP� .001 versus control
and ***P � .001 versus SF-intoxicated group. COX-2 indicates cyclooxygenase-2; NAC, N-acetylcysteine; NF-kB, nuclear factor-kB; NrF2,
nuclear factor erythroid 2-related factor 2; SEM, standard error of the mean; SF, sodium fluoride; STAT-3, signal transducer and activator of
transcription 3; TMQ, thymoquinone.
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successfully restored ALT and AST activities; SOD, MDA,

GSH, and NO levels; and COX-2, NF-kB, and STAT3 protein

expressions back to control values. This positive effect of either

TMQ or/and NACC was formally recognized in different mod-

els of hepatotoxicity.16,55

The STAT3 protein expression is one of the major members

of the unit of signal transducers and activators of transcription

that functions by adaptable cell growth, differentiation, and

angiogenesis and participates in the pathogenesis of diabetic

retinopathy.56 It is the first time to evaluate the effect of SF on

STAT3.

Histological examination reported that SF treatment caused

focal areas of massive hepatic degeneration and many degen-

erated hepatocytes, while TMQ administration caused mild

improvement in the hepatic changes with many degenerated

cells. Liver from rat receiving NACC also showed moderate

improvement in hepatic cellular degeneration with many

abnormal cells. Liver from rat receiving the combination of

TMQ and NACC showed marked improvement in the hepatic

cellular degeneration with apparently normal hepatic architec-

ture with very few degenerated hepatocytes.

The results of the present study revealed that the combina-

tion of TMQ and NACC is the most effective regimen in the

amelioration of SF toxicity. The hepatoprotective effects of

NACC and TMQ against the toxicity of fluoride compounds

might be mediated via multiple molecular mechanisms and can

be considered a promising candidate against hepatic damage

induced by SF toxicity.

Figure 4. Light photomicrographs of H&E-stained sections of the liver. Scale bar 400 mm. A, Liver from control rat showing normal hepatic
architecture with normal hepatocytes and blood sinusoids. B, Liver from rat receiving SF showing focal areas of massive hepatic degeneration
(yellow star) and many degenerated hepatocytes (red arrows). C, Liver from rat receiving thymoquinone showing mild improvement in the
hepatic changes with many degenerated cells (yellow arrow). D, Liver from rat receiving N-acetylcysteine showing moderate improvement in
hepatic cellular degeneration with many abnormal cells (arrows). E, Liver from rat receiving thymoquinone and N-acetylcysteine showing
marked improvement in the hepatic cellular degeneration with apparently normal hepatic architecture with very few degenerated hepatocytes
(arrows). H&E indicates hematoxylin and eosin; SF, sodium fluoride.
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