www.nature.com/scientificreports

scientific reports

W) Check for updates

Classification of Parkinson’s disease
and its stages using machine
learning

John Michael Templeton*’, Christian Poellabauer® & Sandra Schneider?

As digital health technology becomes more pervasive, machine learning (ML) provides a robust way
to analyze and interpret the myriad of collected features. The purpose of this preliminary work was

to use ML classification to assess the benefits and relevance of neurocognitive features both tablet-
based assessments and self-reported metrics, as they relate to Parkinson’s Disease (PD) and its stages
[Hoehn and Yahr (H&Y) Stages 1-5]. Further, this work aims to compare perceived versus sensor-based
neurocognitive abilities. In this study, 75 participants (n = 50 PD; n = 25 control) completed 14 tablet-
based neurocognitive functional tests (e.g., motor, memory, speech, executive, and multifunction),
functional movement assessments (e.g., Berg Balance Scale), and standardized health questionnaires
(e.g., PDQ-39). Decision tree classification of sensor-based features allowed for the discrimination

of PD from healthy controls with an accuracy of 92.6%, and early and advanced stages of PD with

an accuracy of 73.7%; compared to the current gold standard tools [e.g., standardized health
questionnaires (78.3% accuracy) and functional movement assessments (70% accuracy)]. Significant
features were also identified using decision tree classification. Device magnitude of acceleration was
significant in 12 of 14 tests (85.7%), regardless of test type. For classification between diagnosed

and control populations, 17 motor (e.g., device magnitude of acceleration), 9 accuracy (e.g., number
of correct/incorrect interactions), and 8 timing features (e.g., time to between interactions) were
significant. For classification between early (H&Y Stages 1 and 2) and advanced (H&Y Stages 3, 4,

and 5) stages of PD, 7 motor, 12 accuracy, and 14 timing features were significant. Finally, this work
depicts that perceived functionality of individuals with PD differed from sensor-based functionalities.
In early-stage PD was shown to be 21.6% lower than sensor-based scores with notable perceived
deficits in memory and executive function. However, individuals in advanced stages had elevated
perceptions (1.57x) for executive and behavioral functions compared to early-stage populations.
Machine learning in digital health systems allows for a more comprehensive understanding of
neurodegenerative diseases and their stages and may also depict new features that influence the ways
digital health technology should be configured.

As the prevalence of digital health technology and the subsequent collection of large amounts of complex health
data increases, machine learning (ML) methods provide epidemiologists with a robust way to analyze and
interpret relevant patterns?. The increased availability of electronic health data and the use of machine learn-
ing models presents major opportunities in the healthcare space for discovery, improving patient safety, and the
quality of care for individuals with neurodegenerative diseases®. Moreover, this digital health technology has
become increasingly widespread in the area of neurocognitive assessments’~°. Mobile device capabilities allow
for the collection of more objective information (e.g., digital biomarkers) than is currently achievable using pen-
and-paper style tests'®!!. In addition, digital health technology allows for the implementation of standardized
health screenings and patient reported outcomes (PROs) for individual evaluation'2 Previous work has identi-
fied that device-based sensors and/or user-device interactions used in digital assessments (e.g., accelerometry
based gait assessments, speech recognition systems, and PROs for healthcare) enhances the utility and quality of
this collected data’. Further, the combination of objective metrics and patient reported outcomes allows for the
collection of relevant health information and monitoring of all functional areas of neurocognition (e.g., motor,
memory, speech, language, executive function, autonomic function, sensory, behavior, and sleep)"’. This paper
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Group Population
Individuals with confirmed diagnosis | 50
Individuals in early stages of PD 22
Individuals in advanced stages of PD 9
Individuals in unknown stages of PD 11
Age matched control population 25

Table 1. Cohort breakdown.

focuses on individuals with Parkinson’s Disease (PD) as they may demonstrate impaired functionality across
each of these functional areas of neurocognition'*.

Mobile devices allow for the implementation of digital versions of standardized assessments (e.g., Montreal
Cognitive Assessment (MoCA)"*; Mini Mental State Examination (MMSE)'®) and questionnaires (e.g., PDQ-39")
on mobile devices for the collection of these objective digital biomarkers and relevant PROs'®. Subsequently,
these mobile devices can utilize machine learning on the aforementioned feature sets for the depiction of an indi-
vidual’s neurocognitive functionality, quality of life, and quantification of disease progression'*'*?°. As the vol-
ume of relevant health data increases, novel ways to interact with and extract meaning from the data emerge!?'.
Machine learning is a key technique that has demonstrated the ability to translate these large health data sets
into actionable knowledge®**. Specifically, supervised machine learning of health data has shown potential in
the area of disease prediction and classification?***. In supervised machine learning problems, the utilization of
clinically relevant and objective features is necessary as the performance of these algorithms is heavily dependent
upon the quality of the input features®. Therefore, the aim of these digital health systems should be to increase
the reliability and accuracy of patient reported data by combining it with objective data from mobile devices,
through maintaining commonly utilized methods to monitor patients’ short-term (e.g., day to day) changes in
their condition and minimizing individual variability and/or bias from subjective reporting methods!®%-%°,

The objective of this preliminary work was to use supervised machine learning classification for the assess-
ment of novel features gathered from specifically-designed tablet-based digital neurocognitive assessments (e.g.,
digital biomarkers) as they relate to Parkinson’s Disease and its stages (Hoehn and Yahr Stages 1-5)*. In addition,
commonly used self-reported metrics (e.g., from specifically designed questionnaires) and clinically-relevant
functional movement assessments were included in the supervised machine learning process. Decision tree
classification was used to gather significant, objective features (e.g., novel digital biomarkers) for both disease
classification (e.g., whether an individual has PD) and stage classification (e.g., what stage of PD are they in).
Finally, this work visualized individuals’ perceived neurocognitive capabilities (e.g., responses from subjective
questionnaires) in comparison to sensor-based neurocognitive functionality scores (e.g., completion of functional
assessments) between groups with and without PD to further depict the necessity of digital health systems as
they relate to digitally collected health features.

Methods

Disease staging scales. Parkinson’s Disease rating scales are a means of assessing the symptoms of the
condition by providing information on the course of the condition and/or assessment of an individual’s quality
of life. Disease severity was collected in accordance with the Hoehn and Yahr Scale (H&Y)*! (i.e., an internation-
ally used PD progression rating method for clinical practice) and the MDS-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS)?* (i.e., a scale developed to incorporate elements from existing scales to provide an effi-
cient, flexible, and comprehensive means to monitor both motor and non-motor PD symptoms)**.

Due to its strong clinimetric performance for motor assessments, a high correlation with MDS-UPDRS
scores while minimizing intra-subject variance, in addition to providing a concise means of summarizing patient
status, the H&Y staging scale was used in the classification of individuals in this preliminary work to maintain
heterogeneity and efficiency®****4. The stages of the H&Y scale are listed below:

Stage 1: Symptoms are present on one side only (unilateral).

Stage 2: Symptoms are present on both sides but no impairment of balance.
Stage 3: Balance impairment and mild to moderate disease progression.
Stage 4: Severe disability, but still able to walk or stand unassisted.

Stage 5: Needing a wheelchair or bedridden unless assisted.

Cohort. Seventy-five adults between the ages of 50 and 85, divided into two groups- those with a confirmed
diagnosis of Parkinson’s Disease and age-matched healthy controls participated in this study. The PD popula-
tion included 50 individuals; with 22 being in confirmed early stages of PD (H&Y Stages 1 and 2), 9 being in
confirmed advanced stages of PD (H&Y Stages 3, 4, and 5), and the remaining 11 were unaware of what stage of
the condition they were in (e.g., their respective stage was not communicated to them via a licensed clinician). A
breakdown of the population is shown in Table 1. Of the group of individuals diagnosed with PD, slightly more
than half were female (n = 26 or 52%). The age-matched control population included 25 individuals; with slightly
less than half (n = 12 or 48%) being female. Participants were recruited through advertisements, designed reha-
bilitation programs, physician and clinician referrals, spouses or caretakers of the diagnosed population, and
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prior studies from our laboratory. As the mean onset age for PD in the Western world is early-to-mid 60s**,
recruitment efforts for this study were limited to individuals in the aforementioned groups aged 50 years or
older. Participants were excluded from the current study if they were unable to provide informed consent or if
they were unable to speak and/or understand English (as all instructions and tests were formatted in English).
All methods in this study were performed in accordance with the relevant guidelines and regulations from the
Institutional Review Board (IRB) for the protection of human subjects.

Qualitative assessment questionnaires. All participants were given a set of questions commonly
administered in clinical settings for aging populations in addition to questions specifically asked in the event
of suspected neurodegenerative disease. Commonly administered questions included how the individual felt in
general, their energy levels, their pain level, their sleep quality, in addition to rating their cognitive functions of
memory, speech, motor, and executive functions. During data collection, patients were also asked to give infor-
mation regarding when, relative to taking medication, their data was collected. The rationale for this parameter
is that the assessment of the patient near trough levels will depict the most extreme effects of the PD without
the effect of any medication. Finally, a specific quality of life questionnaire (e.g., PDQ-39) was used in which the
individual assesses their mobility, activities of daily living, emotional well-being, stigma, social support, cogni-
tion, communication, and bodily discomfort!”. This standardized PDQ-39 begins each question with “Due to
having Parkinson’s disease, how often during the last month have you..”. For the control group a modified ver-
sion of the PDQ-39 (e.g., removing ‘Due to having Parkinson’s disease’ such that the question reads ‘How often
during the last month have you..) was given to understand quality of life over the same functional areas. In this
modified version for the control population, a single question, specific only to the PD population (e.g., ‘How
often during the last month have you felt you had to conceal your Parkinson’s from people?’), was removed.

Functional movement assessments. Participants in the PD group were also administered multiple
functional movement assessments both subjective and objective in nature as part of regularly scheduled clini-
cal measures. The Berg Balance Scale, Timed Up and Go (TUG), Sit to Stand (STS), and Six Minute Walk Test
(6MWT) are all commonly used functional movement assessments administered by clinicians (e.g., physical
trainers or therapists) to assess functional performance®-’.

Mobile application testing. All participants were administered, by clinicians (e.g., physical trainers or
therapists), a tablet-based neurocognitive assessment specifically designed for individuals with Parkinson’s Dis-
ease that focused on user-device interactions for the collection of novel and objective metrics*. This was com-
pleted to maintain a controlled setting and ensure correct understanding of and compliance with instructions’.
Each participant completed mobile versions of 14 neurocognitive functional tests across the areas of motor,
memory, speech, and executive function. Functional tests included single functional tests (e.g., having focus
on only one area of neurocognition; motor or memory) and multifunctional tests (e.g., combining two or more
single functional tests into one functional test). The 14 administered neurocognitive tests collected 208 objective
tablet-based digital biomarkers for all participants. All test descriptions are listed.

e For a fine-motor tracing task the individual is instructed to use their index finger to trace a depicted shape

(e.g., acircle).

In a gross-motor task the user is to manipulate the tablet to “air’-trace a prompted shape (e.g., a square).

For reaction tasks, the user is intended to tap on the screen to interact with a set of targets.

For a set of card matching tasks the user is to tap on depicted cards until all cards have been matched in pairs.

For a set of speech-based tasks, the user is instructed to read a sentence and passage out loud, and name

prompted objects.

® Inaset of trail making tasks the user is intended to draw a line using their index finger to connect the shapes
in increasing numerical order.

® A set of multifunctional tasks include a motor task (e.g., tracing or emulating an object) paired with a non-
automatic speech task (e.g., listing the months of the year, aloud, in reverse order; December to January).

e For an executive function/multifunctional task a digital version of the Stroop Word Color Test (SWCT)*!
was utilized where the user was required to discern the difference between prompted colors and words and
then speak the correct response.

e In an expanded multifunctional task approach (e.g., Narration Writer), the user was instructed to narrate a
sentence (e.g., speech) while also writing (e.g., motor) word by word (e.g., writing the same word being said
aloud) in the space provided (e.g., executive function).

Machine learning. The use of decision trees is considered highly powerful in classification problems and
there are many popular decision tree algorithms (e.g., CART, ID3, C4.5, CHAID, and J48)*. For this preliminary
work, the Classification and Regression Tree (CART) algorithm was chosen due to its high model interpretabil-
ity, minimization of misclassification, and its diagnostic performance (e.g., increasing use in diagnosis and stag-
ing classification problems with respect to medicine, especially in situations where the underlying population
is partitioned into a relatively small number of subgroups with distinct means)*~*". Further, this algorithm was
chosen as classification and regression trees are highly common supervised methods and they are traditionally
used in the selection of optimal training samples for future machine learning models***#-*°. This preliminary
work utilized an optimized version of the CART algorithm implemented via the ‘Scikit-Learn’ Python module.
The CART algorithm constructs binary trees using the feature and threshold that yields the largest information
gain at each node”'. The CART algorithm uses the Gini Index as a metric to originate binary splits. The calcula-
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Assessment/function Accuracy | Precision | Recall
General questionnaire 0.9024 0.925 0.9737
PDQ-39 1.0 1.0 1.0

Tablet-based assessment | 0.9259 1.0 0.9130
Motor 0.8158 0.8824 0.9091
Memory 0.7632 0.8529 0.8788
Speech 0.9091 0.9474 0.9474
Executive function 0.9545 1.0 0.9474
Multifunctional 0.9630 1.0 0.9565

Table 2. Accuracy, precision, recall for classification of individuals with PD and control populations for
overall assessments and subfunctional neurocognitive areas.

tion of the Gini Index is depicted in Equation (1) where P; is the probability of an object being classified to a
particular class.

C
GiniIndex = 1 — Z(Pi)2 (1)

i=1

The Gini Index will always be between 0 and 1 where a value of 0.5 shows an equal distribution of elements
over classes, and a value closer to 0 will depict a better binary split.

Feature normalization. Finally, the standardization of feature values is necessary to further understand
the gap between self reported information and objective features as it relates to current clinical applications".
As graphic visualizations have enormous potential to promote patient-centered care™ this feature normalization
was completed as part of a tandem processing step to depict differences in perceived PROs and device collected,
sensor-based functionality scores (e.g., as many features are of unique type and have varying units). For this
normalization, Z-scores were used. The calculation of a Z-score is depicted in Eq. (2) where x is an individual’s
score, ( is the population mean and o is the standard deviation of the population.

)
a a

Z )

The Z-score is measured in terms of standard deviations from the mean. If a Z-score is 0, it indicates that the
data point’s score is identical to the mean. A Z-score of 1.0 would indicate a value that is one standard deviation
from the mean. Z-scores may be positive or negative, with a positive value indicating the score is above the mean
and a negative score indicating it is below the mean.

Ethical approval. The work presented in this manuscript is part of an approved study by The University
of Notre Dame and Florida International University Institutional Review Boards (IRBs) for the Protection of
Human Subjects. All methods were performed in accordance with the relevant guidelines and regulations from
the IRBs. Written informed consent was collected from all participants included in this study. The collected data
was authorized for disclosure as part of published works.

Results

Disease classification. Decision tree classification between groups (e.g., individuals with PD and controls)
was completed for both perceived (e.g., self reported outcomes) and new objective assessments (e.g., digital
biomarkers from specifically designed tablet-based functional assessments*’). This classification between groups
was done to gather further insights on which reported and objective features are significant in the classification
of Parkinson’s Disease. Further, it was completed to give insights on an individual’s perceived versus sensor-
based neurocognitive functionalities in subsequent analysis. Table 2 reports accuracy, precision, and recall for
the classification between individuals with PD and control populations.

Patient reported outcomes. Patient reported outcomes (e.g., from general health questionnaires and the PDQ-
39) for disease classification were analyzed in Table 2 in addition to Appendix Table 4. Decision tree classifica-
tion for both the general health questionnaire and PDQ-39 depicted the most significant questions to be:

“Do you have any handwriting problems?”

“What is your energy level?”

“(Due to having Parkinson’s Disease) How often in the last month have you had difficulty writing clearly?”
“(Due to having Parkinson’s Disease) How often in the last month have you had a fear of falling?”
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Figure 1. Breakdown of sensor-based scores across motor, memory, speech, executive function, and
multifunctional areas of neurocognition among groups of control, early (H&Y Stages 1 and 2), and advanced
stages (H&Y Stages 3, 4, and 5) of PD.

Assessment/function Accuracy | Precision | Recall
General questionnaire 0.6956 0.7647 0.8125
PDQ-39 0.7826 0.8666 0.8125
Functional movement assessment | 0.7 0.75 0.8571
Tablet-based assessment 0.7368 0.8 0.8571
Motor 0.8788 0.9524 0.8696
Memory 0.6842 0.7857 0.7857
Speech 0.8947 0.9286 0.9286
Executive function 0.7368 0.8461 0.7857
Multifunctional 0.8421 0.9231 0.8571

Table 3. Accuracy, precision, recall for classification of individuals with PD in early and advanced stages of
PD for overall assessments and subfunctional neurocognitive areas.

Objective digital biomarkers. Objective digital biomarker classification outcomes are presented in Table 2 as
well as in Appendix Tables 5 and 6. Objective features from digital versions of 14 functional assessments were
used in the classification between groups. Decision trees were generated to discern what tests are the most rel-
evant, while also identifying what objective digital features are the most significant within each test. All accuracy,
precision, and recall metrics are presented in Table 2 based on functional areas of interest (e.g., motor, memory,
speech, executive function, and multifunctional assessments). Among the collected sensor-based functional
tasks, multifunctional, executive functional, and speech-based tasks provided the highest accuracy, precision,
and recall results in the separation of PD and control populations.

Decision tree classification also distinguished on a task level that the finger tapping test was the most signifi-
cant of the administered tests in the separation of control and PD groups (Gini Index = 0.375 at the root). Other
task-level assessments of importance in the separation of PD and control populations were the Grandfather
Passage (Gini Index = 0.423 at the root), and multifunctional task assessments of fine motor tracing with speech
(Gini Index = 0.429 at the roots). Finger tapping and multifunctional task assessments of fine motor tracing with
speech had root features of device acceleration (e.g., the magnitude of acceleration of the device or how the user
moves the device during the test) whereas the Grandfather Passage had an accuracy feature (e.g., the number of
missed words in a speech test) as the root. In an expansion to include first order features, 17 motor, 9 accuracy,
and 8 timing features are shown to be significant for the the classification between individuals diagnosed with
PD and control populations. This is seen in Fig. 1.

Stage classification. The classification of disease stage (e.g., early (H&Y Stages 1 and 2) versus advanced-
stage (H&Y Stages 3, 4, and 5) Parkinson’s Disease was completed across perceived (e.g., PROs) and objective
assessments (e.g., sensor-based digital biomarkers), as well as clinically administered functional assessments
(e.g., Berg Balance Scale, STS, TUG, and 6MWT) for all individuals with PD. Table 3 reports accuracy, precision,
and recall for the classification between individuals in early and advanced stages of PD.
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Patient reported outcomes and functional assessments. Patient reported outcomes and clinically administered
functional assessment results for stage classification are seen in Table 3 as well as in Appendix Table 7. PROs
come from general health questionnaires and the PDQ-39, whereas functional assessment results come from the
Berg Balance Scale, TUG, STS, and 6MWT. Decision tree classification for the PROs depicted the most signifi-
cant questions in the classification of PD stage to be:

®  “Do you have any handwriting problems?”

e  “What is your energy level?”

® “Due to having Parkinson’s Disease how often in the last month have you had difficulty with leisure activi-
ties?”

® “Due to having Parkinson’s Disease how often in the last month have you felt unable to communicate with
others?”

®  “Due to having Parkinson’s Disease how often in the last month have you felt unpleasantly hot or cold?”

Classification of functional assessment features from the Berg Balance Scale depicted the most significant fea-
tures to be standing with one foot in front and turning to look behind, whereas objective functional movement
features included the distance traveled during the 6 Minute Walk Test and the individual’s speed during the
Timed Up and Go.

Objective digital biomarkers. Objective digital biomarker outcomes for stage classification can be seen in
Table 3 in addition to Appendix Tables 8 and 9. Similar to disease classification, the breakdown between stages
(e.g., early and advanced-stage Parkinson’s Disease) was completed using collected objective features from digi-
tal versions of functional assessments. All accuracy, precision, and recall metrics are presented in Table 3 based
on functional areas of interest (e.g., motor, memory, speech, executive function, and multifunctional assess-
ments). Among the collected sensor-based functional tasks, speech, motor, and multifunctional tasks provided
the highest accuracy, precision, and recall results in the separation of early and advanced stage PD populations.

Decision tree classification also distinguished on a task level that 11 of 14 administered tests were significant
in the separation of early (H&Y Stages 1 and 2) and advanced stages (H&Y Stages 3, 4, and 5) of Parkinson’s
Disease (Gini Index = 0.363 at the root). Tests with Gini Index higher than 0.363 include Trail Making Tests (e.g.,
executive function) and the Grandfather Passage with Gini Index values of 0.375 and 0.423, respectively. Root
features from the 11 significant tests included 1 device acceleration feature (e.g., how the user moves the device
during the test), 4 timing features (e.g., the total elapsed speaking time, or average time between non-match pair),
and 6 accuracy features (e.g., the number of targets tapped, or total correct objects named). In an expansion to
include first order features, 7 motor, 12 accuracy, and 14 timing features best separate groups based on stage; the
inverse of diagnosis. This is also seen in Fig. 1.

Feature normalization. As graphic visualizations have enormous potential to promote patient-centered
care®” feature normalization was completed as part of a tandem processing step to depict differences in per-
ceived PROs and device collected, sensor-based functionality scores. This standardization is necessary to further
understand the gap between self reported information and objective features as it relates to current clinical
applications'® and support the preface that the aim of digital health systems should be used to increase the reli-
ability and accuracy of patient reported data by combining it with objective data from mobile devices'®2¢-%.

Patient reported outcomes. In the depiction of perceived neurocognitive functionalities between groups, nor-
malized scores from general health questionnaires and the PDQ-39 were calculated for all functional areas of
neurocognition. Z-scores were used in the standardization of these features. This standardization of feature val-
ues is necessary as many features are of a unique type and have varying units. The weighted Z-scores of perceived
capabilities of controls, early-stage PD (H&Y Stages 1 and 2), and advanced-stage PD (H&Y Stages 3, 4, and 5)
populations are shown in Fig. 2.

Objective digital biomarkers. For sensor-based neurocognitive functionalities between groups, normalized
scores from objective assessments were calculated for the functional areas of motor, memory, speech, execu-
tive function, and multifunctional tests. The weighted Z-scores of sensor-based neurocognitive capabilities for
controls, early-stage PD (H&Y Stages 1 and 2), and advanced-stage PD (H&Y Stages 3, 4, and 5) populations
are shown in Fig. 3. It should be noted that all executive function tests are inherently multifunctional in nature
(e.g., an individual needs to move or speak to carry out the executive function) and therefore are a subset of the
multifunctional test digital biomarker set (e.g., denoted by an * in Fig. 3).

Discussion

As Parkinson’s Disease is often described as a “designer disease”, meaning individuals with PD manifest differ-
ent symptoms across the spectrum of disease characteristics, personalized medicine should be the goal and is
required to optimize care®***. However, to reach personalized medicine utilizing machine learning, relevant
features need to be identified as the performance of given algorithms are heavily dependent upon the quantita-
tive and quality of the extracted features®. Nearly 275 features were collected in this work from PROs (e.g., from
the PDQ-39), functional movement assessments (e.g., from the TUG, STS, and 6MWT), and novel objective
digital biomarkers (e.g., from tablet-based assessments) across multiple neurocognitive tasks. This work sought to
identify new significant features in the classification of individuals with Parkinson’s Disease compared to controls
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Figure 2. Breakdown of perceived functionality across all functional areas of neurocognition among groups of
control, early (H&Y Stages 1 and 2), and advanced stages (H&Y Stages 3, 4, and 5) of PD.
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Figure 3. Breakdown of sensor-based functionality scores across motor, memory, speech, executive function,
and multifunctional areas of neurocognition among groups of control, early (H&Y Stages 1 and 2), and
advanced stages (H&Y Stages 3, 4, and 5) of PD.

(e.g., what features are the most important in discerning if an individual has PD or not), as well as the classifica-
tion of different stages of PD (e.g., what features best aid the depiction of how far the disease has progressed).
Commonly, PROs are used to monitor an individual’s thoughts or opinions on changes in their condition
which can lead to improved disease management in the recognition and understanding of their symptoms and
triggers'®. However, this perceived information may be subject to individual variability and/or bias?’~%°. This
work depicts variability in perceived functionality scores (e.g., motor, memory, speech, and executive function)
from sensor-based scores for some groups. The perceived functionality for individuals in confirmed early-stage
PD (H&Y Stages 1 and 2) across the areas of memory, speech, and executive function, differs by about 22% com-
pared to their sensor-based functionality scores as shown in Figs. 2 and 3. Further, these figures show a relatively
large perceived increase in executive function and behavioral abilities for individuals in advanced stages of PD
(H&Y Stages 3, 4, and 5) compared to their early-stage counterparts. Therefore these digital health systems, with
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the ability to administer, collect, and subsequently analyze objective features, should be utilized in a way to allow
individuals greater insights on their true capabilities.

Decision tree classification brought to light new metrics that expand the way digital versions of functional
assessments should be configured. This is first discussed at the most granular level (e.g., task specific). Although
primary manifestations of PD include abnormalities of movement (e.g., akinesia, rigidity, and tremor), pen-and-
paper style assessments cannot measure all of these abnormalities in the same manner as digital technology'®'>*.
The way the individual moves the device during assessments (e.g., voluntarily and/or involuntarily) proves to be a
significant feature in the classification between individuals with PD and control populations. Device magnitude of
acceleration (e.g., maximum, minimum, or average magnitude of acceleration) was a significant (e.g., root or first
order) feature in 12 of 14 tests (85.7%), regardless of test type (e.g., motor, memory, speech, executive function
or multifunctional tests). Magnitude of acceleration features are unable to be collected in pen-and-paper style
assessments, nor are they currently being collected across all functional tests in implemented digital versions
of clinical assessments. Conversely, variably present manifestations (e.g., dysarthria and difficulty performing
simultaneous actions®) are able to be seen in current pen-and-paper versions or other clinically implemented
assessments. These difficulties can be depicted in timing and accuracy features. However, these depictions are
more significant in the delineation between stages (e.g., early versus advanced-stage PD). Features of timing (10 of
14 tests; 71.43%) and accuracy (8 of 14 tests; 57.14%) are significant (e.g., root or first order) features in classifica-
tion of stage, whereas only 5 of 14 tests (35.71%) contain significant device motion features. Mobile-based ver-
sions of neurocognitive assessments have the capability to expand clinically relevant functional assessments®®*”.
Employing opportunistic approaches to monitoring (e.g., having device sensors on in the background regardless
of test type) allows for the collection of novel objective features'*®. An example shown in this work was the use
of the device accelerometer across all functional tests. However, this premise could also include other device
sensors such as microphones and cameras. On a functional level (e.g., across functional areas of motor, memory,
speech, executive function, and multifunctional tasks); speech, executive function, and multifunctional tasks
were shown to have a high accuracy in the the classification of PD compared to control populations. Further, in
addition to motor tasks, speech and multifunctional tasks were found to have high accuracy for classification
of differing stages of PD [e.g., early stages (H&Y Stages 1 and 2) versus advanced stages (H&Y Stages 3, 4, and
5)]. This also advocates that although primary manifestations of PD include abnormalities of movement %135,
additional functional areas of neurocognition need to be included/expanded in assessing PD to yield a broader
understanding of the disease and assist with the treatment of “designer” symptoms.

Given this preliminary work, limitations and future work are also addressed in kind. A main limitation of
this work is that some study participants were unaware of the stage of PD they were in (e.g., their respective
stage was not communicated to them via a licensed clinician). This may be due to both the nature of the disease
(e.g., being a “designer disease”) as well as the subjectivity in the staging criteria®>>*. Further, given the popula-
tion size, stage classification had to occur on the basis of grouped stages of Parkinson’s Disease [e.g., early (H&Y
Stages 1 and 2) or advanced (H&Y Stages 3, 4, and 5)], rather than individual observed stages 1-5. Increased
communication between clinicians and diagnosed populations on the advancement and severity of the disease
is imperative for both rehabilitative efforts and disease monitoring. Since this preliminary work was (1) highly
limited in sample size (only 56 labeled samples; 22 being confirmed early stages of PD (H&Y Stages 1 and 2), 9
being confirmed advanced stages of PD, and 25 being confirmed age-matched healthy controls), and (2) focused
on aiding clinician diagnoses rather than achieving state-of-the-art performance, train-test evaluation metrics
should be recalculated following the collection of much larger sample sizes for the provision of revised digital
health system classification models. Following the expansion the collected dataset, extensions of this work should
also include the use of additional machine learning methods (e.g., k-nearest neighbors, decision trees, logistic
regression, and random forests)***>% for classification of the disease and its stages. Another limitation of the
work completed in this manuscript only shows a snapshot of Parkinson’s Disease and subsequent neurocognitive
functionalities. Future work should include additional clinical assessments for the collection of further device-
derived features. Future work should also analyze how different interventions (e.g., medical, pharmacological,
dietary, physical, speech, and occupational therapies) affect significant features and overall functionality in
comparison to controls®’. Given the collection of additional user data with respect to intervention protocols,
ML should also be used in the automation of intervention recommendations. Finally, as this preliminary work
includes novel digital features that were collected and analyzed via the supervised learning model, validation
against other datasets was not possible.

Conclusions

Using digital health systems for monitoring individuals with neurodegenerative diseases allows for more compre-
hensive insights of these conditions and their progression. As digital health technology allows for the collection
of large amounts of complex health data, ML provides a more efficient way to analyze and interpret patterns in
the data. In addition, classification methods may also bring to light new features that expand the way digital
versions of functional assessments should be administered. Utilizing this information to reevaluate and update
standardized techniques and scales can truly allow for novel digital health systems and disease monitoring which
may be helpful in the classification of individuals with different neurodegenerative conditions (e.g., Alzheimer’s
Disease, ALS, multiple sclerosis, Huntington’s Disease, and other types of dementia) and their respective stages.
In turn, this can aid clinicians, diagnosed populations, and caretakers in monitoring all neurocognitive functions
while also allowing for increased efficacy for both diagnostic and rehabilitative purposes.
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The datasets generated and/or analysed during the current study are not publicly available due to this data being
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