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The promoter is located near the transcription start sites and regulates transcription initiation of the
gene. Accurate identification of promoters is essential for understanding the mechanism of gene regula-
tion. Since experimental methods are costly and ineffective, developing efficient and accurate computa-
tional tools to identify promoters are necessary. Although a series of methods have been proposed for
identifying promoters, none of them is able to identify the promoters of non-coding RNA (ncRNA). In
the present work, a new method called ncPro-ML was proposed to identify the promoter of ncRNA in
Homo sapiens and Mus musculus, in which different kinds of sequence encoding schemes were used to
convert DNA sequences into feature vectors. To test the length effect, for each species, datasets including
sequences with different lengths were built. The results demonstrated that ncPro-ML achieved the best
performance based on the dataset with the sequence length of 221 nucleotides for human and mouse.
The performances of ncPro-ML were also satisfying from both independent dataset test and cross-
species test. The results indicate that the proposed predictor can server as a powerful tool for the discov-
ery of ncRNA promoters. In addition, a web-server for ncPro-ML was developed, which can be freely
accessed at http://www.bio-bigdata.cn/ncPro-ML/.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-coding RNA (ncRNA) is a kind of transcripts that lack clear
potential to encode proteins or peptides [1]. A large portion of the
human genome is transcribed into ncRNA with many different
forms, namely long-noncoding RNA (lncRNA), micro RNA (miRNA),
circular RNA (circRNA), etc. [1–3]. Although ncRNAs lack potential
to encode proteins, numerous investigations have shown that they
play critical roles in many important biological processes including
cell cycle, differentiation, development, metabolism, and so on
[1,2,4–6]. Moreover, accumulated evidences have demonstrated
that ncRNAs exhibit complex interactions with a broad spectrum
of human diseases [1,2,7,8]. Deep sequencing of size-fractionated
RNAs has become a primary technique for discovering ncRNAs,
which generated a myriad of ncRNA candidates. However, the
mechanisms of ncRNA are obscure or controversial in some biolog-
ical process [9,10]. Therefore, in order to accurately understand
their functions, the genomic annotations of the identified ncRNAs
are necessary.

The first step of functional genomic annotation is promoter
identification. The promoter is an important functional element
in non-coding region, which immediately locates near and
upstream of the transcription start site (TSS) and is mainly in
charge of the gene transcription initiation. Due to their extensive
roles in gene transcription, the accurate prediction of promoters
becomes an essential step for understanding gene expression and
the function of genetic regulatory networks. There were two main
kinds of biological experiments for identification of promoters
such as mutational analysis and immunoprecipitation assays
[11–13]. Given that these methods were both expensive and
time-consuming, computational methods have been proposed to
identify promoters. In the past several years, several classifiers
have been proposed to identify promoters in multiple species
[14–16]. All these works concerned on the identification of pro-
moters for coding genes. To the best of our knowledge, there exist
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no computational methods able to identify promoters of non-
coding RNA (ncRNA) genes.

Keeping this in mind, we proposed a support vector machine
(SVM) based method, called ncPro-ML, to identify promoters of
ncRNA. In order to comprehensively extract the sequence based
information, eight kinds of feature representation schemes (binary
and k-mer frequency [BKF], dinucleotide binary profile and fre-
quency [DBPF], dinucleotide physical-chemical properties [DPCP],
trinucleotide physical-chemical properties [TPCP], electron-ion
interaction pseudopotentials of trinucleotide [triEIIP], ring-
function-hydrogen-chemical properties [RFHCP], pseudo dinu-
cleotide composition [PseDNC] and multivariate mutual informa-
tion [MMI]) were used to convert DNA sequences into numerical
vectors. To obtain a robust model, the feature selection process
was utilized to select optimal feature subsets from the candidate
feature list for each feature representation scheme. Based on mul-
tiple optimal subsets, we trained different models and integrated
them by setting the weights according to the accuracy obtained
from the five-fold cross-validation test. To demonstrate the effect
of sequence length on predictive performance, distinct models
based on different lengths ranging from 61 to 301 bp were tested
as well. Finally, an easy-to-use webserver for ncPro-ML was devel-
oped, which is freely available at http://www.bio-bigdata.cn/
ncPro-ML/. The flowchart on building ncPro-ML was shown in
Fig. 1.
2. Materials and methods

2.1. Benchmark dataset

In this work, the promoter sequences of ncRNA from Homo sapi-
ens and Mus musculus genome were obtained from the publicly
available Eukaryotic Promoter Database (EPDnew) [17]. Compared
with other TSS annotation databases, i.e. refTSS [18] and DBTSS/
Fig. 1. The flowchart for
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DBKERO [19], the EPD contains non-redundant collection promot-
ers with stronger support from experimental data. To avoid the
inclusion of noisy sequences, sequences which contains uncertain
bases were removed. Considering that non-promoters do not have
TSS, thus they were extracted from the downstream region of the
promoter sequences. Thus, the dataset can be formulated as
following,

Sn ¼ Sþ
n [ S�

n ð1Þ

where S
þ
n is the positive dataset including promoter sequences. All

these sequences are n� bp long from (n-20) bp upstream to 20 bp
downstream of the TSS (TSS is regarded at the 0th site). S�

n is the
negative dataset including non-promoter sequences. They are also
n� bp long, but start from 1000 bp downstream of the TSS. To
demonstrate the effect of sequence length on predictive perfor-
mance, a series of datasets based on different sequence lengths
ranging from 61 to 221 bp with a step 20 bp, and 261 bp and
301 bp were built, which were formulated as following,

Sn ¼

61bp n ¼ 61
81bp n ¼ 81

101bp n ¼ 101
� � �

201bp n ¼ 201
221bp n ¼ 221
261bp n ¼ 261
301bp n ¼ 301

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

The detail information about these datasets were given in
Table 1. For the promoter and non-promoter sequences, 1170
and 1539 sequences of each length for human and mouse are used
to train the model, and the rest are used as independent testing
datasets to validate the performance of the model.
building ncPro-ML.
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Table 1
Detail information on the datasets used in this study.

Organism Dataset Name Promoter number Non-promoter number

human 61 bp P40-20 2339 N1000-1060 2339
81 bp P60-20 N1000-1080

101 bp P80-20 N1000-1100

121 bp P100-20 N1000-1120

141 bp P120-20 N1000-1140

161 bp P140-20 N1000-1160

181 bp P160-20 N1000-1180

201 bp P180-20 N1000-1200

221 bp P200-20 N1000-1220

261 bp P240-20 N1000-1260

301 bp P280-20 N1000-1300

mouse 61 bp P40-20 3077 N1000-1060 3076
81 bp P60-20 N1000-1080

101 bp P80-20 N1000-1100

121 bp P100-20 N1000-1120

141 bp P120-20 N1000-1140

161 bp P140-20 N1000-1160

181 bp P160-20 N1000-1180

201 bp P180-20 N1000-1200

221 bp P200-20 N1000-1220

261 bp P240-20 N1000-1260

301 bp P280-20 N1000-1300
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2.2. Feature representation algorithms

A given DNA sequence with L bp is defined as,

D ¼ R1R2R3R4R5R6R7 � � �RL ð3Þ
where Ri2{A,C,G,T} indicates the nucleotide at i-th position in the
sequence. In this study, we utilized eight sequence-based feature
representation algorithms to encode the sequences in the dataset.

2.2.1. Binary and k-mer frequency (BKF)
For the nucleotide binary profile, the nucleotides A, C, G and T

are encoded by using the vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1,
0) and (0, 0, 0, 1), respectively. Accordingly, a sequence can be rep-
resented by a 4L-dimensional feature vector. k-mer frequency is
another way of representing DNA sequences, which refers to the
frequency of all the possible k-tuple nucleotides in a given
sequence. In this study, k was set to 2, 3 and 4. Thus, we could
obtain three vectors with the dimension of 16, 64, 256, respec-
tively. By combining the nucleotide binary profile and k-tuple
nucleotide frequency, a sequence will be encoded by a (4L + 16 +
64 + 256) dimension vector.

2.2.2. Dinucleotide binary profile and frequency (DBPF)
Dinucleotide binary profile (DBP) and dinucleotide frequency

were also widely used for sequence representation. For DBP, each
dinucleotide type is encoded as a 4-dimensional vector containing
0 and 1. For instance, AA, AC, AG, were represented by (0, 0, 0, 0),
(0, 0, 1, 0) and (0, 1, 0, 0), and so forth. The dinucleotide frequency
is defined as following,

f i ¼
1
Xij jCðRi�1RiÞ; 2 6 i 6 L ð4Þ

where |Xi| is the length of sub-sequence (R1R2. . .Ri) in the sequence
D, and CðRi�1RiÞ is the occurrence frequency of the dinucleotide
Ri�1Ri in the Xi-length sub-sequence. Therefore, for a given
sequence, the dimension of the vector based on DBPF is 4�(L-
1) + L-1).

2.2.3. Dinucleotide physical-chemical properties (DPCP)
Physicochemical properties are also important information for

genomic functional elements identifications and were incorpo-
rated into promoter prediction[20,21]. Inspired by those works,
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15 different physicochemical properties, namely PC1, F-roll; PC2,
F-tilt; PC3, F-twist; PC4, F-slide; PC5, F-shift; PC6, F-rise; PC7, roll;
PC8, tilt; PC9, twist; PC10, slide; PC11, shift; PC12, rise; PC13,
energy; PC14, enthalpy; and PC15, entropy, were employed to
encode sequences in the dataset. The values of the 15 properties
for each dinucleotide were provided in Supplementary Table S1.
Since the values of different properties vary greatly, their original
values were normalized to the range of [0, 1] by using the max–
min normalization method. The DPCP is formulated as following,

DPCPðiÞ ¼ f ðiÞ � PCðXiÞ ð5Þ

where i is one of the 16 dinucleotides, f(i) is the frequency of the i-th
dinucleotide in a sequence and the X represents one of the 15
physicochemical properties. Based on DPCP, a given sequence can
be encoded as a 240 (16 � 15)-dimensional vector.

2.2.4. Trinucleotide physical-chemical properties (TPCP)
Similar to DPCP, the following 11 physical-chemical properties:

PC1, bendability (DNase); PC2, bendability (consensus); PC3, trinu-
cleotide GC content; PC4, nucleosome positioning; PC5, consensus
(roll); PC6, consensus (rigid); PC7, DNase I (rigid); PC8, molecular
weight (daltons); PC9, nucleosome (rigid); PC10, nucleosome;
and PC11, DNase I were used to define TPCP. The values of these
11 physicochemical properties for each trinucleotide are listed in
Supplementary Table S2. These values were normalized as
described above before performing the following calculation. The
TPCP is formulated as

TPCPðiÞ ¼ f ðiÞ � PCðXiÞ ð6Þ
where X is one of the 11 physicochemical properties, i is one of the
trinucleotides and f(i) is the frequency of the i-th trinucleotide in a
sequence. Then, a sequence can be encoded as a 704 (64 � 11) -
dimensional vector.

2.2.5. Electron-ion interaction pseudopotentials of trinucleotide
(triEIIP)

The EIIP was an effective feature encoding method which has
been widely used bioinformatics [22–24]. The EIIP values of the
four nucleotides are given in Supplementary Table S3. The compo-
sition of each sequence can be represented as a 64-dimensional
feature vector E as follows,



Q. Tang et al. Computational and Structural Biotechnology Journal 18 (2020) 2445–2452
E ¼ EIIPAAA � f AAA; EIIPAAC � f AAC ; � � � ; EIIPTTT � f TTT½ � ð7Þ
where EIIPxyz = EIIPx + EIIPy + EIIPy + EIIPz, is the EIIP value of the
nucleotide xyz, and x; y; z 2 A;C;G; Tf g, f xyz is the frequency of trin-
ucleotide xyz in the sequence.

2.2.6. Ring-function-hydrogen-chemical properties (RFHCP)
The deoxyribonucleic acid is composed of four nucleic acids

that have different chemical properties in terms of ring structures,
strength of hydrogen bonds and chemical functionality [25]. Con-
sidering the number of rings, A and G are grouped together because
they both contains two rings and the others are in one group which
only have one ring. In terms of hydrogen bond, C and G can be dis-
tributed in the same group since they form strong hydrogen bonds,
whereas A and T formweak hydrogen bonds and thus belong to the
other group. In the aspect of the chemical functionality, A and C
can be classified into the amino group, while G and T can be clas-
sified into the keto group. Accordingly, three coordinates (x, y, z)
were used to represent the chemical properties of the four nucleo-
tides. The x , y and z stand for the ring structure, the hydrogen bond
and the chemical functionality, respectively. Each nucleotide i in
the sequence can be encoded by ðxi; yi; ziÞ, where

xi ¼
1 ifRi 2 fA;Gg
0 ifRi 2 fC;Tg

�
; yi ¼

1 ifRi 2 fA;Tg
0 ifRi 2 fC;Gg

�
; zi ¼

1 ifRi 2 fA;Cg
0 ifRi 2 fG;Tg

�
ð8Þ

Moreover, the density di of a nucleotide at position i was
defined as following [26],

di ¼ 1
Nij j

XL

j¼1

f ðRjÞ; f ðRjÞ ¼
1 ifRj ¼ q

0 othercases

�
ð9Þ
Fig. 2. The variation of Acc versus the increment of feature dimension fo
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where |Ni| is the length of subsequence (R1R2. . .Ri) in the sequence
D. By integrating the two schemes, a sequence can be encoded by
a 4 � L- dimensional vector.

2.2.7. Pseudo dinucleotide composition (PseDNC)
PseDNC can reflect both short-range and long-range sequence-

order information by calculating the dinucleotide nucleotide com-
position and the correlation of physics-chemical properties from a
consider sequence [27]. In this study, we used six types of local
structural parameters (Slide, Shift, Rise, Twist, Tilt and Roll) to
characterize the spatial arrangements of any two successive base
pairs. For a given sequence, it can be denoted as a 16þ k dimension
vector formulated as following,

D ¼ ½d1d2:::d16d16þ1:::d16þk�1d16þk� ð10Þ
where

du ¼ f uP16

i¼1
f iþx

Pk

j¼1
hj

ð1 6 u 6 16Þ

du ¼ xhu�16P16

i¼1
f iþx

Pk

j¼1
hj

ð16þ 1 6 u 6 16þ kÞ

8><
>: ð11Þ

where f uðu ¼ 1;2; :::;16Þ is the normalized frequency of the u-th k-
tuple nucleotide composition, x is the weight factor range from 0.1
to 1 with a step 0.1 andk is the number of the total counted ranks or
tiers of the correlations along a DNA sequence. In this study, we set
a search strategy fork ranges from 1 to 10. The j-th tire structural
correlation factor hj that reflects the local structure correlation
between all the j-th most contiguous dinucleotide along a DNA
sequence and can be given by

hj ¼ 1
L� j� 1

XL�j�1

i¼1

H RiRiþ1;RiþjRiþjþ1
� �

j ¼ 1;2; . . . ; k; k < Lð Þ ð12Þ
r identifying human ncRNA promoters based on the 61 bp dataset.



Fig. 3. The accuracy of models based on different features and datasets in human and mouse.

Fig. 4. The performance of predictors based on different datasets. The performance was measured in term of Sn, Sp, Acc, MCC and AUC.
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H(RiRi+1;Ri+jRi+j+1) is the correlation function and can be defined
by

H RiRiþ1;RiþjRiþjþ1
� � ¼ 1

6

X6
v ¼ 1

PvðRiRiþ1Þ � PvðRiþ1Riþjþ1Þ
� �2 ð13Þ

where the Pv(riRi+1) is the value of the v-th DNA local structural
property for the dinucleotide RiRi+1 at position i in the sequence.

2.2.8. Multivariate mutual information (MMI)
The feature encoding method of multivariate mutual informa-

tion (MMI) was proposed by Pan et al. and has been widely used
in the field of bioinformatics [23,28]. In order to use MMI on a
DNA sequence, we first define 2-tuple nucleotide composition set
T2 and 3-tuple nucleotide composition set T3 as follows.

T2 ¼ fAA;AC;AG;AT; CC;CG;CT;GG;GT; TTg
T3 ¼ f AAA; AAC; AAG; AAT; ACC; ACG; ACT; AGG; AGT; ATT;

CCC;CCG; CCT; CGG; CGT; CTT; GGG; GGT; GTT; TTTg

8<
:

ð14Þ
According to the formula described by Pan et al.[28], the MMI

can be defined as follows:
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IðRiRjÞ ¼ f ðRiRjÞln f ðRiRjÞ
f ðRiÞf ðRjÞ

IðRiRjRkÞ ¼ IðRiRjÞ þ f ðRiRkÞ
f ðRkÞ ln f ðRiRkÞ

f ðRkÞ � f ðRiRjRkÞ
f ðRjRkÞ ln f ðRiRjRkÞ

f ðRjRkÞ

8<
: ð15Þ

where f(Ri) is the frequency of Ri in the sequence, the f(RiRj) is the
frequency of categories RiRj appearing in the T2 feature on a
sequence and f(RiRjRk) frequency of categories RiRjRk appearing in
the T3 feature on a sequence. Accordingly, a sequence is represented
by 10 + 20 = 30 features generated according to Eq. (14).
2.3. Feature selection

Feature selection is a key step to find the most useful features to
improve the classification accuracy and reduce the number of fea-
tures. For eliminating redundant and irrelevant features, we first
applied the F-score method to calculate the importance of features
and yielded a feature ranking list regarding their classification
importance. And then, we used the sequential forward search
(SFS) strategy to find the optimal feature representations [29,30].
For the strategy of SFS, features from the ranked feature list was
added one by one from higher to lower rank to select the sub-
features. Then, the SVM based models were trained and tested



Fig. 5. Performance of ncPro-ML based on independent datasets (A and B) and cross-species datasets (C and D). In A and B, the Mouse and Human represent the model human
and mosue in ncPro-ML, respectively. In C and D, the ncPro-ML(Human) denote using human model in ncPro-ML to perform the mouse independent testing datasets, and vice
versa.
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based on the sub-features by using a 5-fold cross-validation.
Finally, the sub-features with the best performance was recognized
as the optimal feature set.

2.4. Building promoter recognition models based on SVM

SVM is a powerful supervised-learning algorithm based on the
statistical learning theory and has widely applied to handle many
biological problems, such as recognizing special peptides [31–33]
and protein [34], disease diagnosis [35]. In this study, the LIBSVM
package [36] was used to train the SVM and built a model that
could discriminate between ncRNA promoter and non-promoter
sequence, and the most commonly used Radial Basis Function
(RBF) was selected as its kernel function. To achieve the optimal
performance, we optimized the SVM using a grid search approach
to filter the regularization parameter C and kernel parameter c. The
search ranges for both of the parameters are given as following,

2 - 5 6 C 6 215; withstepsizeof2
2 - 15 6 c 6 2�5; withstepsizeof � 2

(
ð16Þ
2.5. Performance measures

The performance of the proposed method was evaluated by
using four commonly used metrics, namely sensitivity (Sn), speci-
ficity (Sp), accuracy (Acc) and the Mathew’s correlation coefficient
(MCC). They are calculated as follows:

Sn ¼ TP
TPþFN

Sp ¼ TN
TNþFP

Acc ¼ TPþTN
TPþTNþFNþFP

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞðTPþFPÞðTNþFPÞðTNþFNÞ

p

8>>>>><
>>>>>:

ð17Þ

In equation (17), TP, TN, FP and FN represent the numbers of
true positives, true negatives, false positives and false negatives,
respectively.
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Besides, the receiver operating characteristic curve (ROC) was
also employed to evaluate the overall performance of the proposed
model. ROC is an objective metric that designed to simultaneously
display the true positive rate against the false positive rate at every
possible classification threshold and has been widely used in
diverse fields. The value of the area under ROC curve (AUC), which
ranges from 0.5 to 1, can reduce the ROC performance to a single
scalar value representing expected performance. The higher the
value of the AUC the better performance is implied.
3. Results and discussion

3.1. Feature optimization

In this study, we generated eleven feature representations by
using eight kinds of feature encoding schemes that represents
sequence information in different sides. For some feature encoding
schemes, the longer the sequences, the greater the dimension of
the feature vector. Take BKF as an example, the feature dimension
was 4 � L + 16 + 64 + 256, a total 1540-D features will be generated
when the sequence with 301 nucleotides. Such a problemmay lead
to an increase in classifiers training time and a reduction of their
predictive performance. To address these issues, we conducted a
5-fold cross-validation test for each feature representation scheme
based on optimal features obtained by using the feature selection
strategy. To intuitively analyze the results, in Fig. 2, we plotted
the variation of Acc versus the increment of feature dimension
for identifying human ncRNA promoters based on dataset S61.
The red point in the figure is the highest Acc for each feature rep-
resentations. It was found that the maximum Acc of 83.85% was
achieved when 253 BKF derived optimal sub-features were used.
This result demonstrates that the feature dimension is greatly
reduced and the accuracy of the model is significantly improved
by using the feature optimization strategy. The results of feature
selection process for human and mouse based on different datasets
were shown in the Supplementary Figure S1 to Figure S21.
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3.2. Construct ncPro-ML by integrating multiple models

Multiple model integration method is an important pattern
classification technique to obtain better performance and can
avoid the potential deviation generated by a single classifier [37].
Therefore, we combined these eight models according to the
weighted sum of their prediction scores, where the weights were
normalized by the Acc of a single model divided by the sum of
the Accs of the eight models. For example, based on the human
dataset S81, the weight of 0.14 ð82:09=ð82:09þ 80:30þ 69:06þ
65:73þ 69:23þ 81:32þ 69:40þ 69:32ÞÞ was obtained for the
model based on feature BKF. Similarly, the weight of 0.1369,
0.1178, 0.1121, 0.1181, 0.1387, 0.1183 and 0.1182 were obtained
for the models based on feature DBPF, DPCP, MMI, PseDNC, RFHCP,
TPCP and triEIIP, respectively. For the final model, the prediction
score was the sum of the prediction score of the eight models
based on their weights. Finally, eight integrated models were con-
structed based on different lengths datasets for human and mouse.
The weights of the eight models in different lengths datasets for
human and mouse were listed in Supplementary Table S4 and
Table S5.
3.3. Effect of sequences length on model performance

We have built eleven datasets including different sequence
length ranging from 61 to 301 nucleotides for human and mouse.
The best accuracy produced by the feature selection process for
each feature representation method of different datasets were
shown in Fig. 3. The number of features for BKF, RFHCP and DBPF
were larger than others, and increased with the length of the train-
ing sequences. As it can be seen in the Fig. 3, those models built
based on BKF, RFHCP and DBPF obtained better predictive perfor-
mance than the models based on other kinds of features.

Although the variation of the performance based on different
datasets are not significant for the eight kinds of features in both
human and mouse, the best predictive accuracy was obtained by
using BKF based on dataset S121 for human and based on dataset
S201 for mouse. Especially, the TPCP has a very high predictive
accuracy for human on dataset S221. Taken together, the perfor-
mance of eight models remained relatively stable for all datasets
with different lengths.

According to the weights of each model based on different data-
sets, we constructed eight integrated predictors by adding weights
to a model for human and mouse, respectively. Due to the consis-
tency among the accuracy of different datasets for each model, we
evaluated the performance of the eight predictors by using self-test
to determine the best sequence length for human and mouse.
Where the self-test refers to using the training datasets to validate
the constructed model. The results obtained from the experiments
to verify the impact of the sequence length variation on the predic-
tors performance are shown in Fig. 4. For human and mouse, the
eight predictors trained based on different datasets all yielded a
better predictive performance.

From these results, we chose the predictor training based on the
S221 as the final predictor for human and mouse. The two predic-
tors obtained the highest Acc of 98.12% and 98.34%, and were used
to build ncPro-ML for identifying ncRNA promoters in human and
mouse, respectively. Moreover, we compared the performance of
SVM with that of different machine learning based methods,
namely Naive Bayes, Random Forest, Random Tree, Logistic, k-
nearest neighbor (KNN) and SVM based on the datasets S221. The
results from five-fold cross validation test demonstrated that the
SVM based method yielded the best performance in term of Acc
(Figure S22).
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3.4. Performance assessment of ncPro-ML based on the independent
datasets

To assess the generalization ability and robustness of the pre-
dictor, ncPro-ML was validated on the independent datasets. The
performances of the predictor based on the independent datasets
S221 for identifying promoters in human and mouse were shown
in Fig. 5A and B. The predictor achieved the accuracy of 81.65%
with the sensitivity of 81.27%, specificity of 82.04% and MCC of
0.633 for human, and accuracy 83.09% with the sensitivity of
81.66%, specificity of 84.52% and MCC of 0.6621 for mouse. The
corresponding AUC is 0.8930 and 0.9036 for human and mouse,
respectively. These results indicate that the proposed method is
reliable for identifying ncRNA promoters in human and mouse.

To demonstrate generalization ability of ncPro-ML, the cross-
species validation was also performed. Accordingly, the model
trained in one species (human or mouse) was tested on the inde-
pendent datasets of the other species. The predictive results were
shown in Fig. 5 C and D.

The human and mouse specific model achieved the Acc of
82.08% and 77.16% to identify promoters in mouse and human
independent datasets, respectively. The corresponding AUCs were
0.8885 and 0.8531. The excellent performance of ncPro-ML indi-
cates that the proposed predictor can server as a powerful tool
for the discovery of new ncRNA promoters.
4. Conclusion

Accurate identification of promoters is essential for understand-
ing the mechanism of the gene regulation process and is also a fun-
damental step for functional annotation of a new genome.
Therefore, numerous computational approaches have been pro-
posed by using different machine learning methods. However, to
the best of our knowledge, there is no predictor specifically for
identifying the ncRNA promoters. To address this challenge, we
proposed the first machine-learning based method ncPro-ML to
identify ncRNA promoters in human and mouse. In order to make
ncPro-ML yield excellent performance, for both human and mouse,
eleven datasets composed of sequences with different lengths
were constructed to evaluate the sequence length required for
training a predictor with the best performance. The performance
of ncPro-ML on independent datasets indicate that ncPro-ML is
good enough for identify ncRNA promoters in human and mouse.
In addition, results from cross-species evaluation demonstrate that
ncPro-ML have the ability to identify ncRNA promoters in other
species as well. For the convenience of scientific community, a
user-friendly web server for ncPro-ML was provided at http://
www.bio-bigdata.cn/ncPro-ML/. We hope it could become a useful
tool for identifying ncRNA promoters.
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