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Abstract

Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized
approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to
allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the
user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to
compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval
implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using
a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can
lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into
each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest
diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic
network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production
and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic
switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and
multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval
provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval
are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads.
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Introduction

Living cells owe their existence to complex metabolic networks,

in which large numbers of chemical conversions occur to allow the

cells to harvest energy, sustain themselves and reproduce. In the

past decades, methodologies have been developed to systematically

describe and quantitatively analyse (parts of) the metabolic

network of a cell in computational models [1,2]. Such reconstruc-

tions have already been of great use to develop a better

understanding of the metabolic architecture and dynamics of

various organisms [3,4].

Genome-scale constraint-based metabolic models are recon-

structions of metabolism that comprise the stoichiometries of all

reactions predicted from whole genome sequences based on the

presence of enzyme-coding genes. Accordingly, they can be used

to model the steady-state behaviour of the metabolism of a whole

organism [5,6]. Well-accepted procedures on how to generate

genome-scale constraint-based models are available, based on

Enzyme Classification annotations and generic gap-filling proce-

dures [7].

The resulting metabolic models can be used to perform several

kinds of analyses [8,9], the most popular one being flux balance

analysis (FBA) [10]. In this method, the fluxes of metabolites

through the network are calculated based on the stoichiometry of

each reaction and an objective function that specifies for which

goal (e.g. maximization of biomass production from a given input

or minimization of nutrient uptake) the fluxes are optimized.

Recently, high-throughput methods have been developed to

generate and gap-fill metabolic models for multiple species in

a rapid and standardized way [11], based on genome annotations

obtained with a uniform method. Even though the resulting

models still need to be compared with experimental data to

achieve optimal quality [12] and the gap-filling implemented by

SEED is not always optimal [13,14], automatically generated

models that have undergone a limited amount of manual curation

are already useful for obtaining a rough assessment of the

metabolic capabilities of cellular systems.
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The standardization offered by automation opens up the road

for comparative modelling, as little model reconciliation is needed,

in contrast to what is usually the case for manually reconstructed

models [15]. Comparative analysis of genome-scale metabolic

models is an intriguing new field with diverse potential applica-

tions [16,17]. For example, it can be used to detect evolutionary

differences between metabolic networks of related species and

predict their relative adaptive ecological value [18]. It can also be

used to assess the suitability of a range of species for a particular

biotechnological application (e.g., biofuel or drug production)

based on the topologies of their metabolic networks, which could

then inform the choice of industrial production hosts [19].

As well as studying multiple models at the same time, it can also

be very revealing to optimize models for multiple objectives

simultaneously [20,21]. Many different ‘natural’ objective func-

tions have been proposed, such as maximization of biomass,

secondary metabolite production or ATP production, minimiza-

tion of total flux, minimization of redox potential, and minimi-

zation of nutrient uptake [22]. For most of these, there are reasons

to believe that the cellular flux distribution can be expected to

have evolved in a way that optimizes the objective, at least under

specific conditions. It can even be argued that evolution has driven

biological systems toward an optimal compromise between all of

these, sometimes conflicting, objectives. Other relevant objective

functions that one would like to consider are those that correspond

to the aims of bioengineering instead of evolution, such as the

maximization of the production of a specific metabolite. Un-

fortunately, as implementing different objective functions is

relatively difficult in most existing analysis platforms, many

published studies have been restricted to exploring a single

objective function, usually maximization of biomass production

(although interesting studies have been performed that explore

different objective functions, e.g. [23], some of which have been

made available through the COBRA toolbox [24]).

A pair of objective functions (such as a biomass objective

function and the objective function of production of a specific

compound) can be balanced to find the so-called Pareto front [25]

between the two objectives. The Pareto front comprises the set of

‘‘Pareto-optimal’’ solutions, for which one objective can only be

improved at the expense of the other objective. Bacterial

metabolism has recently been shown to operate close to such

Pareto fronts [26]. An analysis of such a front enables one to

predict the interactions between different metabolic processes and

priorities within the cell. For example, one can identify the extent

to which two objectives compete for the use of the same enzymatic

pathways. Moreover, one can use the results to predict the balance

between the objectives that is optimal for sustaining biomass levels

while producing as much of a certain valuable metabolite as

possible.

Here, we describe a new software package, Multi-Metabolic

Evaluator (MultiMetEval), a simple framework that provides an

efficient and user-friendly interface for the comparative study of

multiple models and the use of multiple objective functions. The

software has been conveniently linked up to the SurreyFBA

package for metabolic modelling [27], allowing for easy interaction

with general modelling algorithms. In order to make the tool

widely useful, it includes a new global SBML Level 2 parser that

enables input of models from popular modelling platforms,

including SEED [11,28], KGML [29] and COBRA [30],

overcoming previous compatibility issues between different SBML

flavours that severely impaired comparative analyses. Moreover,

all functionalities are organized in a graphical user-interface that

allows the user to quickly generate publication-quality plots from

the results and export the results for downstream analyses in other

software packages.

In a case study, we show how the principles of comparative

modelling can be applied to a concrete biological problem with

our software, in a comparative study of the metabolic networks of

38 actinobacteria. Based on the 38 genome-scale models, we

predict the suitability of different bacterial strains for the

heterologous production of a range of different secondary

metabolites and use multi-objective analysis to study the dynamic

balance between the biomass objective and the compound

production objective. We find that the maximally attainable fluxes

to a natural product vary greatly between species as well as

between the chemical classes of compounds. Moreover, we

observe discrete switch-like behaviour in the models when the

priority of the compound production objective function is

gradually increased compared to the biomass objective function;

this provides a possible systems-level explanation for the metabolic

switches observed in the onset of secondary metabolism in such

organisms [31].

Design and Implementation
The MultiMetEval comparative analysis framework was written

in Java 6 Standard Edition with an interface handled by the Swing

framework and integrated plot generation handled by the

JFreeChart library. It is functional in both Windows and Linux

operating systems. The program was built upon the SurreyFBA

framework [27], which is used as an engine for the basic FBA

calculations. Additionally, in order to read input models from

a large range of sources (e.g. SEED [11,28] and COBRA [30]),

a Python-based universal SBML parser was generated to convert

input SBML files into a valid SurreyFBA input format. Combined

with the parser and the SurreyFBA engine, MultiMetEval allows

for high-throughput comparative and multi-objective analysis of

metabolic models that share the same syntax.

Parsing of Input SBML Files
Incompatibility of SBML models coming from different frame-

works has been a major drawback for comparative studies [15].

SBML Level 2 itself is a general-purpose language for systems

biology, and can be used for storing a great number of data types.

There is, however, still no universally adopted definition of FBA-

specific parameters within the SBML namespace. Therefore,

gene-protein-reaction association rules and reaction capacity

bounds have to be defined using annotations and general

parameters. This leads to many different format varieties of

SBML, in which the data relevant for FBA are stored in different

ways.

Existing FBA frameworks make use of their own parsers

enforcing usage of their own SBML format variety. In order to

make SBML files from different frameworks cross-compatible in

our tool, we generated a parser that can convert any major SBML

format variety into the SurreyFBA format. As we show in Table 1,
our parser adds a flexibility that has not been possible in the other

major FBA tools. In principle, our parser could easily be

implemented in other contexts as well.

Comparative Analysis
MultiMetEval provides a user-friendly facility to perform

comparative analysis of multiple metabolic models, by combining

batch runs of the single model analysis functionalities provided by

SurreyFBA with new features that allow for convenient multi-

model input and output.

The basic units analysed by the comparative analysis module

are ‘‘model collections’’, which are sets of models selected by the

Metabolic Modelling with MultiMetEval
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user for analysis and parsed into the same format by the universal

SBML parser.

A specific menu allowing user-friendly construction of such

collections is available via the File menu. To allow reuse of models

in different collections, the collections can be created as subsets of

a main model repository that holds all models that were imported

to the program. Models can easily be added to the main repository

and then moved to any collection in the same window.

For every model, the number of reactions, metabolites, orphan

reactions and orphan metabolites are detected and displayed in

MultiMetEval’s main overview table when a collection is opened.

FBA can be performed on the entire collection at once by clicking

a simple menu button, and results are output in a single

spreadsheet table (Figure 1).

Our framework also offers a growth medium editor, which

allows comparative analysis not only of different models, but also

in different growth conditions. In order to make sure that the

medium is compatible with the models, the medium description

format used in our framework operates only on the metabolites

present in a given collection and restricts the choice of medium

ingredients to those which were defined in any of its models as

external. The motivation for this is, of course, that these are the

only metabolites that can be consumed by at least one model.

Multi-objective Analysis by Pareto Front Calculation
MultiMetEval allows performing multi-objective analysis by

calculating the Pareto front [20,32] for maximization of two given

reactions. Compared to the weighted sum approach (which was

already implemented in SurreyFBA), Pareto front calculation is

more informative, as it avoids the arbitrary nature of weight

assignment.

In this analysis, MultiMetEval calculates the tradeoff between

two objectives. Often, the first objective will be the biomass

production reaction, but, in principle, MultiMetEval can calculate

a Pareto front for the optimization of any combination of two

fluxes of reactions that co-occur in the same model.

In the Pareto front calculation, first the maximal possible flux of

the first objective is calculated. This value will be used in the

following steps as a constraint that is iteratively decreased at each

step. So after calculating the maximal flux of objective one, the

program will carry out optimizations for the second objective n

times (were n represents the resolution), and with each simulation

step the constraint put on the reaction by the first objective will

decrease unless its value reaches zero.

The results of the multi-objective analysis are output to a results

table as well as in a visual plot (Figure 2).

In addition to the implementation of the Pareto trade-off

routine in the MultiMetEval framework described here, we also

implemented it in the SurreyFBA command-line interface as well

as in JyMet, the single-model analysis framework from SurreyFBA

[27], for additional flexibility.

Results and Discussion

Comparative and multi-objective metabolic modelling has

many exciting applications in systems and synthetic biology

[4,33,34]. To illustrate the power of these approaches, we applied

the MultiMetEval tools in an exemplary case study on the

production of secondary metabolites in actinobacteria. We show

how comparative FBA can be used to identify differences between

organisms in their theoretical production capacities for such

metabolites, as well as differences in the extent to which biomass

production competes with secondary metabolite biosynthesis.

Comparative FBA of Secondary Metabolite Biosynthesis
by 38 Actinobacteria
In our comparative FBA analysis, we constructed a model

collection in MultiMetEval from the 38 genome-scale metabolic

models of actinobacteria that were recently constructed and

curated by Alam et al. [17] (excluding the two Tropheryma models,

but including models for Bifidobacterium adolescentis ATCC 15703,

Bifidobacterium longum NCC2705 and Kineococcus radiotolerans

SRS30216). We then reconstructed biosynthetic pathways for 15

secondary metabolites of different classes that were present as

annotated pathways in the KEGG database. These included

polyketides (erythromycin, tylosin, aureomycin, tetracycline),

aminoglycosides (butirosin, neomycin, streptomycin), aminocou-

marins (clorobiocin, coumermycin, novobiocin), nonribosomal

peptides (enterobactin, pyochelin, cephalosporin, penicillin) and

a beta-lactam (clavulanic acid). Such types of compounds are

highly relevant biotechnologically, because they often have

antimicrobial or anti-cancer activities [35]. Their biosynthetic

pathways can be (re-)engineered with synthetic biology approaches

and expressed for purposes of drug discovery and industrial

production [36]. For each of the 15 metabolites, derivative models

were then made for all 38 actinobacteria, in which the biosynthetic

pathway for the metabolite was added to the genome-scale model.

For all 38 N 15=570 models, FBA was then performed using

MultiMetEval on a minimal medium with equal amounts of

glucose as the sole carbon source, ammonium as the sole nitrogen

source, and orthophosphate as the sole phosphorus source. The

cellular objective was maximization of the production of the

secondary metabolite. A limited number of (maximally seven)

reactions for glucose uptake and methionine biosynthesis, as well

as compound-specific reactions for precursor biosynthesis were

added to each model to enable it to produce the compound on the

minimal medium (see Table S1).

Figure 3 shows the resulting heat map representing the

theoretical maximal production rates of the 15 secondary

Table 1. Comparison of parsing capabilities of MultiMetEval with other FBA frameworks.

Framework SEED-generated SBML KGML-derived SBML COBRA-generated SBML

MultiMetEval + + +

COBRA – +/2 +

VANTED – + –

SurreyFBA 1.0 – +/2 +

Table showing SBML parsing abilities of the most popular FBA tools. Only the MultiMetEval parser is able to successfully process SBML models from SEED [11,28], KGML
[29] and COBRA [30].
doi:10.1371/journal.pone.0051511.t001
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metabolite classes in all 38 actinobacteria. The intensity of a colour

depicts the relative flux rate – the lighter the colour (closer to

white), the higher a given flux value is in comparison to others

from the same column.

As no regulatory and kinetic information is used in the

constraint-based models, one should note that the variation

observed between the species only represents the difference due

to differences in network topology given the medium composition

used. Still, it is intriguing that substantial differences in theoretical

production capacities are observed between the actinobacterial

species. As expected, we observe some correlation with general

topological properties of the metabolic networks such as the

numbers of reactions and metabolites: minimalistic genomes

generally tend to be less efficient predicted production hosts

(e.g., Bifidobacterium and Propionibacterium). However, these differ-

ences clearly do not account for all the variation observed. Among

the most interesting exceptions is the severely genome-minimized

Mycobacterium leprae, which still reaches surprisingly high predicted

fluxes. Members of the same class of secondary metabolite (which

also have similar precursors) are usually predicted to be most

efficiently produced in the same hosts. An exception is formed by

two nonribosomal peptides, cephalosporin and enterobactin, for

which fewer species are able to obtain the maximum observed flux

towards compound production than for two other nonribosomal

Figure 1. Workflow of comparative metabolic analysis in MultiMetEval.
doi:10.1371/journal.pone.0051511.g001
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peptides, pyochelin and penicillin. This is probably due to the

requirement of additional precursors, 2-oxoglutarate and 2,3-

dihydroxybenzoic acid, respectively, for these two molecules,

which are not required for penicillin and pyochelin.

When we investigated the presence of which reactions influence

fluxes most, by calculating the correlation between reaction

presence/absence and maximum fluxes for each compound (Table

S2), we could observe that in at least a number of cases this

corroborated current biochemical knowledge. For example,

clavulanic acid fluxes most strongly correlate with the presence

of a reaction (rxn00101) to convert urea into CO2 and NH3, which

corroborates the unusual presence of a microbial urea cycle in its

native host organism Streptomyces clavuligerus [37,38]. Also, the fluxes

towards several compounds (the macrolides, aminocoumarins and

pyochelin) correlated with the presence of a reaction (rxn00141)

converting S-adenosylhomocysteine to adenosine and homocys-

teine, which corroborates evidence for a positive effect of S-

adenosylmethionine regeneration on antibiotic biosynthesis [39].

Interestingly, the fact that the genome of a species has a lot of

secondary metabolite biosynthetic gene clusters does not neces-

sarily mean that its metabolic network is optimized for a higher

production of such metabolites compared to other species: high

metabolite diversity does not imply high metabolite production

titers. The fact that streptomycetes, such as Streptomyces coelicolor and

Streptomyces avermitilis, famous for their production of a wide variety

of clinically and biotechnologically important secondary metabo-

lites [40,41] and endowed with about 25–30 gene clusters per

genome, do not score particularly highly suggests that their

metabolic networks may not have been optimized for achieving

high production titers of such metabolites during their evolution.

This may partly explain why extensive metabolic engineering and

classical strain optimization have usually been essential to optimize

production strains for economically viable metabolite production,

often with tremendous improvements in titres [42–44].

On the other hand, models representing species from the

taxonomic branch of free-living mycobacteria (Mycobacterium

vanbaalenii, Mycobacterium sp. MCS, and Mycobacterium sp. JLS)

achieve the highest predicted production rates for secondary

metabolites in the simulations, although they have only about 15

secondary metabolite gene clusters per genome. The difference

with the pathogenic Mycobacterium species, such as M. tuberculosis,

M. bovis and M. leprae, may be explained by the further genome

minimization of the pathogenic species, which may have led to

a loss of flexibility in the metabolic networks and consequently an

increase in pathway competition.

Generally, comparative modelling as described here could lead

to a more systematic approach towards the identification of

suitable ‘‘universal hosts’’ for heterologous expression of gene

clusters [47–49]. Specifically, this preliminary analysis already

suggests that free-living mycobacteria might be an attractive

starting point for the generation of a minimal actinobacterial

genome for use in synthetic biology approaches [45,46], especially

as all three of them belong to the fast-growing mycobacteria.

As expected, similar patterns of theoretical maximal production

rates across organisms were observed for compounds with similar

chemical structures, such as the aminocoumarins novobiocin,

coumermycin and clorobiocin. Also notable is that the metabolic

networks of some organisms appear more fit for the production of

certain compounds than others. For example, Renibacterium

salmoninarum ATCC 32209 is predicted to be one of the best

producers of polyketides and one of the worse producers of

clavulanic acid. This suggests that the species differences observed

are not caused by the presence or absence of single enzymes, but

that different factors play a role for different compound types.

Some aspects that could play a role are 1) the presence or absence

of pathways directed towards the necessary precursors (metabolic

detours are probably energetically costly), 2) efficiency of ATP

generation from the used carbon source glucose, and 3) the ability

of models to re-utilize the (sometimes quite exotic) side products of

biosynthetic pathways to generate more precursors.

Of course, it should be kept in mind that this study used only

mildly curated automatically generated metabolic network models

to illustrate the main concepts of comparative flux balance

analysis, and a more careful manual curation will be needed before

committing substantial experimental resources to testing the

hypotheses suggested here. Additionally, more systematic analysis

of the specific differences between topologies associated with high

and low production capacities of the different compound types

may offer specific leads for metabolic engineering, by revealing

topological bottlenecks. Another interesting follow-up study would

Figure 2. Table and plot output from the Pareto front calculation routine. The first steps are identical to those in Figure 1, except that only
one organism is selected and two reactions are selected to calculate their trade-off.
doi:10.1371/journal.pone.0051511.g002
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consist of designing several additional media to study the dynamic

interactions between network topology and medium composition

or environmental niche.

Analysis of the Trade-off between Secondary Metabolite
Biosynthesis and Biomass Production
Biotechnological optimization of natural product biosynthesis

often suffers from pathway competition with fluxes leading to the

synthesis of biomass components [50,51]. In order to assess

competition between secondary metabolite biosynthesis and

biomass production for selected key species and metabolites, we

used multi-objective analysis to calculate Pareto fronts between the

biomass objective and the compound production objective.

In Figure 4, the y-axis on each plot represents the flux rate

through the final biosynthesis reaction in the pathway for

production of the given compound. The x-axis on each plot

represents the percentage of maximal biomass production flux

achieved. The region underneath the blue line represents the

space of feasible solutions.

The predictions suggest that the overlap between network

resources needed for biomass production and compound pro-

duction differs notably between species, even without taking into

account the organism-specific biomass compositions. It is likely

that this has to do with the rate with which the network topology

of a species enforces pathway competition between the two

objectives, and to which extent alternative pathways are available

for both processes.

The applied multi-objective analysis thus characterizes organ-

ism-specific relationships between biomass production and com-

pound biosynthesis. Methods such as OptKnock [52] can

subsequently enable metabolic engineers to reach a position close

to the identified Pareto front, by determining how the compound

Figure 3. Theoretical maximum fluxes of secondary metabolite production. The heat map shows relative maximal fluxes of the final
biosynthetic step in the metabolic pathways leading 15 different secondary metabolites, which were incorporated into the genome-scale metabolic
models of 41 actinobacteria. Flux balance analysis was performed on the minimal medium described by Alam et al. [17]. White indicates a high
relative flux level, red indicates a low relative flux level (as % of the maximally obtained value across all species, displayed at the top of the figure). In
the heatmap on the left, the number of model reactions and metabolites, the genome sizes and the number of secondary metabolite biosynthesis
gene clusters (predicted using antiSMASH [54]) are plotted.
doi:10.1371/journal.pone.0051511.g003
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production objective can be optimized given a certain biomass rate

by for example stoichiometrically forcing the strain to synthesize

a target compound as a by-product of growth.

In the simulations for pyochelin, biomass production at biomass

maintenance levels (the almost horizontal plateau at the beginning

of the curves) hardly competes with compound production. It

appears that in this case the production of biomass components

from the medium leaves several metabolic resources unused at the

point where the first nutrient limitation from the medium prevents

higher biomass production. We confirmed this by recalculating the

trade-off under several different medium conditions. Indeed, we

observed that pyochelin production and biomass production were

constrained by different nutrient limitations: orthophosphate and

NH3 were the limiting medium ingredients, respectively. When

medium influx bounds of these compounds were increased by

100% each, the horizontal plateau disappeared.

In that sense, there is a ‘‘free lunch’’ for compound production

as long as it is limited by a different nutrient than biomass

production is. Remarkably, this suggests that production titers of

industrial strains can sometimes be optimized without costs to the

biomass maintenance.

In most plots, a single transition point is observed, at which the

production titre starts to drop much more drastically when

biomass production is increased. This might signify that the

metabolic networks of these microbes have at least two distinguish-

able states in which a different nutrient is limiting for compound

production given the fixed biomass production flux at that point. A

‘‘metabolic switch’’ seems to operate at this point, at which the

regulation of metabolism probably needs to be drastically changed

to maintain optimal levels of both biomass and compound

production (i.e., to remain near the Pareto front). Of course,

switch-like behaviour would be expected given that FBA is based

on linear programming, and different linear constraints will be

limiting at different points in the graph. Nonetheless, the fact that

the switches corroborate observations from experimental micro-

biology, in which a carefully regulated switch has been observed at

the onset of secondary metabolite biosynthesis [31,53], suggests

that cells may employ regulatory mechanisms to remain very close

to such a theoretical polygon-shaped Pareto front [26].

Figure 4. Pareto front calculation between biomass production and secondary metabolite biosynthesis. Pareto fronts are given for four
species and three different natural products. To estimate secondary metabolite production, the flux rate through the final step in the biosynthetic
pathway of the corresponding compound was used as a proxy.
doi:10.1371/journal.pone.0051511.g004
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Conclusions
Comparative metabolic modelling is a new field, and as with

any recent advance in biology, new software solutions are needed

to achieve its full potential. With MultiMetEval, we provide an

easy-to-use software framework to analyse large collections of

metabolic models in parallel and to perform multi-objective

analysis, coupled to the SurreyFBA framework. Although this is

just a starting point for further software development, the tool

already allowed us to study secondary metabolism in actinobac-

teria in novel ways. Most interestingly, comparative analysis of

their genome-scale models predicts that the organisms whose

genomes encode the largest numbers of biosynthetic gene clusters

do not necessarily have the metabolic network topology most

suited for industrial production of these compounds, suggesting an

interesting line of enquiry for future experimental work.

Additionally, results from multi-objective analysis suggest that

bacterial metabolic switches are not just enforced by regulation,

but are grounded in the very architecture of the metabolic system

in which they occur. We expect that further experimental analysis

will likely give exciting definitive insights into these phenomena.

Supporting Information

Table S1 Used methods for integration of KEGG path-
ways towards the biosynthesis of secondary metabo-
lites. To integrate the KEGG pathways for secondary metabolite

biosynthesis in all 38 actinobacterial models, compound-specific

Python scripts were written which used our in-house PyModelE-

ditor to edit the models in such a way that they would allow

simulation of compound biosynthesis. For the fifteen compounds

chosen, different modifications had to be made to the models, as

indicated in this table. The minimal medium used for flux balance

analysis (FBA) consisted of H2O (influx upper bound 10000), O2

(10000), glucose (10), NH3 (10), PO4
32 (10), SO4

22 (10), CO2 (10),

H+ (10), Cu2+ (10), Pb2+ (10), Zn2+ (10), Mn4+ (10), CrO4
22 (10),

Mg2+ (10), K+ (10), Co2+ (10), Ca2+ (10), Fe2+ (10), Fe3+ (10), Cl2

(10), Ni2+ (10), Na+ (10), Cd2+ (10). Also, low influx of octadecanoic

acid (0.001) was allowed, which was necessary to ‘start up’ some

essential biosynthesis reactions.

(DOCX)

Table S2 Correlation between reaction presence/ab-
sence and maximum fluxes. For each compound, this table

shows the squared correlation coefficient (r2) of the absence/

presence of reactions in a metabolic model and the maximum flux

obtained during flux balance analysis. The reaction name is the

name as it is given in the SEED database, and the reaction

formula corresponding to each reaction is given in the third

column.

(XLSX)
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