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Enhancement of TbIII–CuII Single-Molecule Magnet Performance
through Structural Modification

Mar�a Jos¦ Heras Ojea,[a] Victoria A. Milway,[a] Gunasekaran Velmurugan,[b] Lynne H. Thomas,[c]

Simon J. Coles,[d] Claire Wilson,[a] Wolfgang Wernsdorfer,[e] Gopalan Rajaraman,*[b] and
Mark Murrie*[a]

Abstract: We report a series of 3d–4f complexes
{Ln2Cu3(H3L)2Xn} (X = OAc¢ , Ln = Gd, Tb or X = NO3

¢ , Ln = Gd,

Tb, Dy, Ho, Er) using the 2,2’-(propane-1,3-diyldiimino)bis[2-

(hydroxylmethyl)propane-1,3-diol] (H6L) pro-ligand. All com-
plexes, except that in which Ln = Gd, show slow magnetic

relaxation in zero applied dc field. A remarkable improve-
ment of the energy barrier to reorientation of the magneti-

sation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing

the auxiliary ligands (X = OAc¢ for NO3
¢). This leads to the

largest reported relaxation barrier in zero applied dc field for

a Tb/Cu-based single-molecule magnet. Ab initio CASSCF

calculations performed on mononuclear TbIII models are em-
ployed to understand the increase in energy barrier and the

calculations suggest that the difference stems from
a change in the TbIII coordination environment (C4v versus

Cs).

Introduction

Since the discovery of the first single-molecule magnet (SMM)

the synthesis of new coordination complexes that display slow
relaxation of the magnetisation and magnetic hysteresis of

a purely molecular origin has been one of the main challenges

in molecular magnetism.[1–3] The great interest in SMMs is due
to their potential use in technological applications, such as

data storage media, quantum computing (Qubits), and spin-
tronic devices.[4–6] Early studies showed that the origin of the

SMM behaviour arises from two main factors, the large spin
ground state of the molecule (S) and a preferential direction

for its spin (uniaxial anisotropy, D). A wide range of large poly-

nuclear 3d complexes were synthesised in search of a large
spin ground state.[7–10] However, some of these complexes—

with huge S values—did not display the desired SMM behav-
iour, due to a lack of magnetic anisotropy.[9] As magnetic aniso-

tropy plays a critical role in the magnetic properties, lantha-

nide ions are good candidates for the design of SMMs. This is
due to their large single-ion anisotropy resulting from the

strong spin-orbit coupling and crystal field (CF) splitting.[11–13]

Despite the ideal qualities of lanthanide ions, some reported

4f-based single-molecule magnets show drawbacks, such as
very efficient quantum tunnelling (QTM), which decreases the
value of the energy barrier.[14, 15] Therefore, the combined use

of 3d/4f ions is a good strategy for the design of molecular
magnets, since lanthanide ions provide the required magnetic
anisotropy that is essential in SMMs and the 3d–4f exchange
interaction can help to suppress QTM.[16, 17] To this end, we pro-
pose the use of the ligand 2,2’-(propane-1,3-diyldiimino)bis[2-
(hydroxylmethyl)propane-1,3-diol]

(bis–tris propane, H6L) for the syn-
thesis of heterometallic complexes
(see Scheme 1). Bis-tris propane is

a very flexible polydentate ligand,
with well-defined coordination

sites. Its skeleton has an internal
{N2O2} pocket ideal for the coordi-

nation of different transition metal

ions, such as MnII, FeIII, CoIII, NiII or
CuII ions.[18–21] Moreover, the multiple hydroxyl arms present in

H6L facilitate coordination with 4f metals, due to the great af-
finity of lanthanide ions for oxygen donors.[22] Given the previ-

ously reported 3d,3d’ heterometallic compounds with H6L, the
importance of CuII ions in the synthetic procedure is signifi-

Scheme 1. Bis–tris propane,
H6L.

[a] M. Heras Ojea, Dr. V. A. Milway, Dr. C. Wilson, Dr. M. Murrie
WestCHEM, School of Chemistry, University of Glasgow
University Avenue, Glasgow, G12 8QQ (UK)
E-mail : Mark.Murrie@glasgow.ac.uk

[b] Dr. G. Velmurugan, Prof. G. Rajaraman
Department of Chemistry, Indian Institute of Technology Bombay
Powai, Mumbai, Maharashtra, 400 076 (India)
E-mail : rajaraman@chem.iitb.ac.in

[c] Dr. L. H. Thomas
Department of Chemistry, University of Bath
Bath, BA2 7AY (UK)

[d] Dr. S. J. Coles
Department of Chemistry, University of Southampton
Southampton, SO17 1BJ (UK)

[e] Dr. W. Wernsdorfer
CNRS, Inst NEEL & Univ. Grenoble Alpes, 38000 Grenoble (France)

Supporting information and the ORCID identification number(s) for the au-
thor(s) of this article can be found under http ://dx.doi.org/10.1002/
chem.201601971.

Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons At-
tribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Chem. Eur. J. 2016, 22, 12839 – 12848 Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim12839

Full PaperDOI: 10.1002/chem.201601971

http://orcid.org/0000-0001-7297-2878
http://orcid.org/0000-0001-7297-2878
http://dx.doi.org/10.1002/chem.201601971
http://dx.doi.org/10.1002/chem.201601971


cant. In such complexes, the CuII atoms occupy the internal
{N2O2} pocket of the ligand to the detriment of other 3d ions

present in the reaction media (e.g. , Mn, Zn), and thus direct
and control the final molecular assembly.[20, 21] In addition, CuII

ions display a flexible coordination geometry and a strong fer-
romagnetic tendency in Cu···4f interactions for the heavier Ln

ions.[23–26] Since the magnetic study of the first Cu/4f SMMs,
several theoretical and experimental studies have investigated
the factors that mainly influence the resultant magnetic prop-

erties.[11, 16] Therefore, factors such as the choice of LnIII ion (DyIII

and TbIII being the most favoured), or ligands capable of pro-
moting certain local symmetries around these 4f centres have
been explored. More recent studies suggest that perturbations

in the ligand environment of the LnIII ions can cause changes
in the CF that modify the overall magnetic behaviour of the

complexes.[27, 28]

Herein, we describe the synthesis, structure, and magnetic
properties of a new {Ln2Cu3(H3L)2Xn} family of complexes based

on the substitution of the lanthanide ion (Ln = Gd, Tb, Dy, Ho,
Er), and the replacement of the auxiliary ligands (X = CH3COO¢ ,

NO3
¢). Slow magnetic relaxation is observed for all the

{Ln2Cu3(H3L)2Xn} complexes, except for the isotropic GdIII ana-

logues. We show that the substitution of the auxiliary ligands

tunes the SMM properties of the final complexes, and that
(NMe4)2[Tb2Cu3(H3L)2(NO3)7(CH3OH)2](NO3) is the single-mole-

cule magnet with the highest anisotropy barrier for Tb/Cu-
based compounds in zero applied dc field (DE/kB = 36.0�
0.2 K).

Results and Discussion

The ability displayed by bis–tris propane (H6L) to direct the
synthesis of Cu/3d heterometallic complexes presented in pre-

vious work (3d = Mn(II/III), Zn(II))[20, 21] makes it a very attractive
candidate for exploring the reactivity of the {Cu(H6L)} units

with magnetically more interesting metal ions, such as rare
earth elements. Therefore, several experiments involving differ-

ent copper and lanthanide salts have been performed in order
to study the reactivity of H6L in the presence of LnIII ions. More-

over, the use of two different coordinating counterions, such
as acetates and nitrates, is proposed as even a small alteration
of the 4f environment could cause large changes in the mag-

netic properties of the complexes. The reaction between H6L,
Cu(CH3COO)2·H2O and Ln(CH3COO)3·H2O (Ln = Gd3 + , Tb3+) in
the presence of Et3N allowed the synthesis of the complexes
[Gd2Cu3(H3L)2(CH3COO)6]·THF·3 H2O (1) and [Tb2Cu3(H3L)2-

(CH3COO)6]·CH3OH·2 H2O (2). Violet plate-like crystals of 1 and 2
were obtained by vapour diffusion of THF into the reaction so-

lution in good yields. When nitrate salts are used in combina-

tion with NMe4OH a different series of Cu/4f complexes with
formula (NMe4)2[Gd2Cu3(H3L)2(NO3)8(CH3CH2OH)2]·2 H2O (3), or

(NMe4)2[Ln2Cu3(H3L)2(NO3)7(CH3OH)2](NO3) (4–7) (Tb3+ , Dy3 + ,
Ho3 + , Er3 +) were successfully synthesised. Blue block-like crys-

tals were obtained by slow evaporation of the reaction solu-
tion. The main structural difference between these two families

of complexes ({Ln2Cu3(H3L)2(CH3COO)6} and {Ln2Cu3(H3L)2(NO3)n},

n = 7 or 8) lies in the coordination environment around the
metal centres, due partly to the solvent used and to the

nature of the counterions present in the reaction media.

X-ray crystallographic analysis

Selected crystallographic experimental details for complexes

1–7 are shown in Table 1. Complexes crystallise in the mono-
clinic space group No. 14; 1 and 2 are reported in setting

P21/n and 3–7 as P21/c. Complexes 1 and 2 are isostructural, as

Table 1. Crystal data and structure refinement parameters of complexes 1–7. Complexes 1 and 2 are members of the {Ln2Cu3(H3L)2(CH3COO)6} family,
whereas 3–7 are members of the {Ln2Cu3(H3L)2(NO3)n} family.[a]

1 (Gd) 2 (Tb) 3 (Gd) 4 (Tb) 5 (Dy) 6 (Ho) 7 (Er)

T [K] 100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 100(2)
crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic
space group P21/n P21/n P21/c P21/c P21/c P21/c P21/c
a [æ] 11.9478(8) 11.8081(8) 9.7807(2) 15.8081(2) 15.8020(2) 15.7834(2) 15.78770(10)
b [æ] 18.8874(13) 18.9453(13) 19.9923(4) 16.1451(2) 16.1620(2) 16.12290(10) 16.0957(2)
c [æ] 13.1236(9) 12.5980(9) 16.3177(3) 23.7104(2) 23.7208(16) 23.6867(3) 23.6668(2)
b [8] 108.0790(15) 106.663(2) 101.7210(10) 101.0060(10) 100.932(7) 100.7980(10) 100.8170(10)
V [æ3] 2815.3(3) 2699.9(3) 3124.21(11) 5940.14(12) 5948.2(4) 5920.93(11) 5907.21(10)
Z 2 2 2 4 4 4 4
1calcd [mg m¢3] 1.822 1.832 1.952 1.985 1.991 2.005 2.015
m [mm] 3.525 3.833 3.211 3.520 3.649 3.815 3.986
F(000) 1546.0 1486.0 1846.0 3556.0 3564.0 3572.0 3580.0
refls collected 47 169 21 410 11181 21 261 39 420 20 490 11152
data/restraints/parameters 6441/534/366 6152/526/342 5707/5/435 10 887/61/845 13 420/10/827 10 516/12/829 10 733/34/825
GOF on F2 1.066 1.045 1.108 1.070 1.030 1.032 1.050
final R indexes
[I�2s(I)]

R1 = 0.0305
wR2 = 0.0795

R1 = 0.0663
wR2 = 0.1737

R1 = 0.0282
wR2 = 0.0658

R1 = 0.0207
wR2 = 0.0521

R1 = 0.0320
wR2 = 0.0696

R1 = 0.0206
wR2 = 0.0486

R1 = 0.0198
wR2 = 0.0471

final R indexes
[all data]

R1 = 0.0372
wR2 = 0.0838

R1 = 0.0798
wR2 = 0.1845

R1 = 0.0348
wR2 = 0.0691

R1 = 0.0251
wR2 = 0.0544

R1 = 0.0406
wR2 = 0.0744

R1 = 0.0247
wR2 = 0.0502

R1 = 0.0236
wR2 = 0.0480

largest diff. peak/hole [e æ¢3] 1.62/¢0.73 6.34/¢0.80 0.80/¢0.54 1.22/¢0.74 0.84/¢0.72 0.81/¢0.55 1.18/¢0.63

[a] See Supporting Information for additional information related to the crystal data and structure refinement parameters.
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are 4–7. Although all structures are in the same space group,
in structures 4–7 the anionic unit has lower symmetry and the

unit cell volume has doubled. The asymmetric unit of 1 and 2
contains a half molecule of [Ln2Cu3(H3L)2(CH3COO)6] , molecules

of water (one and a half molecules for 1, one for 2), and a half
THF for 1 or a half MeOH for 2. For the members of the

{Ln2Cu3(H3L)2(NO3)n} family, the asymmetric unit contains one
[Ln2Cu3(H3L)2(NO3)7(CH3OH)2]¢ anion, two NMe4

+ cations, and
one NO3

¢ anion, with the exception of 3. The asymmetric unit

of 3 contains a half anion of [Gd2Cu3(H3L)2(NO3)8-
(CH3CH2OH)2]2¢, one NMe4

+ cation, and one water molecule.
As the complexes are isostructural within the two 3d/4f fami-
lies, the following descriptions of 1 and 4 are applicable to 2
and 5–7, respectively.

The structure of 1 contains two GdIII ions coordinated to

a {Cu3(H3L)2} linear unit through four m-O and two m3-O bridg-

ing atoms from two triply deprotonated H3L3¢ ligands (see
Figure 1). Three chelating acetate anions help to complete the

coordination sphere of each lanthanide ion. The two external
CuII ions of the linear unit are encapsulated by two H3L3¢ li-
gands through O,N-donor atoms in a [4++1] distorted environ-
ment. In order to investigate the geometry of the outer CuII

ions in 1 and 2, the parameter t has been calculated.[29] The t

parameter specifies the degree of distortion of the square-pyr-
amidal geometry in five-coordinate structures considering their

basal angles (see Figure S2 in the Supporting Information).
Therefore, a t value near zero is associated with a square-pyra-

midal environment, whereas t close to unity is related to
a trigonal-bipyramidal environment. As the t parameters calcu-

lated for the external CuII ions in 1 and 2 are tCu(1) = 0.21 and

tCu(2) = 0.22, the CuII ions are both in a distorted square-pyra-
midal geometry. The central CuII ion presents a distorted octa-

hedral geometry due to the coordination of six O(H3L3¢) donor
atoms, which act as bridges between the different metal cen-

tres. The two remaining hydroxyl arms on each ligand which
do not bridge metal ions are uncoordinated. The symmetry

analyses around the LnIII ion (Ln = Gd3 + , Tb3+) have been per-
formed using the program SHAPE.[30–32] The results of continu-

ous shape measures (CShMs) propose a spherical capped
square antiprism (C4v) as the closest ideal geometry for both

complexes (see Table S1 of the Supporting Information). The
average intramolecular Cu···M distances (M = Cu, Ln) are

d(Cu···Cu’) = 2.875(5) æ and d(Cu···Ln) = 3.371(5) æ.
Two clear Cu-O-Cu’ angles could be distinguished consider-

ing the nature of the oxygen bridge, displaying average values

equal to aCu-mO-Cu’ = 68.47(1)8 and aCu-m3O-Cu0 = 93.30(2)8. In the
same way there are two different Cu-O-Ln angles, with average
values equal to bCu-mO-Ln = 104.93(5)8, and bCu-m3 O-Ln = 99.19(5)8.
Regarding the torsion angles, there is no remarkable structural

difference between them as m- and m3-oxygen atoms are in-
volved in all the angles. Considering that, the average torsion

angles defined for CuOOCu’ (e.g. , Cu1-O104-O110-Cu2) and

CuOOLn are qCuOOCu’ = 168.1(1)8, and gCuOOLn = 166.8(1)8. The
replacement of acetate for nitrate anions decreases the

symmetry within the molecule, as there is one whole mole-
cule in the asymmetric unit, and promotes different coordina-

tion environments around the metal ions present in the
structure (see Figure 2). Consequently, the structure of

(NMe4)2[Ln2Cu3(H3L)2(NO3)7(CH3OH)2](NO3)(4, Ln = Tb3 +) contains
a {Cu3(H3L)2} linear unit linked to two TbIII ions as seen in 2, but

this time the H3L3¢ ligands are coordinated to external CuII cen-
tres which have two different geometries. As shown in
Figure 2, Cu1 is in a [4++1] distorted square-based pyramidal

geometry (tCu(4) =tCu(5) = 0.24, tCu(6) =tCu(7) = 0.25), and Cu3
is in a distorted octahedral geometry due to the coordination

of an additional monodentate NO3
¢ ligand. The central CuII ion

displays the distorted octahedral geometry seen in 1. Two bi-

dentate and one monodentate NO3
¢ ligands, plus one MeOH

ligand complete the coordination environment of each nona-
coordinated TbIII centre. The symmetry analyses around the

LnIII ion for 4–7 (Ln = Tb3 + , Dy3 + , Ho3 + , Er3 +) propose two dif-
ferent environments around the lanthanide centres, which

could be related to the dissimilar coordination sphere around
the neighbouring CuII atoms (see Tables S1 and S2 in the Sup-

Figure 1. Structure of complex 1. Hydrogen atoms and solvent molecules
are omitted for clarity. Only crystallographically unique Cu, Gd, N and O
atoms are labelled.

Figure 2. Structure of the anion (left) and detail of the metal alkoxide core
(right) of 4. Hydrogen atoms omitted for clarity. Polyhedra around LnIII ions
are highlighted in pink (Ln1) and light green (Ln2).
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porting Information). The closest Ln center to the outer hexa-
coordinated CuII ion (Ln2, in Figure 2, right) is in a spherical

capped square antiprism environment (C4v), whereas the one
linked to the pentacoordinated CuII ion (Ln1, in Figure 2, right)

displays a muffin geometry (Cs). It should be noted that the co-
ordination sphere around the metal atoms is slightly different

in the case of (NMe4)2[Gd2Cu3(H3L)2(NO3)8(CH3CH2OH)2]·2 H2O
(3): as both outer CuII ions are equivalent by symmetry, the
three CuII centres are in a distorted octahedral geometry (Fig-
ure S1 in the Supporting Information), and an EtOH solvent
molecule is coordinated to each GdIII centre instead of MeOH.
Shape studies performed on complex 3 reveals again structural
differences with the rest of the {Ln2Cu3(H3L)2(NO3)n} complexes,

as there is only one crystallographically unique GdIII center in
the low-symmetry muffin geometry (Cs). The average intramo-

lecular distances between the different metal ions range from

d(Cu···Cu’) = 2.943(6)–50(6) æ, and d(Cu···Ln) = 3.376(7)–20(6) æ. As
a consequence of the lanthanide contraction d(Cu···Ln) decrease

along the series, d(Cu···Gd) being the largest distance (3.420(6) æ)
and consequently d(Cu···Er) the smallest one (3.376(7) æ). More-

over, the intermolecular distances between Cu···Cu’ and Cu···Ln
are slightly shorter in compounds 1 and 2 than in 3–7 (see Ta-

bles S3 and S4 in the Supporting Information). The different

Cu-O-Cu’ angles show aCu-mO-Cu’ values between 67.48(5)–
72.18(9)8, and aCu-m3O-Cu0 between 96.05(8)–96.80(1)8. The aver-

age Cu-O-Ln angles values are bCu-mO-Ln = 107.98(1)8, and
bCu-m3O-Ln = 98.55(9)8. Finally, the average torsion angles defined

for CuOOCu’ and CuOOLn are qCuOOCu’ = 166.3(2)8 and gCuOOLn =

169.3(1)8.

A search based on the complexes reported in the Cam-

bridge Structural Database (CSD 5.36, February 2016) reveals
that there are no pentanuclear structures comparable to

{Ln2Cu3(H3L)2}. Moreover, the angles between CuII ions defined
as aCu-mO-Cu’ for all the complexes display unusually small values

(67.48(5)–72.18(9)8), with only a few examples reported in the
CSD. This rare acute Cu-O-Cu’ angle could influence some
magnetic parameters, such as the coupling between the metal

ions, and therefore the overall magnetic behaviour of the com-
plexes; this will be discussed later. Besides the rarity of the
{Ln2Cu3} structure, analysis of the evolution of the magnetic
properties along the 4f series make the magnetic study of

these {Ln2Cu3(H3L)2} complexes interesting. Moreover, recent re-
search points to the close relationship between the magnetic

anisotropy of lanthanide ions and their local symmetry. Conse-
quently, a comparative magneto-structural analysis of com-
plexes 1–7, and between both {Ln2Cu3(H3L)2(CH3COO)6} and

{Ln2Cu3(H3L)2(NO3)n} families is discussed in the following sec-
tion.

Magnetic properties

The variable-temperature magnetic properties of complexes 1–
2 were investigated in an applied field of 1000 Oe (Figure 3).

The experimental values of cMT at 290 K for complexes 1 and 2
are consistent with those expected for three uncoupled CuII

ions (SCu = 1/2, gCu = 2.11) and two GdIII (8S7/2, S = 7/2, g = 2) or
two TbIII ions (7F6, L = 3, S = 3, gJ = 3/2), respectively (see

Table S6 for additional information). The gCu = 2.11 value used

to calculate the expected cMT value is consistent with that
used in previous reported complexes presenting similar

{Cu(H6L)} environments.[21, 33] Both complexes display ferromag-
netic coupling, as their experimental cMT values tend to in-

crease with temperature, reaching maximum values of

35.43 cm3 mol¢1 K at 3.4 K for 1, and of 50.58 cm3 mol¢1 K at
4.0 K for 2.

Below these temperatures, the cMT products for 1 and 2 de-
crease to 33.13 cm3 mol¢1 K and to 47.78 cm3 mol¢1 K, respec-

tively. The decrease in the experimental susceptibility values at
low temperature could be due to a weak antiferromagnetic in-

termolecular interaction. As GdIII is an isotropic ion, we were

able to simultaneously fit the susceptibility and magnetisation
data of complex 1 using the program PHI.[34] Therefore, the fit

was performed considering the magnetic model displayed in
Figure 3 (right), and by applying the spin Hamiltonian shown

in Equation (1), to give J1 = 1.8 cm¢1, J2 = 69.7 cm¢1 (the gCu,

gGd = g parameters were fixed at 2.11 and 2, respectively,

during the fit and a small intermolecular interaction of zJ’=
¢1.5·10¢3 cm¢1 was included; R = 99.63 %).

H ¼¢2J1ðGd1Cu3 þ Gd1Cu4 þ Gd2Cu4 þ Gd2Cu5Þ¢

2J2ðCu3Cu4 þ Cu4Cu5Þ þ gGdmB B
!X2

i¼1

s!i þ gCumB B
!X5

j¼3

s!j

ð1Þ

The results from the fit are reasonable considering the char-

acteristic ferromagnetic tendency of LnIII–CuII interactions in
heteronuclear Cu/Gd complexes and that the nature and mag-

nitude of the coupling between CuII ions (J2 = 69.7 cm¢1) is
consistent with the small Cu-O-Cu’ angles (see Table S4 in the

Supporting Information). In order to study the slow relaxation

of the magnetisation in complex 2, AC susceptibility measure-
ments as a function of the frequency over the temperature

range 1.9–5 K without an applied HDC field were performed
(see Figure 4). The AC studies show slow magnetic relaxation,

associated with the presence of frequency-dependent out-of-
phase maxima. Cole–Cole plots display a nearly symmetrical

Figure 3. Temperature dependence of cMT for complexes 1 (Gd) and 2 (Tb)
in an applied field of 1000 Oe, and magnetic model used for the fit of
1 (inset). The solid line corresponds to the fit for 1 (see text for details).
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semi-circular shape, revealing that just one single relaxation

process occurs in 2 (Figure 4). In light of this, the different re-
laxation times (t) were treated using the Arrhenius law

t ¼ t0exp DE=kBTð Þ, to extract the pre-exponential factor t0

and the energy barrier DE/kB, yielding t0 = 1.3 Õ 10¢7 s and DE/

kB = 21.4�0.5 K (see Figure 4). Moreover, the Cole–Cole fit dis-

plays a reasonably narrow distribution of a parameters in
a temperature range of T = 1.9–3 K (0.09<a<0.12). The esti-

mated t0 and DE/kB values are comparable to those reported
for other {LnCu} SMMs (see Table S5 in the Supporting Infor-

mation).
Static and dynamic susceptibility measurements on com-

plexes 3–7 were also performed to study whether the replace-

ment of the auxiliary ligands has an effect on the magnetic
properties of the {Ln2Cu3(H3L)2} family. The plots of cMT versus
T of 3–7 in an applied field of 1000 Oe are shown in Figure 5.

The experimental values of cMT at 300 K for complexes 3–7 are

consistent with those expected for three uncoupled CuII ions
(SCu = 1/2, gCu = 2.11) and two LnIII ions (Gd3 + for 3, Tb3+ for 4,

Dy3 + for 5, Ho3 + for 6, and Er3 + for 7) ; see Table S6 in the Sup-
porting Information. The experimental cMT values slightly de-

crease along the temperature range from 300 K to 60 K, ex-

cluding 3 (Gd) which increases. A sharp increase then takes
place, until the cMT products reach maxima of

37.00 cm3 mol¢1 K at 2.2 K (3), 42.78 cm3 mol¢1 K at 6.5 K (4),
49.65 cm3 mol¢1 K at 4.0 K (5), 41.16 cm3 mol¢1 K at 3.4 K (6), and

38.33 cm3 mol¢1 K (7) at 2.2 K. Below these temperatures the
experimental cMT values drop to 36.70 cm3 mol¢1 K (3),
35.73 cm3 mol¢1 K (4), 46.43 cm3 mol¢1 K (5), 39.21 cm3 mol¢1 K

(6), and 37.95 cm3 mol¢1 K (7) at 2.0 K. Therefore, all the com-
plexes show the ferromagnetic coupling previously displayed
by 1 and 2. As both {Gd2Cu3(H3L)2} complexes 1 and 3 display
isostructural metal alkoxide cores, the fit of the dc data for 3
was performed using Equation (1), yielding, J1 = 1.9 cm¢1 and
J2 = 16.7 cm¢1 (the gCu, gGd = g parameters were fixed at 2.11

and 2, respectively, during the fit and a small intermolecular in-
teraction of zJ’=¢1.1 Õ 10¢3 cm¢1 was included; R = 99.72 %).
The parameters obtained from the fit are consistent with ferro-

magnetic exchange between both Cu···Cu’ centres, and Gd···Cu
centres. The coupling constant J1 related to the interaction be-

tween GdIII and CuII ions for complex 3 (1.9 cm¢1) is quite simi-
lar to that obtained for 1 (1.8 cm¢1). On the other hand, the J2

values corresponding to the Cu···Cu’ interaction are quite dif-

ferent (69.7 cm¢1 for 1 and 16.7 cm¢1 for 3). An explanation for
the weakening of the ferromagnetic Cu···Cu’ interaction may

be related to structural differences between compounds 1 and
3 as a consequence of the replacement of CH3COO¢ for NO3

¢

anions (Tables S3 and S4 in the Supporting Information).

Figure 4. Dynamic magnetic properties for complex 2 (Tb). Top: AC magnetic susceptibility data at different frequencies in the absence of an external HDC

field. Bottom: Cole–Cole plots (left) and Arrhenius plot (right) from the AC susceptibility data. The solid lines correspond to the fit (see text for details).

Figure 5. Temperature dependence of cMT for complexes 3–7 in an applied
field of 1000 Oe. The solid line corresponds to the fit for 3 (see text for de-
tails).
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The CuII centres are closer together in the case of 1, and
also the Cu-m3O-Cu’ angles are slightly smaller in 1. The dy-

namic studies for 4–7 (over the temperature range 1.8–8 K at
HDC = 0) reveal a similar behaviour for all the compounds; the

appearance of a frequency-dependent out-of-phase signal sug-

gests SMM behaviour (see Figure 6 and Figures S6–S8 from
Supporting Information). In the Cole–Cole plots of complex 4
it can be seen that the relaxation of the magnetisation occurs
again via a single relaxation process (see Figure 6). The param-

eters extracted from the Arrhenius law for 4 are t0 = 1.0 Õ
10¢7 s and DE/kB = 36.0�0.2 K. The substitution of the three
chelating acetate ligands for two chelating nitrates, one mono-

dentate nitrate and one MeOH ligand leads to an approximate
70 % improvement of the effective energy barrier (21.4 K for 2,
36.0 K for 4). It should be noted that the DE/kB value for 4 is
the largest reported value so far for Tb/Cu-based SMMs in the

absence of an applied HDC field (see Table S5 in the Supporting
Information).

The enhancement of the anisotropy barrier may be attribut-
ed to changes in the electronic structure of the lanthanide
ions due to changes in the local symmetry or crystal field ef-
fects related to the replacement of the auxiliary li-
gands.[13, 27, 28, 35] To probe the SMM behaviour of 4, single-crystal

measurements were carried out. Low-temperature magnetisa-
tion versus field hysteresis loops are shown in Figure 7. Com-

plex 4 shows SMM-typical sweep-rate-dependent hysteresis

curves with non-zero coercivity. The coercivity displayed in the
hysteresis loops decreases as the temperature rises; however,

only at low enough sweep rates (below 0.001 Ts¢1) and high
enough temperatures (above 1.8 K) can it be suppressed. The

large step at about zero magnetic field is induced by resonant
spin ground state tunnelling, which is often very strong for

Figure 6. Dynamic magnetic properties for complex 4 (Tb). Top: AC magnetic susceptibility data at different frequencies in the absence of an external HDC

field. Bottom: Cole–Cole plots (left) and Arrhenius plot (right) from the AC susceptibility data. The solid lines correspond to the fit (see text for details).

Figure 7. Single-crystal magnetisation versus field hysteresis loops for com-
plex 4 : with a constant field-sweep rate of 0.14 Ts¢1 at different tempera-
tures between 0.03 K and 1.8 K (top); at a constant temperature of 0.03 K
with different sweep rates between 0.001 Ts¢1 and 0.280 Ts¢1 (bottom).
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lanthanide compounds. At larger fields the spin relaxes
through a direct relaxation process. Steps related to quantum

tunnelling of the magnetisation are smeared out, as often ob-
served for relatively large SMMs such as 4.[36–37] Regarding the

dynamic properties of 5–7, the Kramers–Kronig derivate equa-
tion of the Arrhenius law ln(c’’/c’) = ln(wt0) is applied,[38] either
due to the lack of local c“ maxima in the AC plots or the lack
of a sufficient number of maxima to fit the Cole–Cole plots,
yielding the following pre-exponential factors and energy bar-

riers : t0 = 7.5 Õ 10¢8 s (5), 2.3 Õ 10¢7 s (6), 1.2 Õ 10¢7 s (7) ; and
DE/kB = 23.9�0.1 K (5), 17.2�0.2 K (6), 14.8�0.1 K (7). Again,
the estimated t0 and DE/kB values are reasonable compared to
those reported for similar {LnCu} SMMs (see Table S5 in the

Supporting Information). There is a decrease of the effective
barrier along the lanthanide series, with 4 showing the highest

DE/kB value, and 7 showing the lowest. This tendency is consis-

tent with studies performed on 4f-based single-ion magnets
that show the relationship between the atomic number of the

lanthanide ions and the CF parameters (and thus SMM proper-
ties).[14]

Theoretical studies on model complexes of 2
and 4

To understand the large barrier height observed for the Tb an-

alogues and to probe the origin of the differences in the barri-
er height, we have modelled mononuclear TbIII complexes de-

rived from the X-ray structures of complexes 2 and 4. The two
TbIII ions in complex 2 are symmetry related and only one TbIII

ion core (model-1) is considered. However, the TbIII ions pres-

ent in complex 4 are different, hence two TbIII ions (model-2
and model-3) are considered for the calculations (see the sec-
tion on Computational Details and Supporting Information Fig-
ure S9 for further information). The energy spectrum g tensors,

relative energies and angles (q) of the principal anisotropy
axes of the first excited states with respect to the ground state

in all three model complexes are shown in Table 2.

For complex 2, as expected for the non-Kramers ion, all the
pseudo-doublets in model-1 are pure Ising-type. The ground

pseudo-doublet possesses a gz of 17.79 (see ground state gz

orientation in Figure 8), approaching that expected for a pure

mJ =�6 state of gz�18. A significant tunnel splitting (Dtun) is
observed within the ground multiplet (0.45 cm¢1), suggesting

that the magnetic bistability in 2 is not due to single-ion be-
haviour (see Table S7 in the Supporting Information). However
the presence of both Cu···Cu and Cu···Tb interactions are likely

to quench the tunnel splitting as they behave like an internal
applied field, leading to the observation of zero-field SMM be-

haviour.[39] If the tunneling is quenched due to this effect, the
relaxation is expected to occur by means of the first excited

state of TbIII lying at 54 cm¢1 (Table 2). This is due to the obser-
vation of a larger tunnel splitting for this level (Table S7 in the

Supporting Information) and the gz axis being tilted significant-

ly compared to the ground state (see Table 2). Although this
value is larger than the experimental estimate (14.9 cm¢1), our

calculations do not take into account the effect of Cu···Tb ex-
change, intermolecular interactions and possible tunneling be-

tween states. Therefore, it represents the maximum barrier if
all the above-mentioned effects are eliminated. The orientation

of the gz tensor of the ground-state pseudo-doublet intersects

with the centre of the ligands in order to encounter the least
electrostatic repulsion (see Figure 8). In contrast, for complex

Table 2. Calculated energy spectrum, g tensors, relative energies and
angles (q) of the principal anisotropy axes of the first excited states with
respect to the ground state, for ground and excited state pseudo dou-
blets (for model-1, model-2 and model-3).

Complex 2
model-1

Complex 4
model-2

Complex 4
model-3

ground multiplet
gx 0 0 0
gy 0 0 0
gz 17.79 17.80 17.72
energy [cm¢1] 0.00 and 0.45 0.00 and 0.08 0.0 and 0.32

1st excited multiplet
gx 0 0 0
gy 0 0 0
gz 15.18 16.63 16.33
energy [cm¢1] 54.03 and 56.14 58.07 and 58.47 58.93 and 63.93
angle [8] 153.62 56.48 86.29
Ucalcd [cm¢1] 54.03 58.07 58.93 Figure 8. Ab initio computed orientation of gz tensors for the ground-state

Kramers doublets in complexes 2 and 4 shown with their crystal structures.
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4, the tunnel splitting within the ground multiplet is small for
model-2 (0.08 cm¢1) and significant for model-3 (0.32 cm¢1)

(Supporting Information Tables S8 and S9). This stems from the
difference in the coordination geometry in which model-2 has

a muffin-like structure (Cs) while model-3 (and also model-1 of
complex 2) possess a capped square anti-prismatic geometry

(C4v) (see Supporting Information Table S1). All the pseudo-
doublets are computed to be pure Ising-type and the ground
pseudo-doublet for this complex possesses gz values of 17.80

and 17.72 (see ground state gz orientation in Figure 8), ap-
proaching that expected for a pure mJ =�6 state of gz�18.
The tunnel splitting in the first excited pseudo-doublets are
found to be 1.40 cm¢1 and 5.00 cm¢1 for model-2 and model-

3, respectively (Supporting Information Tables S8 and S9). This
gives the calculated energy barrier (Ucal) 58 cm¢1 and 59 cm¢1,

respectively, to promote relaxation via this level. Our wave

function analysis reveals the TbIII ground state as an admixture
of 70 % j �6i and small contributions from other mJ levels for

all the complexes. The Cu···Tb exchange interaction is expected
to quench the tunneling behaviour, as shown previously lead-

ing to the observation of zero-field SMM behavior for com-
plexes 2 and 4.[40] The ground state axial (B0

2 = 2.02, 1.88 and

1.99 for model-1, model-2 and model-3 respectively) and non-

axial (B¢2;¢1;þ1;þ2
2 ) crystal field parameters are competing with

each other (see Table S10 in the Supporting Information), re-

vealing the reasons for the relatively large tunnel splitting
computed. Despite this, with the internal applied field from

the Cu···Tb interactions we can observe SMM behaviour due to
the Ising nature of the Tb ions.

If we consider the computed parameters for model-1 and

model-3, it is apparent that the computed behaviour is very
similar between these two models, despite the fact that

model-1 has acetate ligands while model-3 has nitrate ligands.
Although the chemical environments of the ligands are differ-

ent, the geometry of both models are very close to each other
(see Supporting Information Table S1 for shape analysis), lead-

ing to very similar computed behaviour. This suggests that the

observed difference in the magnetic behaviour between com-
plex 2 and complex 4 stems from one of the distorted TbIII

ions in 4 possessing a muffin-like coordination geometry (Cs). A
similar observation has been noted by us earlier for DyIII

SMMs.[41, 42] A similar environment, if created also for the
second TbIII center could improve further the SMM characteris-

tics.

Conclusion

In conclusion, we have shown the potential of the ligand bis–

tris propane to control and direct the assembly of the metal
ions in the synthesis of Cu/4f complexes. The CuII ions display

a preference to occupy the inner {N2O2} pocket, leaving the hy-

droxyl arms to bind to further oxophilic LnIII ions and CuII ions.
The synthesis of a new family of CuII/4f heterometallic com-

plexes with general formula {Ln2Cu3(H3L)2}, and their structural
and magnetic properties were reported. All the complexes dis-

play ferromagnetic coupling in the static magnetic properties
and the dynamic properties of each complex are dependent

on two main factors: 1) the choice of the lanthanide ion and 2)
the coordination environment of the 4f centres. Therefore,

complexes with high-magnetic anisotropy LnIII ions, such as
Tb3+ (present in 2, 4), Dy3+ (5), Ho3 + (6) and Er3 + (7), display

the out-of-phase, frequency-dependent AC signals characteris-
tic of single-molecule magnets. Comparing the Tb-based com-

plexes 2 and 4, the AC studies show a considerable improve-
ment (ca. 70 % increase) of the effective barrier. It should be

also noted that complex 4 has the largest reported energy bar-

rier for Tb/Cu-based SMMs, measured in the absence of a HDC

field. Ab initio CASSCF calculations performed on the mononu-
clear TbIII model complexes derived from complexes 2 and 4
suggest that the difference in the energy barrier arises from

the structural variation around the TbIII ions (C4v vs. Cs) and that
the Cu···Tb exchange interactions help to quench the tunnel-

ling leading to the observation of zero-field SMM behavior.

Experimental Section

Materials and physical measurements

All reagents and solvents were obtained from commercial suppliers
and used without further purification. The polydentate ligand H6L
used in the synthetic routes is the commercial reagent 2,2’-(pro-
pane-1,3-diyldiimino)bis[2-(hydroxymethyl)propane-1,3-diol] (H6L).

Crystallographic data were collected for 1–7 at 100 K using Mo-Ka

radiation (l= 0.71073 æ). For 3, 4, 6 and 7 a Bruker–Nonius Kappa
CCD diffractometer with an Oxford Cryosystems cryostream device
mounted on a sealed tube generator was used; for 1, 2 and 5
a Rigaku AFC12 goniometer equipped with an (HG) Saturn724 +

detector mounted on an FR-E + SuperBright rotating anode gener-
ator with HF Varimax optics (100 mm focus).[43] All the structures
were solved using SUPERFLIP[44] and refined using full-matrix least-
squares refinement on F2 using SHELX2014[45, 46] within OLEX2.[47]

The IR spectra were measured using a FTIR-8400S SHIMADZU IR
spectrophotometer. The microanalyses were performed by the ana-
lytical services of the School of Chemistry at the University of Glas-
gow. Complexes 1–7 show a slight hygroscopic tendency similar to
that observed in previously published complexes obtained using
H6L as a ligand. Magnetic measurements of complexes 1–7 were
performed on polycrystalline samples constrained in eicosane,
using a Quantum Design MPMS-XL SQUID magnetometer. Data
were corrected for the diamagnetic contribution of the sample
holder and eicosane by measurements, and for the diamagnetism
of the compounds by using Pascal’s constants. Ultra-low-tempera-
ture (<1.8 K) hysteresis studies were performed on a single crystal
sample of 4 using an array of micro-SQUIDS (the field is oriented
along the easy axis, which is found in situ by changing the field
orientation with three coils).[48]

Computational details

All ab initio calculations on the model complexes were performed
with the MOLCAS 8.0 suite.[49–55] Spin-free wave functions were
generated using the complete active space self-consistent field
(CASSCF) method. These multiconfigurational wave functions were
used as input states to account for spin-orbit coupling through the
restricted active space spin state interaction-spin orbit (RASSI-SO)
methodology.[55, 56] The resulting spin-orbit eigenstates were used
for the calculation of the anisotropic magnetic properties and g
tensors of the lowest state using a specially designed routine
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SINGLE_ANISO.[57] All the atoms were represented by ANO-RCC
basis sets from the ANO-RCC basis library included in the MOLCAS
8.0 suite. We employed the [ANO-RCC..8s7p5d3f2g1h.] basis set for
TbIII, and [ANO-RCC..4s3p2d1f.] basis set for C, N and O and [ANO-
RCC..2s.] basis set for H throughout our calculations. The active
space of (8,7) was used for all the models. In the configurational in-
teraction (CI) procedure, 7 septets, 140 quintets and 195 triplets
were considered. The singlet states were not included due to com-
putational limitations. In the RASSI module, 7 septets, 105 quintets
and 112 triplets were mixed by spin-orbit coupling within the
energy window of about 40 000 cm¢1.

The two TbIII ions in complex 2 are isostructural with spherical
capped square antiprismatic geometry, therefore only one TbIII ion
core (model-1) was considered for ab initio calculations. However,
the TbIII ions present in complex 4 are different, hence two TbIII

ions (model-2 and model-3) were considered for the calculations.
To understand the magnetic properties of these complexes, we
performed ab initio calculations of each TbIII centre of the com-
plexes. In these calculations, the effect of neighbouring CuII ions
were not included and the ligands that bridge to the correspond-
ing CuII ions were approximated. The structure of the calculated
models is shown in Figure S9 in the Supporting Information.

Synthetic methods

[Gd2Cu3(H3L)2(CH3COO)6]·THF·3H2O (1): Et3N (0.13 mL, 0.9 mmol)
was added to a white suspension of H6L (0.09 g, 0.30 mmol) in
MeOH (20 mL). Cu(CH3COO)2·H2O (0.09 g, 0.45 mmol) was added,
and immediately dissolved, resulting in a turquoise solution.
Gd(CH3COO)3·H2O (0.11 g, 0.33 mmol) was subsequently added,
turning the turquoise solution blue. The final solution was stirred
and heated to 60 8C for 3 h. The initial blue solution turned violet.
Violet plate-like single crystals suitable for X-ray diffraction were
obtained by slow diffusion of tetrahydrofuran into the solution
overnight. Yield 71 % (166 mg); IR: ñ= 3200, 1549, 1445, 1265,
1101, 1045, 1020, 937, 671 cm¢1; elemental analysis calcd (%) for
[Gd2Cu3(H3L)2(CH3COO)6]·2.25 H2O: C 28.00, H 4.73, N 3.84; found: C
28.29, H 4.72, N 3.56.

[Tb2Cu3(H3L)2(CH3COO)6]·CH3OH·2 H2O (2): The same synthetic pro-
cedure described for 1 was followed, but using Tb(CH3COO)3·H2O
instead of Gd(CH3COO)3·H2O. Violet plate-like single crystals suita-
ble for X-ray diffraction were obtained by slow diffusion of tetrahy-
drofuran into the solution over 2 days. Yield 44 % (110 mg); IR: ñ=
3196, 1543, 1445, 1327, 1099, 1040, 1011, 934, 667 cm¢1; elemental
analysis calcd (%) for [Tb2Cu3(H3L)2(CH3COO)6]·CH3OH·2 H2O: C
28.22, H 4.87, N 3.76; found: C 28.29, H 4.72, N 3.56.

(NMe4)2[Gd2Cu3(H3L)2(NO3)8(CH3CH2OH)2]·2 H2O (3): H6L (0.28 g,
1 mmol) and tetramethylammonium hydroxide pentahydrate
(NMe4OH·5H2O) (0.38 g, 2 mmol) were combined in EtOH (40 mL),
and heated to 60 8C for 20 min. Cu(NO3)2·3 H2O (0.51 g, 2 mmol)
was added, giving a green suspension, which was then heated at
60 8C for 40 min. Gd(NO3)3·6 H2O (0.99 g, 2 mmol) was added and
immediately dissolved, giving a dark blue solution. The resulting
solution was heated for three hours, and then filtered. Blue block-
like single crystals suitable for X-ray diffraction were obtained by
slow evaporation of the filtrate over 2 weeks. Yield 7 % (74 mg); IR:
ñ= 3393, 1651, 1493, 1333, 1296, 1072, 1017, 949, 679 cm¢1; ele-
mental analysis calcd (%) for (NMe4)2[Gd2Cu3(H3L)2-
(NO3)8(CH3CH2OH)2]·3.25 H2O: C 21.97, H 4.80, N 10.55; found: C
21.62, H 4.44, N 10.93.

(NMe4)2[Tb2Cu3(H3L)2(NO3)7(CH3OH)2](NO3) (4): The same synthetic
procedure described for 3 was followed, but using Tb(NO3)3·5 H2O
instead of Gd(NO3)3·6 H2O, and MeOH instead of EtOH as solvent.

Blue block-like single crystals suitable for X-ray diffraction were ob-
tained by slow evaporation of the filtrate over several weeks. Yield
16 % (84 mg); IR: ñ= 3200, 1655, 1493, 1333, 1296, 1044, 1017, 949,
679 cm¢1; elemental analysis calcd (%) for (NMe4)2[Tb2Cu3(H3L)2-
(NO3)7(CH3OH)2](NO3)·2.5 CH3OH: C 22.33, H 4.78, N 10.57; found: C
22.62, H 4.51, N 10.56.

(NMe4)2[Dy2Cu3(H3L)2(NO3)7(CH3OH)2](NO3) (5): The same synthetic
procedure described for 4 was followed, but using Dy(NO3)3·6 H2O
instead of Tb(NO3)3·5 H2O. Blue block-like single crystals suitable for
X-ray diffraction were obtained by slow evaporation of the filtrate
over a few days. Yield (crystals) 5 % (60 mg); IR: ñ= 3206, 1655,
1493, 1333, 1296, 1015, 949, 814, 633 cm¢1; elemental analysis
calcd (%) for (NMe4)2[Dy2Cu3(H3L)2(NO3)7(CH3OH)2](NO3)·3.25 H2O: C
20.87, H 4.63, N 10.65; found: C 20.40, H 4.11, N 10.77.

(NMe4)2[Ho2Cu3(H3L)2(NO3)7(CH3OH)2](NO3) (6): The same synthetic
procedure described for 4 was followed, but using Ho(NO3)3·5 H2O
instead of Tb(NO3)3·5 H2O. Blue block-like single crystals suitable for
X-ray diffraction were obtained by slow evaporation of the filtrate
over a few days. Yield (crystals) 26 % (237 mg); IR: ñ= 3242, 1649,
1474, 1385, 1310, 1074, 1007, 750, 679 cm¢1; elemental analysis
calcd (%) for (NMe4)2[Ho2Cu3(H3L)2(NO3)7(CH3OH)2](NO3)·6 H2O: C
20.28, H 4.79, N 10.34; found: C 19.76, H 4.26, N 10.47.

(NMe4)2[Er2Cu3(H3L)2(NO3)7(CH3OH)2](NO3) (7): The same synthetic
procedure described for 4 was followed, but using Er(NO3)3·5 H2O
instead of Tb(NO3)3·5 H2O. Blue block-like single crystals suitable for
X-ray diffraction were obtained by slow evaporation of the filtrate
over a few days. Yield (crystals) 19 % (170 mg); IR: ñ= 3401, 1657,
1491, 1333, 1072, 1017, 949, 679, 602 cm¢1; elemental analysis
calcd (%) for [NMe4]2[Er2Cu3(H3L)2(NO3)7(CH3OH)2][NO3]·1.25 H2O: C
21.18, H 4.47, N 10.81; found: C 21.19, H 4.29, N 10.61.

The data which underpin this work are available at http://
dx.doi.org/10.5525/gla.researchdata.309.

CCDC 1475631 (1), 1475632 (2), 1475633 (3), 1475634 (4), 1475635
(5), 1475636 (6) and 1475637 (7) contain the supplementary crys-
tallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
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