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Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical,
histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis
(NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver bi-
opsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing
number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue
and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applica-
tions are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology.
Omics are also generating non-invasive diagnosticmodalities for thedistinct stages of NAFLD, that remain though
to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as pro-
spectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to
epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of
these techniques in understanding, diagnosing and treating NAFLD are summarized herein.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction – current status

NAFLD is recognized as themost common liver disease in developed
countries with its incidence continuously rising in parallel to the
increasing incidences of obesity and type 2 diabetes (T2DM) [1].
Significant efforts are currently underway to delve deeper into the
pathophysiology of the disease, to create non-invasive tools for its diag-
nosis and staging, as well as to develop highly effective and specific
treatments.
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The disease is characterized initially by hepatic lipid accumulation
(non-alcoholic fatty liver; NAFL), that can often progress to non-
alcoholic steatohepatitis (NASH), liver fibrosis or cirrhosis, as outlined
in detail elsewhere in this special issue [1]. Several triggers and series
of events stimulating necroinflammatory processes in the liver have
been recognized anddescribed as “themultiple hit”pathogeneticmech-
anism leading to advanced NASH [2]. Additionally, multiple factors
(such as lack of physical activity, unhealthy nutrition, concomitant alco-
hol consumption and presence of other metabolic diseases) have been
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Table 1
Most extensively studied scores and imaging modalities in NAFLD.

# N Comparisons Prediction models Sensitivity Specificity AUROC

Steatosis/any NAFLD

[4]
2815
Meta-analysis

C vs NAFLD Ultrasonography 84.8% 93.6% 0.93

[6] Review C vs S a) Fatty liver index
b) HSI
c) SteatoTest
d) NAFLD liver fat score

a) 87%
b) 93%
c) 90%
d) 86%

a) 64%
b) 40%
c) 54%
d) 71%

a) 0.84
b) 0.81
c) 0.80
d) 0.87

[7] 2735
Meta-analysis

a) S0 vs S1-S3
b) S0-S1 vs S2-S3
c) S0-S2 vs S3

CAP a) 69%
b) 77%
c) 88%

a) 82%
b) 81%
c) 78%

a) 0.82
b) 0.87
c) 0.88

[8] 236 a) S0 vs S1-S3
b) S0-S1 vs S2-S3
c) S0-S2 vs S3

CAP, M and XL a) M: 75%
XL: 80%
b) M: 80%
XL: 80%
c) M: 81%
XL: 86%

a) M: 75%
XL: 74%
b) M: 81%
XL: 83%
c) M: 81%
XL: 84%

a) M: 0.82
XL: 0.83
b) M: 0.89
XL: 0.88
c) M: 0.92
XL: 0.93

[9] 635
Meta-analysis

a) S0 vs S1-S3
b) S0-S1 vs S2-S3
c) S0-S2 vs S3

MRI-PDFF a) 93%
b) 74%
c) 74%

a) 94%
b) 90%
c) 87%

a) 0.98
b) 0.91
c) 0.90

NAFL vs NASH vs Fibrosis

[12]
3431
Meta-analysis

NAFL vs NASH a) CK-18 M30
b) CK-18 M65
c) FGF-21
d) Combined biomarker panel

a) 75%
b) 71%
c) 62%
d) 92%

a) 77%
b) 77%
c) 78%
d) 85%

a) 0.82
b) 0.80
d) 0.94

[226] 494
Meta-analysis

a) F0-F1 vs F2-F4
b) S0-S1 vs S2-S3
c) NASH (NAS N 4)
d) NAS N 2

a) FibroTest
b) SteatoTest
c) ActiTest
d) NashTest

a) 8%
b) 39%
c) 28%
d) 93%

a) 100%
b) 81%
c) 91%
d) 34%

a) 0.85
b) 0.80
c) 0.84

[227] D: 150
V: 281

a) F0-F2 vs F3-F4
b) F0-F2 vs F3-F4 in NAFL (Y vs N)
c) F0-F2 vs F3-F4 in NASH (Y vs N)

ADAPT: age, diabetes,
PLT, PRO-C3 (marker of collagen
type III formation)

a) D: 91%,
b) 88%
c) 94%

a) D: 73%
b) 87%
c) 50%

a) D: 0.86
V: 0.87
b) 0.89
c) 0.81

Fibrosis
[11] Review a) F0-F1 vs F2-F4

b) F0-F3 vs F4
VCTE
MRE

VCTE:
a) 66%
b) 89%
MRE:
a) 85%
b) 80%

VCTE:
a) 80%
b) 86%
MRE:
a) 85%
b) 86%

a) VCTE: 0.79
MRE: 0.92
b) VCTE: 0.93
MRE: 0.94

[228] 13,046
Meta-analysis

a) F0-F1 vs F2-F4
b) F0-F2 vs F3-F4
c) F0-F3 vs F4

APRI
FIB-4
BARD
NFS
CAP M
CAP XL
SWE
MRE

APRI:
a) 59%
b) 73%
c) 56%
FIB-4:
a) 64%
b) 78%
c) 76%
BARD:
a) 44%
b) 83%
c) 52%
NFS:
a) 66%
b) 81%
c) 80%
CAP M
a) 92%
b) 89%
c) 97%
CAP XL
a) 76%
b) 75%
c) 88%
SWE
a) 85%
b) 90%
c) 100%
MRE
a) 73%
b) 86%
c) 87%

APRI:
a) 77%
b) 68%
c) 84%
FIB-4:
a) 70%
b) 71%
c) 82%
BARD:
a) 70%
b) 59%
c) 84%
NFS:
a) 83%
b) 70%
c) 81%
CAP M
a) 57%
b) 77%
c) 78%
CAP XL
a) 65%
b) 74%
c) 82%
SWE
a) 94%
b) 92%
c) 86%
MRE
a) 91%
b) 91%
c) 93%

APRI:
a) 0.70
b) 0.75
c) 0.75
FIB-4:
a) 0.75
b) 0.80
c) 0.85
BARD:
a) 0.64
b) 0.73
c) 0.70
NFS:
a) 0.72
b) 0.78
c) 0.83
CAP M
a) 0.83
b) 0.87
c) 0.92
CAP XL
a) 0.82
b) 0.86
c) 0.94
SWE
a) 0.89
b) 0.91
c) 0.97
MRE
a) 0.88
b) 0.93
c) 0.92

[229] 5366
Meta-analysis

a) F0-F2 vs F3-F4
b) F0-F1 vs F2-F4

ELF (HA, PIIINP, TIMP1) a) 65% a) 86% a) 0.83
b) 0.81
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Table 1 (continued)

# N Comparisons Prediction models Sensitivity Specificity AUROC

Validation studies – studies in specific populations
[5] 146 C vs NAFLD a) Simple ultrasonography

b) 5- point ultrasonography score
c) 1H-MRS

a) 63%
b) 70%

a) 88%
b) 100%

a) 0.82
b) 0.89
c) 0.96

[230] 383 a) S0 vs S1-S3
b) S0-S1 vs S2-S3
c) S0-S2 vs S3
d) F0-F1 vs F2-F4
e) F0-F2 vs F3-F4
f) F0-F3 vs F4

a, b, c) CAP
d, e, f) LSM

a) 80%
b) 70%
c) 72%
d) 71%
e) 71%
f) 85%

a) 83%
b) 76%
c) 63%
d) 70%
e) 75%
f) 79%

a) 0.87
b) 0.77
c) 0.7
d) 0.77
e) 0.8
f) 0.89

[13] 424 a) NAFLD (Y vs N)
b) NASH (Y vs N)
c) Fibrosis (Y vs N)

CK-18 M30 a) 63%
b) 58%
c) 54%

a) 83%
b) 68%
c) 85%

a) 0.77
b) 0.65
c) 0.68

[224] 220
T2DM

a) NAFLD (Y vs N)
b) NASH (Y vs N)
c) NASH (Y vs N)
d) Fibrosis (Y vs N)

a) SteatoTest
b) ActiTest
c) NashTest
d) FibroTest

a) 73%
b) 74%
c) 71%
d) 64%

a) 72%
b) 62%
c) 60%
d) 73%

a) 0.73
b) 0.70
c) 0.69
d) 0.72

[223] 213
T2DM

a-d) NASH (Y vs N)
e-i) F0-F2 vs F3-F4

a) CK-18
b) HAIR
c) NashTest
d) BARD
e) PRO-C3
f) APRI
g) FIB-4
h) FibroTest
i) NFS

a) 63%
b) 57%
c) 71%
d) 98%
e) 88%
f) 84%
g) 68%
h) 64%
i) 68%

a) 80%
b) 77%
c) 58%
d) 5%
e) 80%
f) 75%
g) 75%
h) 74%
i) 55%

a) 0.76
b) 0.68
c) 0.66
d) 0.61
e) 0.9
f) 0.86
g) 0.78
h) 0.70
i) 0.64

[231] 292 a) Fibrosis (Y vs N)
b) F0-F1 vs F2-F4
c) F1-F2 vs F3-F4

APRI
FIB-4
NFS
AST/ALT

APRI:
a) 63%
b) 65%
c) 75%
FIB-4:
a) 70%
b) 66%
c) 75%
NFS:
a) 64%
b) 57%
c) 70%
AST/ALT:
a) 38%
b) 54%
c) 54%

APRI:
a) 76%
b) 71%
c) 65%
FIB-4:
a) 68%
b) 74%
c) 71%
NFS:
a) 66%
b) 77%
c) 74%
AST/ALT:
a) 76%
b) 68%
c) 73%

APRI:
a) 0.75
b) 0.73
c) 0.76
FIB-4:
a) 0.72
b) 0.76
c) 0.80
NFS:
a) 0.69
b) 0.73
c) 0.78
AST/ALT:
a) 0.59
b) 0.65
c) 0.68

[232] 3202 NFS
FIB-4
ELF
VCTE
Combinations

a) F0-F2 vs F3-F4
b) F0-F3 vs F4

a) NFS: 89%
FIB-4: 82%
ELF: 74%
VCTE: 83%
b) NFS: 94%
FIB-4: 88%
ELF: 83%
VCTE: 92%

a) NFS: 37%
FIB-4: 57%
ELF: 73%
VCTE: 61%
b) NFS: 24%
FIB-4: 41%
ELF: 55%
VCTE: 38%

a) NFS: 0.74
FIB-4: 0.78
ELF: 0.80
VCTE: 0.80
b) NFS: 0.73
FIB-4: 0.75
ELF: 0.76
VCTE: 0.78

C, controls/healthy; D,Discovery; F, Fibrosis; N, No; S, Steatosis; V, Validation; Y, Yes. Sensitivities and specificities represent authors' chosen cutoff values;whenever optimal cutoffs are not
specified, values with greater sensitivity are included. Whenever multiple scores are available for each comparison, the highest-performing scores are selected.
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associatedwith increased risk of disease progression [3]. Still, we are not
able to predictwith great accuracywhich patient andwhenwill develop
hepatic inflammation or fibrosis.

An important reason for our limited ability to predict the course of
the disease in a patient-specific manner is the lack of low-cost and
easy-to use diagnostic tools, whichwould have enabled routine screen-
ings and regular follow-ups of the population at high risk for the devel-
opment of the disease. Liver biopsy is still considered the gold standard
for diagnosing and staging NAFLD, but its high costs, labor-intensive
character and non-negligible risks, in combinationwith recent advance-
ment in non-invasive diagnostic procedures (Table 1), have signifi-
cantly limited its use. For diagnosing hepatic steatosis, ultrasound is
broadly used and is considered a well-tolerated and low-cost method.
It demonstrates acceptable specificity but still suboptimal sensitivity,
especially in earlier stages of the disease [4,5]. Additionally, it may not
be available in primary care settings, whereas the diagnostic accuracy
largely depends on the operator's experience. Thus non-invasive scores
have been developed (Fatty liver index, Hepatic Steatosis Index,
SteatoTest, NAFLD Liver Fat score) [6] (Table 1). These scores are
following the “candidate risk factor” approach, are in most cases based
on clinical and metabolic parameters (e.g. BMI, presence of T2DM, cen-
tral obesity) selected on the basis of best clinical judgement, and they
almost universally demonstrate suboptimal accuracy. Positive results
have to be further confirmed with ultrasound and thus their use has
been limited to date to epidemiological studies. Importantly, the
currently available scores and ultrasound can detect steatosis up to a
specific threshold but can poorly differentiate between the different
levels of it. Efforts focusing on measuring the controlled attenuation
parameter (CAP) with the M or XL-probes in ultrasound have reported
different thresholds and higher but still suboptimal accuracies for
steatosis level [7,8]. Magnetic resonance imaging derived proton den-
sity fat fraction (MRI-PDFF) is a very reliable method at predicting the
level of steatosis, but its high costs and demands for relevant equipment
and trained personnel limits its use to specific centers, thus rendering
the method inappropriate for general screening [9].

Significant advancements have been also observed for detection
of advanced liver fibrosis. Diagnostic scores such as FIB-4, NAFLD
fibrosis score (NFS), BARD and Aspartate aminotransferase to platelet
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ratio index (APRI) demonstrate acceptable but still suboptimal sensitivity
and specificity [10] (Table 1). Vibration-controlled transient elastography
andmagnetic resonance elastography (MRE) have shownhigh diagnostic
accuracy but are expensive and not widely available [11]. Finally, less
tools are available for non-invasively differentiating NAFL from NASH.
Cytokeratin-18 (CK-18) fragment has been mostly investigated, but its
rather limited sensitivity at the individual level, in combination with
the lack of a commercially available assay (certified for clinical pur-
poses) and the large variability in the reported diagnostic cut-offs
have significantly limited its clinical use [12,13]. Numerous, other
algorithms have been also developed (Supplementary Table) based on
selection of parameters according to their contribution in the pathogen-
esis of the disease in animal studies or their associationwith the risk for
disease progression in epidemiological studies, but none of them has an
established role in daily clinical routine. Thus, despite recent advances,
there is still a great need for highly accurate low-cost and easy-to-use
non-invasive models for differentiating NAFL from NASH and for
assessing liver fibrosis stage.

In addition to the important limitations in thediagnosis of NAFLD, no
specific and highly effective treatment exists. A large number of on-
going clinical trials are currently evaluating the efficacy of drugs that
act through multiple mechanisms on liver fibrosis. However, most of
the drugs that were aiming to improve liver fibrosis have failed so far.
This suggests that either a treatment is required in earlier stages of the
disease and before the establishment of advanced fibrosis or/and that
the efforts to understand the pathophysiologicalmechanisms of the dis-
ease in order to develop more effective drugs and combination treat-
ments should be intensified.

Omics technologies, the development of which has been signifi-
cantly advanced in the last few years, can potentially be used to further
investigate the pathophysiology of NAFLD, develop accurate diagnostic
methods and identify therapeutic targets (Fig. 1). Their main advantage
is that they can provide an enormous amount of data in a very short-
period of time and with an unbiased approach. The rapid evolution of
machine learning and artificial intelligence in the last years has also en-
abled the accurate analysis of large data sets produced by omics, leading
to an avalanche of NAFLD-related information.

In this review, we are presenting the most important findings of
omics studies and specifically of genomics, epigenomics, transcripto-
mics, metabolomics/lipidomics and glycomics in relation to the patho-
physiology, diagnosis and treatment of NAFLD, including our own
assessment of their future diagnostic and therapeutic potential.

2. Genomics

The emergence of high throughput sequencing and oligonucleotide
arrays has kindled a series of genome - wide association studies
(GWAS) and single nucleotide polymorphism (SNP) investigations
that highlight the pathobiological role of previously obscure genes in
the NAFLD spectrum (Fig. 2). For the purposes of this review, we will
emphasize on three major genes that have been explored in large and
diverse patient cohorts: PNPLA3, TM6SF2 and GCKR.

2.1. PNPLA3

PNPLA3 (Patatin-like phospholipase domain-containing 3) is located
in the 22q13 region of chromosome 22 and encodes adiponutrin, a pro-
tein with lipase and acyltransferase activity, expressed in liver and adi-
pose tissue [14]. Adiponutrin variant p.I148M (rs738409) affects
hepatic lipid composition by decreasing polyunsaturated fatty acid
(PUFA) transfer from diacylglycerols (DAG) to phosphatidylcholine
(PC), thus increasing PUFA content of triglycerides (TG) and DAGs
while impairing PC synthesis and hindering lipid droplet hydrolysis
[15]. PNPLA3 was first introduced in NAFLD pathophysiology when a
GWAS demonstrated a robust association of rs738409 C/G with
intrahepatic TG levels independently of Bodymass index (BMI), plasma
lipid indices and insulin resistance. The variant was reported in His-
panics (45%), Caucasians (33%) and African Americans (24%) [16]. A re-
cent GWAS confirmed its predominance in Hispanic patients [17].
Rs738409 is an established indicator of NAFLD risk with genome-wide
significance owing to conventional genotyping, bioinformatics [18–21]
and novel natural language processing algorithms [17,22]. Variants
such as rs2896019, rs381062 [19] rs738408, and rs374720 [22] possess
lesser significance.

Targeted genotyping delineates the effects of the rs738409 G-allele
on hepatic fat accumulation, independent of age or sex [23,24], BMI
[23–25], serum triglyceride and lipoprotein levels [23,25]. Positive asso-
ciations with serum gamma-glutamyltransferase (GGT) [16] and ami-
notransferase activities are also reported [16,24,26–28], indicating a
pro-inflammatory effect. A meta-analysis of 6071 NAFLD patients and
10,366 controls affirms rs738409 as a potent predictor of NASH risk
(odds ratio (OR)=4.44), in an additive model of all polymorphisms, in-
dependent of ethnicity and age [18].

Rs738409 is an important indicator of histologically-confirmed
steatosis [26]. G-allele carriage increases steatosis grade by 10% [24],
and elevates the risks of steatosis score ≥ 2 (OR=1.46), portal (additive
OR = 1.57) and lobular (OR = 1.84) inflammation, Mallory-Denk bod-
ies (OR=1.55), NAFLD activity score (NAS) N3 (OR=1.56) and fibrosis
(OR = 1.50) [26]. Similar findings are replicated in subsequent GWAS
[27] and SNP studies [28], with steatosis and fibrosis positively corre-
sponding to risk allele frequency. Of note, the collective impact of p.
I148M on steatosis, aminotransferases and fibrosis is enhanced by adi-
posity [29] and observed in pediatric cohorts [30]. Furthermore,
rs738409 G-allele carriers are prone to hepatocellular carcinoma
(HCC) (adjusted OR = 2.26, 5-fold risk for homozygotes compared to
C-allele carriers) [31] and have increased risk of liver failure and liver-
related death in fibrosis stage ≥3 [32].

2.2. TM6SF2

Located in 19p13, TM6SF2 (transmembrane 6 superfamily member
2) encodes a regulatory protein of VLDL secretion, expressed in
intestinal, renal and liver tissues [33,34]. TM6SF2 variant p.E167K
(rs58542926) affects PUFA biosynthesis and depletes PUFA from he-
patic polyunsaturated PCs and TGs while enriching polyunsaturated
Free Fatty acids (FFA),−yet reducing total FFA concentration-, thus im-
peding VLDL synthesis [34]. A GWAS of 86,704 patients first linked
rs58542926 to elevated liver fat and NAFLD susceptibility, albeit de-
creased levels of plasma LDL and TG. Reported frequencies were 7.2%
in Caucasians, 4.7% inHispanics and3.4% in African Americans [33]. Sim-
ilar associations for SNPs near TM6SF2 were previously reported [20].

Rs58542926-related NAFLD risk is significantly augmented by adi-
posity [29]. Rs58542926 is proinflammatory, being frequently corre-
lated with elevated serum aminotransferase activity [28,33] but not
GGT levels [28]. Histologically, a study of 1074 patients associates
rs58542926 carriage with steatosis and fibrosis stage, attaining mar-
ginal significance for steatosis (OR=1.38) [35]. Another SNP evaluation
of 320 NAFLD patients indicates increased risks of steatosis grade ≥ 2
(OR = 1.90) and fibrosis grade ≥ 3 (OR = 2.35), adjusted for age, gen-
der, BMI, T2DMand statin use [28]. Sookoian et al. illustrate positive cor-
relations with NAFLD risk, disease severity and steatosis degree, but
poor associations with inflammation, NAS, hepatocellular balooning
and fibrosis [36]. Notwithstanding, the allele influences cirrhosis and
predisposes to HCC in both unadjusted (OR = 1.92) [35] and adjusted
models for age, sex, obesity and diabetes, or fibrosis (OR = 1.99/2.80)
[37].

2.3. GCKR

GCKR (glucokinase regulatory protein), located in chromosome 2
[20], is expressed in liver tissue and inhibits glucokinase in hepatocyte
nuclei. GCKR p.P446L (rs780094) variant blunts this inhibitory effect in



Fig. 1.Main omics procedures used currently in medicine and in NAFLD research.

5N. Perakakis et al. / Metabolism Clinical and Experimental 111 (2020) 154320
response to fructose-6-phosphate, increasing glycolysis and glycogen
production while concomitantly stimulating de novo lipogenesis [38].
The first loci near GCKR were linked to NAFLD in a large GWAS by
Speliotes et al. [20]. Through multiple studies, rs780094 constitutes a
significant index of NAFLD risk in homozygotes (OR 1.27) [39] with
patient BMI further amplifying this effect [29]. The allele is mapped in
high-risk pediatric and adolescent cohorts and, alongside rs1260326, in-
creases fibrosis risk by 2.6-fold [30].

2.4. Other genes

Numerous additional genes are associated with NAFLD, including
MBOAT7, SERPINA1, APOB, IL28B, MERTK and HFE [40]. MBOAT (Mem-
brane bound O-acyltransferase domain-containing 7) rs641738 has
been mildly associated with fibrosis but not liver function or steatosis
[28] while it is also linked to inflammation [41] and NAFLD severity
(OR = 2.6) [21]. Carriage of its T-allele doubles the risk of NAFLD-
related HCC [37]. However, its alcoholic hepatitis-related effects are pri-
oritized in available literature.

Hepatoprotective genes are also investigated. For instance, a
large, replicated exome-wide analysis of N70,000 total individuals
demonstrates that homozygous carriage of HSD17B13 (17-b retinol de-
hydrogenase 13) minor variant rs72613567 T/A, diminishes the
PNPLA3-related risk of liver injury and attenuates the risks of NAFLD
NASH cirrhosis, by 30% and 49% respectively. [42].

2.5. Diagnostic-prognostic perspective

12 years after identifying PNPLA3 in NAFLD, research interest for ge-
nomics inmetabolic liver disease continues to soar. Recently, largeMRI-
PDFF-assessed [43], and histologically-proven GWAS [44] of N10,000
total patients each, re-affirmed the robust clinical and histological
genome-wide associations of PNPLA3, TM6SF2, GCKR, and HSD17B13.
Novel fibroinflammatory loci in SLC30A10 and SLC39A8were also stud-
ied [43]. However, a bench-to-bedside conversion of current results
through tangible diagnostic and therapeutic applications has yet to
take place.

PNPLA3 rs738409 constitutes the chief NAFLD predictor, adjusted for
known risk factors (OR= 3.12) [21]. Yet its addition in an early predic-
tive model of NAFLD, using routine variables, contributes trivially to
score accuracy (area under the receiver operator characteristics
(AUROC) = 0.866 and 0.872 respectively) [45]. PNPLA3 is included in



Fig. 2. Genomic, epigenomic and transcriptomic modifications in NAFLD pathophysiology. PNPLA3, TM6SF2 and GCKR are some of the most investigated genes in NAFLD. Adiponutrin
(PNPLA3) variant I148M (rs738409) impairs PUFA transfer from DAGs to PCs, thus increasing PUFA in TG and DAG. TM6SF2 E167K (rs58542926) impairs PUFA synthesis, increases
polyunsaturated FFAs and prevents PUFA incorporation into TGs and PCs. Both mechanisms lead to impaired VLDL synthesis and lipid droplet hydrolysis. GCKR P446L (rs780094)
incites glycolysis, glycogen deposition and de novo lipogenesis by disinhibiting glucokinase. Epigenetic modifications characteristic of NAFLD progression include CpG site
hypermethylation, thus reduced expression, of genes pertaining to lipid and aminoacid metabolism and stellate cell inhibition. Hypomethylation, thus increased expression, of genes
pertaining to tissue repair, inflammation, carcinogenesis and fibrogenesis, increases insulin resistance and further propagates the disease. Methylation levels of cytoskeletal,
transcriptional, proliferation-related and metabolic genes are affected by age, fasting glucose levels and body weight. At the histone level, depletion of sirtuins 1 and 3 and HDAC3 may
propagate NASH and increase susceptibility to MetS, insulin resistance and hyperlipidemia. On the other hand, the glucose-activated HAT p300 activates ChREBP and thus precipitates
stellate cell activation, elevates lipogenic gene expression and expedites steatosis, though these effects can be attenuated by tannic acid. Finally, the NAFLD transcriptome is
characterized by overexpression of lipid metabolism, cellular stress, division and adhesion, extracellular matrix production and repair, cancer progression and immunomodulatory
genes, whereas several pro-metabolic and insulin signaling genes are downregulated. miRNAs, especially miR-122, miR-192 and miR-34a, are linked to steatosis, cholesterol
metabolism, liver cancer, atherogenesis and MetS, whereas other noncoding molecules, such as lncRNAs, are indicators of NASH grade and hepatocellular viability.
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the NASH Score (Aspartate transaminase (AST, insulin, PNPLA3 geno-
type) and the ClinLipMet Score (NASH Clin Score, metabolomic and
lipidomic variables) with AUROCs of 0.778 and 0.866 respectively, yet
its contribution to NASH prediction is not underlined [46]. In a more re-
cent phenome-genomewide study of 27,744 patients, clinical data (age,
sex, BMI, blood counts) comprise a fitter NAFLD predictor than
rs738409 genotyping (AUROC = 0.785 and 0.574 respectively) and
have 34% higher sensitivity compared to genotyping alone. Even though
rs738409 carriage was associated with 3.1 years earlier NAFLD detec-
tion, its addition does not markedly amplify the forecasting model
(AUROC= 0.788) [17].

Cumulative genetic risk scores (GRS) are frequently discussed
(Table 2). A GRS of previously mentioned SNPs in PNPLA3, TM6SF2,
GCKR and MBOAT7 indicates a 3-fold increase in NAFLD risk starting
from its second tertile [21]. When coupled with a multivariate insulin
resistance score, a GRS of PNPLA3 and TM6SF2 SNPs detects NAS ≥ 3
(AUROC = 0.74) and fibrosis ≥3 when age included (AUROC = 0.82),
yet GRS alone have AUROCs of ≤0.65 [41]. PNPLA3 and TM6SF2 polymor-
phisms are also included in a novel NASH score alongside diabetes,
insulin resistance, AST and C-reactive protein levels, which predicts
NASH more effectively compared to the older NASH Score (AUROCs of
0.787 and 0.729 respectively) and has enhanced accuracy in diabetic co-
horts (AUROC=0.835) [47]. Lastly, a recent investigation of 445,452 in-
dividuals formulates a GRS comprising PNPLA3, TM6SF AND HSD17B13
SNPs. A maximum risk score of 6 designates a 26% increase in alanine
aminotransferase (ALT) levels and a pronounced risk of cirrhosis and
HCC (OR = 12 and 29 respectively) [48].

Genetic testing in NAFLD is currently not recommended by the
American Association for the Study of Liver Diseases [49]. Thus far,
genomics have not identified a consistent marker that reflects the ac-
curate histologic features of NAFLD, partially owing to limited popu-
lation sizes, inconsistent NAFLD validation methods and scarcity of



Table 2
Main genomics, epigenomics and transcriptomics-based diagnostic models of NAFLD.

# N Comparisons Prediction models Sensitivity Specificity AUROC

Steatosis/Any NAFLD
[45] D: 313

V: 157
C vs NAFLD PNPLA3, MetS, T2DM, fasting insulin,

AST, AST/ALT
D: 86%
V: 84%
Total: 85%

D: 71%
V: 69%
Total: 70%

D: 0.87
V: 0.86
Total: 0.87

[17] 8204 C vs NAFLD PNPLA3, age, sex, 6 principal components 0.79
[112] Transc: 40

D: 242
V: 183

C vs NAFLD miR-122-5p, miR-1290,
miR-27b-3p, miR-192-5p

D: 86%
V: 90%

D: 73%
V: 76%

D: 0.86
V: 0.89

[233] 446 a) C vs S b 34%
b) C vs S 34–66%
c) C vs S N 66%

11-SNP scoring model a) 0.83
b) 0.94
c) 0.93

NAFL vs NASH
[46] D: 223

V: 95
Non-NASH vs NASH NASH ClinLipMetScore:

AST, insulin, PNPLA3 genotype, glutamate,
isoleucine, glycine, LPC 16:0, PE 40:6

Total: 86% Total: 72% D: 0.88
V: 0.86
Total: 0.87

[108] 53 a) C vs NAFL
b) NAFL vs NASH

a) miR-16
b) miR-34a

a) 0.96
b) 0.76

[113] 300 a) C vs NAFLD
b) NAFL vs NASH

a) miRNA-122
b) miRNA-99a

a) 92%
b) 94%

a) 85%
b) 96%

a) 0.92
b) 0.91

[117] 198 a) NAFL vs NASH miR-122, miR-192, miR-21, and CK-18 M30
fragment

91% 83% 0.83

[41] 177 NAS b3 vs NAS ≥ 3 PNPLA3, TM6SF2, age and enhanced lipoprotein
insulin resistance index

48% 86% 0.82

[47] D: 302
V: 151

NAFL vs NASH PNPLA3, TM6SF2, diabetes, HOMA-IR, AST, CRP D: 88%
V: 97%
Total: 91%

D: 68%
V: 39%
Total: 58%

D: 0.86
V: 0.79

[80] 35 NAFL vs NASH DNA methylation of blood leukocytes in SIGIRR 71% 99% 0.88

NAFL vs NASH vs Fibrosis
[88] Transc: 125

D: 71
V: 160

a) C vs NAFLD
b) C vs NAFLD (F ≥ 2)

IL-32 (transcriptomics-identified), ALT and AST a) D: 94%
V: 93%
Total: 97%
b) D: 21%
V: 50%
Total: 51%

a) D: 68%
V: 86%
Total: 74%
b) D: 65%
V: 82%
Total: 85%

a) D: 0.85
V: 0.95
Total: 0.92
b) D: 0.88
V: 0.69
Total: 0.72

[103] 209 a) NAFL vs NASH
b) NAFL vs Fibrosis

miR-122 a) 0.71
b) 0.61

[116] 687
D: 220
V: 467

NAS b 4 & F b 2 vs
NAS ≥ 4 & F ≥ 2

NIS4: miR-34a, CHI3L1, HbA1c, a2-macroglobulin D: 68%
V: 74%
Total: 76%

D: 77%
V: 82%
Total: 76%

D: 0.81
V: 0.81
Total: 0.82

Fibrosis
[79] 26 F0-F2 vs F3-F4 DNA methylation of PPARγ 83% 93% 0.91
[91] D: 72

V:17
F0-F1 vs F3-F4 a) 64-gene profile

b) 20-gene subset
b) V:
Accur = 94%

a) D: 0.98

[99] Transc: 12
V1: 88
V2: 50

a) F0-F2 vs F3-F4
b) NAS ≤ 4 vs ≥ 5
c) NASH (Y vs N)

a) TGFB2/TGFB2-overlapping transcript 1 plus
liver stiffness measurement
b, c) RP11-128N14.5 lncRNA

a) 80%
b) V1: 74%
V2: 78%
c) V1: 87%
V2: 53%

a) 91%
b) V1: 70%
V2: 63%
c) V1: 39%
V2: 4%

a) 0.89
b) V1: 0.71
V2: 0.69
c) V1: 0.63
V2: 0.65

Meta-analysis
[234] 4036 a) NAFLD (Y vs N)

b) NASH (Y vs N)
c) NASH vs NAFL

miR-122
miR-99a
miR-34a
Pooled miRNA panel

a) miR-122: 84%
miR-99a: 82%
miR-34a: 81%
Pooled:
a) 71%
b) 74%
c) 83%

a) miR-122: 72%
miR-99a: 82%
miR-34a: 83%
Pooled:
a) 76%
b) 85%
c) 85%

a) miR-122: 0.86
miR-99a: 0.87
miR-34a: 0.85
Pooled:
a) 0.80
b) 0.86
c) 0.91

C, controls/healthy; D, Discovery; N, No; S, Steatosis; Transc, Transcriptomics; V, Validation; Y, Yes. Sensitivities and specificities represent authors' chosen cutoff values; whenever optimal
cutoffs are not specified, values with greater sensitivity are included. Whenever multiple scores are available for each comparison, the highest-performing scores are selected.
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biopsy-confirmed models. Most importantly, genomics are not dy-
namic processes, thus they cannot reflect the impact of environmen-
tal factors (high caloric intake, presence of obesity, T2DM etc.) in the
pathogenesis and progression of NAFLD. Multi-gene models are
promising tools of patient risk stratification but require additional
validation.

2.6. Therapeutic perspective

PNPLA3 has also been investigated through early genetic interven-
tions. Pre- and post-translational silencing of PNPLA3 in p.I148M
knock-in mice challenged with a sucrose-rich diet drastically improves
intrahepatic fat profiles [50,51]. Additionally, PNPLA3 silencing amelio-
rates steatosis and NAS independent of genotype, and improves inflam-
mation, fibrosis and levels of acute phase, chemo-attractant and
pro-fibrotic proteins, in p.I148M knock-in mice fed a NASH-inducing
diet [51]. However, PNPLA3 protects from hypercholesterolemia, gall-
stones, gout and acne in humans [52], therefore future pilot studies
must be carefully considered. TM6SF2 is another possible target, yet its
substantial cardioprotective effects [53] indicate the complexity of
such an approach, since the chief cause of death in NAFLD patients is
cardiovascular disease [49].
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Patient genotyping prior to therapeutic scheme initiation implies
compelling curative applications. For instance, PNPLA3 p.I148M carriers
would not respond to statins and inhibitors of de novo lipogenesis, in
contrast to TM6SF2 and GCKR carriers [54]. Moreover, HSD17B13 has
already been implied as a therapeutic target [42], while it was recently
established that carriage of HSD17B13 rs6834314 diminishes the
fibrotic effects of PNPLA3 rs738409, thus indicating a novel objective
for pathway-targeting therapies [55]. Further research could uncover
powerful hierarchical and therapeutic tools in NAFLD genomics,
jumpstarting a new era of clinicogenomics.

2.7. Conclusion – clinical perspective

Genomics are the first and one of the most extensively investigated
omics so far. They have provided robust evidence validated by multiple
studies about the causal relationship of certain common SNPs with de-
velopment and rapid progression of NAFLD. Given the continuous
evolvement of personalized medicine, we expect the information from
genomics to be used in the near future for identifying the patients at
higher risk for presenting a more aggressive course of disease and/or
for potentially predicting the response to specific treatments. These
may justify more intensive follow-ups or guide treatment decisions in
high-risk populations. Sfince genomics are not dynamic processes and
do not reflect the effects of environmental factors on NAFLD, we see
less potentials for them as diagnostic markers and we expect for them
to have only a small, if any, contribution in non-invasive diagnostic
tests. Finally, due to the technical and clinical challenges related to
gene-engineering as well as due to the complex pathophysiology of
the disease, we recognize at themoment limited perspectives in the de-
velopment of gene therapies for NAFLD.

3. Epigenomics

Epigenomics investigates the epigenetic modifications on cellular
genetical material. Several studies have assessed the impact of epige-
netic modifications in the development and progress of NAFLD (Fig. 2)
as well as in the association of NAFLD with other metabolic diseases
by focusing on DNAmethylation, histone modifications and miRNA ex-
pression profiles that can significantly affect transcriptional activity.

3.1. Pathophysiology

Significant alterations in DNAmethylation are observed when mov-
ing fromNAFL toNASHand liver fibrosis [56–58]. These changes include
alterations in DNA methylation that affect the expression of genes in-
volved in glucose, lipid or acetyl-coenzyme A (CoA) metabolism (PC,
PLCG1, ACLY) [57], insulin-like signaling (e.g. IGF-1, IGFBP2) and mito-
chondrial function (NADH dehydrogenase 6) [59]. Additionally, given
that a specific DNA methylation signature develops with increasing
age in humans, NASH seems to accelerate epigenetic age by promoting
changes in methylation that are associated with hepatic collagen
content [60]. An untargeted evaluation of DNA methylation in liver tis-
sues of patients with NAFLD identified almost 70,000 CpG sites that
were differentially methylated in patients with advanced liver fibrosis
(F3-F4) compared to those with no or mild fibrosis (F0-F1). 76% of
these sites were hypomethylated and 24% were hypermethylated in
advanced liver fibrosis in NAFLD, whereas 7% of the reported methyla-
tions correlated with gene expression levels. The hypomethylation
was associated with higher expression of genes related to tissue repair,
liver inflammation, fibrosis and carcinogenesis (e.g. FGFR2, COL1A1,
CASP1, CCR7, CCL5) whereas the hypermethylation with lower expres-
sion of genes involved in lipid and aminoacid metabolism [56,61].
These findings were also replicated in other studies [62]. DNAmethyla-
tion seems to be particularly involved in the activation of hepatic stel-
late cells and their differentiation to myofibroblast that are crucial
procedures for hepatic fibrogenesis [63,64]. Changes in methylation of
specific genes have been linked with these processes. Genes promoting
fibrogenesis such as TGFβ1 and PDGFα are hypomethylated and thus
highly expressed whereas genes inhibiting hepatic stellate cells activa-
tion such as the PPARα, PPARδ and PPARγ are hypermethylated and
thus lower expressed in the liver of patients with advanced fibrosis
compared to the ones with mild disease [65,66].

Apart from their involvement in NAFLD development and progress,
hepatic alterations in DNA methylation may be associated with sys-
temic metabolic outcomes. Specifically, a case-control study in NAFLD
patients has shown that increased methylation in specific sites of the
promoter of the PPARGC1A, which encodes themajor regulator ofmito-
chondrial biogenesis, is associated with lower mRNA expression of
PPARGC1A in the liver, lower ratio of mitochondrial to nuclear DNA
and increased insulin resistance, thus linking hepatic mitochondrial
dysfunction of NAFLD with peripheral insulin resistance [67]. In agree-
ment with the above finding, a study following untargeted procedures
has identified 30 methylations that are affecting mRNA expression of
hepatic genes involved in insulin signaling that are also highly corre-
lated with fasting insulin independently of the presence of T2DM, thus
providing further evidence for the relation of hepatic DNA methylation
with insulin sensitivity [58]. Finally, a recent study focused on the iden-
tification of differentially methylated regions that form networkswhich
are associated with the progression of NAFLD. They identified two im-
portant networks, one that included genes that affect cytoskeleton orga-
nization, transcriptional activity and cell proliferation and another that
was associated with metabolic pathways. The CpG methylation levels
in both networks were affected by age and fasting plasma glucose levels
and for the second network the changes inmethylation levelswere par-
tially corrected by controlling weight and blood glucose levels [68].

Histone modifications are also important epigenetic changes that
affect transcriptional activity and refer to several posttranslational
procedures such as acetylation, phosphorylation, methylation and
ubiquitination. Among them, acetylation status has been most vigor-
ously studied and is considered the net result of histone acetylation by
histone acetyltransferases (HATs) and histone deacetylation by histone
deacetylases (HDACs) [69]. Acetylation neutralizes lysin's positive
charge, thus leading to a looser chromatin structure that facilitates tran-
scription. The transcriptional coactivator p300 belongs to HAT proteins,
whereas sirtuins belong to NAD-dependent class III HDACs.

Glucose-induced activation of p300 increases the transcription of
carbohydrate-responsive element-binding protein (ChREBP) resulting
in the stimulation of lipogenic genes through histone acetylation and
thus promoting the development of NAFLD [69]. Tannic acid attenuated
the effects of p300 leading to a decrease in the lipogenesis-related genes
and to an improvement of NAFLD in mice [70]. Similarly, inhibition of
cdk4 protein reduces the formation of C/EBPα – p300 complexes reduc-
ing liver steatosis and correcting age-associated liver changes [71]. P300
may also be involved in the activation of hepatic stellate cells and their
transdifferentiation to myofibroblasts [72]. Among the Sirtuins, espe-
cially Sirtuin 1 (SIRT1) has been shown to participate in the regulation
of hepatic metabolism and insulin sensitivity, with hepatic deletion of
SIRT1 resulting in steatosis and inflammation, whereas overexpression
of SIRT1 protecting from NAFLD [73–75]. Similarly, SIRT3 deficiency
leads to insulin resistance, hyperlipidemia and steatohepatitis in mice
[76]whereas a polymorphismof SIRT3 is associatedwithmetabolic syn-
drome and NAFLD in humans [77]. HDAC3, a member of human class I
HDACs has been also implicated with circadian metabolic rhythm and
its deletion leads to hepatic steatosis in mouse liver [78].

Altogether, there is increasing evidence that both DNA methylation
as well as histone modifications play a crucial role in the development
and progress of NAFLD.

3.2. Diagnostic perspective

An important question is whether the numerous epigenetic changes
observed in NAFLD in combination with the highly dynamic nature of
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epigenome can serve as diagnostic or prognostic markers of NAFLD or
even as markers of treatment response. Very few studies have ad-
dressed this point so far. One of them that included a small number of
patients with NAFLD has shown that alterations in hepatic DNAmethyl-
ation may be sufficiently reflected in plasma. In this study, % of plasma
DNA methylation of PPARγ was used to identify subjects with severe
(Kleiner 3-4) vs mild fibrosis (Kleiner 1-2). The threshold of methyla-
tion was 81% and demonstrated 83% sensitivity and 93% specificity to
differentiate between the two above categories [79]. Although valida-
tion of the findings in largest andmore heterogenous cohorts is needed,
it is one of the first studies to suggest that changes in DNA methylation
can have beyond their pathophysiological significance also value as po-
tential non-invasive biomarkers for the diagnosis and staging of NAFLD.
A second study has also investigated differences in methylation of DNA
from peripheral blood leukocytes that may be able to discriminate be-
tween NASH vs NAFL. The study identified six genes that their methyl-
ation correlates with lobular inflammation and can be potentially used
as diagnostic biomarkers (with the best one showing 99% specificity
and 71% sensitivity) for differentiating NASH from NAFLD [80]. Finally,
in a large epigenome-wide association study consisting of 3400 partici-
pants of European ancenstry, 22 CpGswere found in peripheral blood to
be associated with hepatic fat as assessed by computed tomography or
ultrasound imaging and among them one was also associated with risk
for new-onset T2DM [81]. Nevertheless, significantly more and larger
studies are needed in order to decide whether epigenetic changes in
the blood can have any diagnostic or prognostic value.

3.3. Therapeutic perspective

Targeting epigenomic changes for the treatment of diseases seems to
be theoretically a very attractive option for a number of reasons. First,
epigenomic alterations are involved in fundamental pathophysiological
mechanisms of a disease through their impact on gene expression.
Second, epigenetic changes are also highly dynamic and reversible,
thus correction of them holds promise for reversal to “normal status”.
For example, after bariatric surgery, robust changes in methylation
have been reported. Hypermethylation and consequently reduction of
transcriptional activity of PTPRE (encoding protein-tyrosine phospha-
tase epsilon) may improve hepatic insulin sensitivity [57]. Exercise
may also reduce methylation and improve mRNA levels of mitochon-
drial genes, thus improving mitochondrial function [59]. Third, it may
be possible to combine treatments targeting epigenome with other
drugs, having in that case a complementary role. Such treatments are
currently being developed mainly against cancer diseases and consist
of pharmacological DNAmethylation inhibitors (DNMTis), HDAC inhib-
itors (HDACis) or activators. In NAFLD very few of them have been
tested so far. Among them, the SIRT1 activator, resveratrol, improved
dyslipidemia and steatohepatitis in a mouse model of atherogenic
NAFLD [82]. Several on-going human clinical trials (two of them in
Phase III) are currently investigating the efficacy of resveratrol in
human NAFLD but results from the first studies have shown no signifi-
cant effect on hepatic fat content [83–85]. Other medications are
currently also being developed and have shownpromising results in an-
imal studies, such as the 3-deazaneplanocin A (DZNep) [86] or the
HDAC inhibitor SAHA but none of them is in a more advanced stage of
clinical development [87].

3.4. Conclusion – clinical perspective

Epigenomics are one of the least investigated “omics” in NAFLD. The
few studies performed so far have shown that the extensive hepatic
epigenetic modifications observed in NAFLD are causally related to the
disease. It is still unclear though how accurately the hepatic epigenome
is reflected in peripheral blood and thus it is questionable whether
epigenetic changes studied at the level of peripheral blood cells may
have any significant diagnostic value. Given also the limited amount of
information from pathophysiological studies investigating the dynamic
of epigenetic changes with NAFLD development and progression, it is
probably premature to expect any drugs to be developed in order to tar-
get exclusively epigenome of NAFLD in the near future.

4. Transcriptomics

Transcriptomics refers to the quantitative assessment of all coding
and non-coding RNA transcripts and reflects cellular transcriptional
activity. The NAFLD transcriptome bridges genetic information to the
steatotic, inflammatory and fibrogenic proteome profiles. Flexible mo-
dalities, such as RNA sequencing and microarrays, have outlined the
roles of both regular and non-coding transcriptional components. Sev-
eral ongoing efforts have been focusing on developing predictive
models for NAFLD andNASH, albeit they have to overcome several chal-
lenges observed in all „omics” procedures (s. also Section 8. Conclusions
– Challenges –Perspectives).

4.1. Gene expression and transcriptome profiling

Genetic predisposition determines NAFLD transcriptomic signa-
tures, as shown by recent investigations on the carriage of PNPLA3
I148M on transcriptome variability [88]. As described above, tran-
scriptomics are also linked to epigeneticmodifications inNAFLD [56,57].

Through global microarray transcriptional snapshots, NAFLD and
especially NASH are characterized by overexpression of genes asso-
ciated with lipid metabolism [89–92], acute phase regulators of insu-
lin sensitivity [93], cellular division [89], DNA [89] and tissue repair
[56], extracellular matrix organization [91,94–96], immune function
[95] cellular adhesion and migration [91,92,96], signal transduction
[91], P53 signaling [92] and cancer progression [96] among others
(Fig. 2). Conversely, genes modulating mitochondrial function [93]
oxidative, glucose, fatty acid and aminoacid or protein metabolism
[56,91–93,96,97] as well as insulin signaling and transcription fac-
tors [91,94] are downregulated.

The implementation of large databases for differential gene
expression links NAFLD with overexpression of CD24, COL1A1, LUM,
THBS2 and EPHA3 and underexpression of PZP mRNAs [92]. Hepatic
transcriptomes of NAFLD are distinct from those of normal and healthy
obese subjects, yet a 132-gene signature, with extracellular matrix re-
modeling and immune system genes as its main components, distin-
guishes NASH from simple steatosis [95]. More specifically, the
transcriptional snapshot of NASH is defined by upregulation of PDGF,
STAT, HNF-3 and SMAD-4 pathway-related genes [97], as well as down-
regulation of BNIP1, IGFBP1 [97], SLC25A48, C4ORF48 [95] SDC4, ATF3,
various inflammatory suppressors [94] and amino acid-metabolizing
and reactive oxygen species (ROS) scavenger genes [97]. Interleukin-
32 (IL-32) was recently ascertained as the most significantly upregu-
lated transcript in advanced NAFLD and NASH (fold-change = 2.3 vs
non-NASH), correlating with lipid accumulation and disease severity
[88]. Additionally, several cancer-related genes, such as AKR1B10,
KRT23 and GPC3, are enhanced in NASH compared with NAFL or con-
trols, by up to 155-fold and 460-fold respectively [96].

Concerning fibrosis, cross-sectional transcriptome analysis of he-
patic cells defines 3820 and 2980 differentially expressed transcripts
for the inflammatory andfibrotic states, respectively, and further under-
lines 16 fibrosis-defining genetic routes, pertaining to cytokine and ex-
tracellular matrix receptor interaction, focal adhesion and the PI3K-Akt
signaling pathway [98]. Differentially expressed microarray signals,
such as UBE2V1, BNIP3L, RP11-128 N14.5, linked to oxidative stress, in-
flammation, apoptosis and fibrogenesis, are upregulated in NAS ≥ 5
and fibrosis stages 3–4 [99]. Likewise, transcriptomics pinpoint
dermatopontin, a propagator of extracellular matrix remodeling,
which is robustly expressed (by 800-fold) in murine stellate cells, en-
hanced in human fibrotic livers and implicated in NAFLD fibrogenesis
[100].
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4.2. MiRNAs and non-coding RNAs

Minor molecules such as micro-RNAs (miRNA) along with long
noncoding RNAs (lncRNA) perform a variety of epigenetic and post-
transcriptional functions, thus significantly affecting transcriptional ac-
tivity in numerous diseases and among them also NAFLD [101]. For
this reason, they are also considered important epigenetic modifiers.
These processes are thoroughly delineated through large panels of
differential miRNA expression [102–104] while the distinct NAFLD-
related roles of miRNA subspecies were recently reviewed [101,105].
Of note, microRNA-122 (miR-122), deriving from chromosome 18, rep-
resents 70% of hepatic miRNA and has been implicated in cholesterol
metabolism and liver cancer [106]. Cheung et al. first mapped a 63%
underexpression of liver miR-122 in NASH patients compared with
controls, through an evaluation of a 474-miRNA panel that identified
46 differentially expressed miRNA species and their corresponding
targets [104]. MiR-122 was subsequently associated with steatosis se-
verity [107]. The diminished liver expression of miR-122 in NASH is
confirmed in a study of 84 miRNA species by Pirola et al., whereas
serum miR-122, miR-192, miR-19 (a,b), miR-125b (associated with
metabolic syndrome, atherogenesis and circulation) [103] as well as
miR-34a, miR-16 (associated with cancer) [108], miR-21 and miR-451
[107] are upregulated in both NAFLD and NASH. Moreover, miR-301a,
miR-34a and miR-375 alter lipid and carbohydrate metabolism, reflect
NAFLD severity and are implicated in hepatocellular carcinomas [102].

Expression levels of lesser non-coding molecules have also been in-
vestigated [99,109,110]. Global hepatic RNA profiling has identified 535
lncRNA and 760 mRNA species overexpressed in NAFLD, whereas 1200
lncRNA and 725 mRNA species are underexpressed. These enriched
RNAs chiefly belong to small molecule and organic acid metabolic path-
ways [109]. Functional transcriptome research of 4383 lncRNA species
by Atanasovka et al. pinpoints elevated levels of hepatic lncRNA RP11-
484N16.1 in NASH, and robustly associates it with NASH grade, lobular
inflammation andNAS,while its knockdown in vitro aggravates hepato-
cellular growth and viability [110]. Identified and validated through
whole serum transcriptome analysis, lncRNA RP11-128N14.5 has been
linked to NASH diagnosis and is upregulated in NAS ≥ 5 [99]. Further-
more, transport RNA (tRNA) profiling pinpoints the differential expres-
sion levels of several anticodons for lysine, aspartate and glutamate in
cirrhosis, in addition to various mitochondrial and amino acid tRNAs
in cirrhosis versus NASH and NASH cirrhosis versus normal respectively
[102]. The same study has also compared the abundance of 392 several
small RNAmolecules (ribosomal, small nuclear and nucleolar) between
healthy, NASH and cirrhotic patients [102].

4.3. Diagnostic perspective

Various predictivemodalities involving gene expression parameters,
targeted measurements andmiRNA panels with increased functionality
are based on transcriptomics. In general, the reported accuracies for
many of these tests have been high for diagnosing NAFLD or NAFL
from healthy status but rather low for differentiating NAFL from NASH
or for diagnosing advanced fibrosis. Additionally, even themost promis-
ing studies, have not been further tested or have performed poorly in
other cohorts.

Among them, predictive models based on miRNAs have in theory
higher chances to be robust and reproducible, since miRNAs can with-
stand numerous freeze-thaw cycles and long-term storage before
degrading [111]. Several studies have identified miR-122 as a potential
diagnostic biomarker. Most of them have shown that miR-122 alone
or in combination with other miRNAs (e.g. miR-1290, miR-27, miR-
192, miR-34, miR-99a) can accurately predict the presence of NAFLD
or NAFL, but they all perform inadequately when trying to differentiate
NAFL from NASH [103,108,112–114] (Table 2). Several diagnostic tests
have been developed that include miRNAs together with other proteins
in their algorithm. Among them, NIS4™, which includes miR-34a,
alpha-2-macroglobulin, chitinase-3-like protein 1, has been recently
tested in a population with type 2 diabetes (n = 275), showing an
AUROC performance of 0.801 for diagnosing advanced NASH (NAS ≥
4) and significant fibrosis (F ≥ 2), which was also higher than in other
tests, such as FIB4 (0.704), ELF (0.704) or Fibrometer (0.678) but prob-
ably still suboptimal [115]. Additionally, the same test demonstrated
76% sensitivity and specificity in detecting NASH patients at risk of cir-
rhosis [116]. Another model integrating miR-122, miR-192, miR-21
and CK-18 fragments, can differentiate NASH from NAFL (AUROC =
0.83) [117] (Table 2).

New frontiers, such as circular RNA (circRNA) transcriptomics, are
being investigated in animals. Researchers have already mapped and
correlated circRNA species and their corresponding transcriptional
pathways in mouse models of NASH, showcasing their associations
with metabolism [118] and stellate cell activation [119]. Yet whether
these results could yield meaningful conclusions that can be extrapo-
lated in human cohorts remains unclear. Other prospective research
questions in diagnostic NAFLD transcriptomics concern alternative
RNA splicing [120] and the scrutiny of unexplored transcriptional com-
ponents, such as CD24 [92].

4.4. Therapeutic implications

Curative and bedside implications of transcriptomics in NAFLD are
considerably limited. From an interspecies aspect, the human and
murineNAFLD transcriptomes are largely dissimilar, yet their likelihood
increases in murine models following high-fat diets [90]. Hence the
transcriptional signatures of NAFLD or NASH as well as the organic
transcriptomic responses to relevant treatments for liver disease can
be evaluated by numerous available pre-clinical in vitro prototypes
and animal models [121]. For instance, mapping of the murine NASH
transcriptome demonstrated an increase in the levels of Tsukushi, a
novel adipose-related thermogenetic and metabolic hepatokine.
Subsequent silencing of Tsukushi improved NASH and attenuated the
hepatic transcriptional alterations associated with it [122]. Transcripto-
mics were also implemented in recent murine models assessing the
NAFLD-related role of Poly rC binding protein 1, a cytosolic iron chaper-
one, whose deficiency exacerbates steatosis and inflammation, in-
creases lipid biosynthesis and oxidative stress pathway expression
levels, and is treated via reduced iron intake and vitamin E supplemen-
tation [123]. Lastly, in view of the COVID-19 pandemic, the expression
levels of 4 SARS-COV-2 entry proteins were assessed by liver tran-
scriptomics in human and murine NAFLD and NASH cohorts, with no
significant changes being detected [124]. Future transcriptomic modal-
ities should approach all different phases and components of transcrip-
tion, kindle research for new remedies, and investigate the associations
of liver disease with various pathologies precipitated by its metabolic
milieu.

4.5. Conclusion – clinical perspective

Transcriptomics have beenwidely used and have contributed signif-
icantly to our understanding of the pathophysiology of NAFLD. Tran-
scriptomics, with the exception of miRNAs, do not add significant
value in non-invasive diagnostic scores, since their hepatic profile is
not adequately reflected in peripheral blood. With the rapid improve-
ment of available technologies and data analysis, transcriptomics are
now routinely used in order to identify potential mechanistic pathways
affected by drug candidates for the treatment of NAFLD.

5. Proteomics

Proteomics refers to the investigation of “proteome”, thus to all pro-
teins expressed by a cell. The proteome, similar to transcriptome and
epigenome, is highly dynamic. Cell activation, trafficking, differentiation
or transformation as well as tissue type have a major impact on the
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proteome. Additionally, posttranslational modifications (phosphoryla-
tion, acetylation, methylation, glycosylation etc.) as well as alternative
splicing render proteome much more complex than transcriptome,
with N120,000 proteins being expressed by a human cell. Finally, the
proteome is downstream of genome and transcriptome, and thus it is
stronger associated with the final phenotype [125].

Proteomic analyses have been performed for cell line - characteriza-
tion or for protein investigation and identification in tissues under spe-
cific conditions or treatments, but their use has been in general rather
limited, especially for biomarker or drug discovery [126]. There are sev-
eral reasons for this. First, significant technical limitations exist that re-
strict the number of proteins that can be detected and can be identified
with certainty. The first efforts involved two-dimensional gel electro-
phoresis and were able to detect some few dozens of spots that were
subsequently matched to specific proteins with the use of MS. Later ap-
proaches managed to detect more protein peaks without though being
able to identify the corresponding proteins. Advances in methods have
enabled in the last years the identification of some thousands of pro-
teins but still the largest part of proteome cannot be investigated with
certaintywith the available technologies. Second, reliable quantification
of the levels of proteins, especially in blood has been very challenging. In
plasma, three classes of proteins mainly exist: a) the highly abundant
proteins, that include human serum albumin (approximately 50% of
protein mass), apolipoproteins, coagulation markers and acute phase
proteins of the immune system, that are measured in mg to ug/ml
level, b) the organ-tissue secreted proteins without functional role in
the circulation such as ALT, AST or troponins, measured in ug to
ng/ml, c) the signaling molecules, such as cytokines or insulin, mea-
sured at ng to pg/ml level. This extreme range enables to identify no
more than a few hundreds of the most abundant proteins. Conse-
quently, several techniques with the use of monoclonal or polyclonal
antibodies or plasma fractionation have been used to deplete most of
the abundant proteins and focus on the organ-tissue secreted ones
and on the signaling molecules. However, these methods can signifi-
cantly impact the circulating levels of proteome (e.g. by non-specific
binding of antibodies or due to differences in separation) thus leading
to unreliable quantifications of final protein concentrations which re-
duces massively the reproducibility of the findings. Finally, proteomics
measurements, in contrast to other procedures (e.g. transcriptomics,
genomics or metabolomics) are labor intensive. Thus, most of the stud-
ies performed so far have been in very small study populations. These
studies have led in some cases to the identification of potential bio-
markers, which were though not further validated in independent
cohorts.

While keeping inmind the above limitations,we next present the ef-
forts to identify pathophysiological pathways and develop diagnostic
models for NAFLD with the use of proteomics.

5.1. Pathophysiology

Several studies have investigated hepatic proteome alone or in com-
bination with blood proteome, either in animal models or in humans
with NAFLD, aiming to answer fundamental pathophysiological ques-
tions [127–129]. In one recent study, the levels and cellular distributions
of 6000 liver proteins and 16,000 phosphopeptides have been assessed
in the liver of mice developing hepatic steatosis due to high fat diet
(HFD). This provided important fundamental information about the re-
organization of organelles, lipid accumulation and cellular dysfunction
that occurs with nutrient overload [129]. In another study, proteomics
in liver biopsies identified almost 220 proteins that their levels signifi-
cantly differ in patients with NAFLD compared to obese metabolically
healthy individuals. The proteins that their levels were increased in
NAFLD were involved in PPAR-signaling and extracellular matrix-
receptor interactions whereas the ones that their levels were reduced,
were mainly localized in mitochondria and participated in oxidative
phosphorylation [128]. In a combined hepatic phosphoproteome and
serum proteome analysis of 67 biopsy-proven NAFLD subjects, the
ASK1-MAPK pathway that is activated by IL-10 was recognized as im-
portant for liver fibrosis, indicated by its strong association with higher
% of hepatic collagen. In serum, alpha-2 macroglobulin and coagulation
factor Vwere strongly associatedwith hepatic collagen [127]. It has thus
been suggested that these pathways can potentially serve as therapeutic
targets. In another approach, proteomic differences in liver tissues of
obese patients with vs without T2DM were investigated. The analysis
identified 850 proteins, from which 27 were significantly different
between the two groups. Levels of proteins involved inmethionineme-
tabolism and especially of glutathione were reduced whereas levels of
other proteins involved in oxidative stress were increased in the
T2DM group [130]. Expanding on complications of the disease, the pro-
teome of liver tissues with NAFLD frommice developing HCC has been
assessed. Differences in tumor suppressor genes and oncogenes were
observed, which were further investigated in human samples with
NAFLD and HCC. Among them S100A11, which is secreted by cancer
cells and stimulates cell proliferation and migration, was identified
and associated with high-grade HCC and poor prognosis [128].

5.2. Diagnostic perspective

A small number of studies has aimed to develop diagnostic models
with the use of proteomics (Table 3). When evaluating the results of
these studies, we have to keep in mind the limitations and challenges
related to such procedures, that are described below (8. Conclusions –
Challenges –Perspectives). In one of the early efforts, combined geno-
mic/proteomic analysis involving liver tissues for assessing gene
expression and serum samples for assessing proteins was performed
in patients with different stages of NAFLD. A SELDI-TOFmass spectrom-
etry (MS) identified approximately 300 protein peaks with 16 of them
being significantly different between groups. At that timepoint, it was
not possible to identify in which proteins these peaks corresponded to
but their masses were compared with the masses of 1440 serum
proteins, which led to the identification of fibrinogen γ as one possible
biomarker [131]. In another study including eighty morbidly obese pa-
tients, SELDI-TOF MS has identified in serum three protein peaks that
their intensity significantly increased with the severity of NAFLD, i.e.
when moving from steatosis to NASH. None of these peaks correlated
with liver function tests or metabolic parameters and all of them
returned to normal after bariatric surgery. With immunoSELDI assay
these peaks were recognized as alpha- and beta-hemoglobin subunits
[132]. One of themost comprehensive studies so farwas able to identify
1700 serumproteins in a populationwith NAFLD. Among them 55were
significantly different betweenNALF andNASHwithfibrosis stage 3 or 4
(F3/F4) and 15 between NASH vs NASH F3/F4 group. These proteins
were involved in immune system regulation and inflammation, in coag-
ulation cascades (including fibrinogen γ demonstrated by previous
studies), in cell growth and proliferation (including IGFBP2, IGFBP3,
also shown in targeted approaches to be relevant [133]) and many of
themwere apolipoproteins (demonstrated also in [134]) and blood car-
rier proteins. Six (fibrinogen β chain, retinol binding protein 4, serum
amyloid P component, lumican, transgelin 2, and CD5 antigen-like)
were selected to create a panel for the non-differential diagnosis of
NAFLD and its stages, ranging from healthy liver status to NAFL, NASH
or NASH with F3/F4 showing good to very good diagnostic accuracy
(AUROCs 1.0, 0.83, 0.86, 0.91, respectively). This was though a study
with small sample size and its findings have not been replicated so far
[135]. In another approach, diagnostic models for differentiating be-
tweenNAFLD vs healthy controls among the obese population undergo-
ing bariatric surgery were developed. These models combined genomic
information and especially the PNPLA3 genotype, phenomic data (i.e.
selected biochemical measurements such as glucose, insulin, lipid
profile, ALT) and proteomic data. Specifically, a proteomic analysis iden-
tified 1129 proteins with 30 of them being significantly different
between the two groups. Among them was aminoacylase-1, sex



Table 3
Main proteomics and protein-based models for the diagnosis and staging of NAFLD.

# N Comparisons Prediction models Sensitivity Specificity AUROC

Steatosis/any NAFLD
[136] D:

443
V:134

C vs NAFLD Model including data from PNPLA3, 8 proteins and 19 phenotypic
variables

D: 0.94
V: 0.91

[235] 70 C vs NAFLD Model of 6 metabolites, including hemoglobin subunit α 89% 83%

NAFL vs NASH vs Fibrosis
[236] 99 a) C vs NASH

b) C vs NAFLD
a) 15 protein peaks
b) 51 protein peaks

a) 74%
b) 86%

a) 89%
b) 61%

[132] 104 a, c) NASH (Y vs N)
b, d) NAFL (Y vs N)

a) 50 protein peaks
b) 67 protein peaks
c) CM10-7558.4 (α-Hb subunit)
d) CM10-7558.4 or CM10-7924.2 (β-Hb subunit)

a) 83%
b) 78%

a) 67%
b) 71%

c) 0.81
d) 0.73

[137] 135 a) NAFL vs HCC + NAFLD
b) NASH vs HCC + NAFLD

Inter-alpha-trypsin inhibitor heavy chain 4 b) 86% b) 75% a) 0.93
b) 0.84

[135] 85 a) C vs NAFL vs NASH vs NASH
F3-4
b) NAFL vs NASH F3-F4
D) C vs NAFLD

a) Panel of 6 proteins
b) Panel of 3 proteins
c) Panel of 2 proteins

a) 1.00, 0.83, 0.86,
0.91
b) 0.91
c) 1.00

[237] 110 a) C vs NAFLD
b) NAFL vs NASH
c) F0-F2 vs F3-F4

a) ApoE
b,c) lymphocyte cytosolic protein1

a) 0.86
b) 0.81
c) 0.93

[238] 167
D:
117
V: 50

a) Non-NASH vs NASH
b) F0-F1 vs F ≥ 2

a) 5 routine variables & 2 phosphoproteomic variables
b) 6 routine variables & 3 phosphoproteomic variables

a) D: 81%
Total: 77%
b) D: 79%
Total: 67%

a) D: 87%
Total: 73%
b) D: 73%
Total: 75%

a) D: 0.86
V: 0.68
Total: 0.80
b) D: 0.80
Total: 0.75

C, controls/healthy; D, Discovery; F, Fibrosis; N, No; S, Steatosis; V, Validation; Y, Yes.
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hormone-binding globulin, Galectin-3, antithrombin III and the hepato-
cyte growth factor. Logistic regression models for differentiating be-
tween NAFLD and healthy status were trained by using each type of
data individually (i.e. genomic, phenomic or proteomic) as well as in
different combinations in a large discovery cohort consisting of 443 sub-
jects which were further tested in a validation cohort of 134 subjects.
Highest AUROCs were achieved in validation cohorts when all three
data sets were combined andwas 0.914. However, the utility of such al-
gorithms is questionable given that ultrasound or other simpler algo-
rithms (e.g. fatty liver index, etc.) show similar or higher sensitivity
and specificity. Additionally, diagnosing simply NAFLD does not initiate
treatment decisions [136].

Other studies performed first a proteomic analysis in a relevant con-
dition or in another species and then tested their findings in patients
with NAFLD. For example, in one study, an HCC pig model was used
and a proteomic analysis in serumwasperformed. The subsequent anal-
ysis identified the serum inter-alpha-trypsin inhibitor heavy chain 4 as
themost important protein correspondingwith NAFLD progression and
HCC development. Thiswas further tested in human serum samples and
showed that the levels of the proteins were higher in NAFLD patients
with HCC compared to those without [137]. Similarly, in another
study a proteomic analysis in plasma of patients with liver cirrhosis vs
healthy ones was performed. This identified 57 significantly different
proteins whichwere involved in immune system regulation, inflamma-
tion, coagulation and fibrinolysis. Several of these proteins were subse-
quently tested in NAFLD patients and were significantly different in
people with NAFLD and normal glucose tolerance compared to NAFLD
with T2DM [138].

5.3. Therapeutic implications

Proteomic studies have rather limited contribution to drug develop-
ment against NAFLD so far. Most of the treatment targets have been
identified by animal studies supported by human physiology or epide-
miological studies. Additionally, many of the medications that have
shown efficacy in other metabolic diseases, such as obesity, T2DM and
hyperlipidemia (e.g. GLP-1 receptor agonists, thiazolidinediones,
statins) have been subsequently tested in NAFLD [139–142]. Moreover,
many studies are focusing on amore targetedmultilayer approach, thus
selecting a group of proteins based on their structural and functional
similarities and investigating them systemically in a spectrum of meta-
bolic disorders. This approach is based on the tight pathophysiological
connections between obesity, insulin resistance, T2DM and NAFLD and
can lead to identification of proteins that have an important general
role inmetabolism or inflammation throughmultiple layers of evidence
in different metabolic conditions. Such proteins may thus have higher
chances to be relevant in the efforts for biomarker discovery and drug
development in NAFLD. In this context, we have investigated four
main hormonal systems consisting of approximately 25 hormones, i.e.
activins-follistatins, gut hormones (proglucagon-peptides), IGF-axis
and leptin-adiponectin in a series of studies, moving from conditions
of acute or chronic energy deprivation to metabolically healthy energy
status and to energy excess due to obesity, T2DM, cardiovascular dis-
ease and NAFLD [133,143–153]. We observed significant impairments
in glicentin and major proglucagon fragment profiles in early stages of
NAFLD (phase of augmenting insulin resistance), in follistatins and
adiponectin during progression to NASH (phase of insulin resistance-
inflammation) and in IGF-1/intact IGFBP3 in fibrosis in humans, thus
showing great potential both as biomarkers as well as therapeutic tar-
gets [133,144,154].

Independently of the identification of novel therapeutic targets in
the future, proteomics can also potentially help drug development
through other approaches. For example, in one approach, targeted pro-
teomics has succeeded in identifying changes (in most cases reduction)
in concentrations of hepatic drug transporters in people with NAFLD
compared to healthy ones. The reduction in hepatic drug transporters
can have a major impact on pharmacokinetics and can drive clinical de-
velopment decisions as well as dosing recommendations [155].

5.4. Conclusion – clinical perspective

Proteomics have not been widely used in NAFLD research. The
proteins and signaling pathways involved in the pathophysiology
of the disease have been almost exclusively identified by targeted
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„hypothesis-driven” approaches based on data from mechanistic ani-
mal, observational human and in some cases large epidemiological
studies. This is probably due to methodological challenges and technical
limitations related to proteomics. We expect in the near future proteo-
mics to be much more frequently applied in NAFLD studies. We expect
that the main contribution of proteomics will not be in direct develop-
ment of non-invasive diagnostic scores but rather in the identification
of novel molecules and/or pathways with important role in the patho-
physiology of the disease and with diagnostic and therapeutic potentials.

6. Metabolomics – lipidomics

Metabolomics refers to the investigation of small molecules and
metabolic products, such as aminoacids, fatty acids and carbohydrates.
Lipidomics are considered part of metabolomics and refer to the inves-
tigation of cellular lipids. Numerous studies have investigated the me-
tabolome and lipidome in mouse models or patients with NASH. The
evidence linking bile acid homeostasis as well as gut microbiome with
the development and progress of NAFLD have been recently reviewed
elsewhere [156,157]. In this section,wewill focus particularly on the ro-
bust and extensive changes that are observedboth in thehepatic (Fig. 3)
as well as in the circulating lipidome, which have led to the develop-
ment of numerous diagnostic models for NAFLD as well as to the
identification of novel therapeutic targets.
Fig. 3. Perturbations in lipidomic profile related to the pathophysiology of NAFLD. The uncontro
novo lipogenesis observed inNAFLD leads to elevated SFA, LPC, Ceramides andω6/ω3 PUFA rati
whereas they increase oxidative stress, ER stress and impair β-oxidation in the mitochondria o
cells andmacrophages SFA induce their polarization to theM1proinflammatory state. Increased
for lipid droplet stability and their deficiency leads to large droplet formation and inadequate VL
fibrosis andHCC. High hepatic ceramide concentrations increase cholesterol synthesis and TG ac
the secretion of proinflammatory cytokines and stimulate apoptosis by increasing ROS gen
extracellular matrix deposition and pro-angiogenic factors secretion promoting fibrogenesis.
such as prostaglandins, leukotrienes, thromboxanes in expense of the synthesis of anti-inflamm
6.1. Pathophysiology

The development of NAFLD is strongly associated with obesity and is
characterized by increased lipid accumulation due to higher uptake of el-
evated FFA by unrestricted adipose tissue lipolysis and due to increased
dietary TGs uptake. 60% of the hepatic triacylglycerol results fromadipose
tissue triglycerides after lipolysis, 25% from de novo hepatic lipogenesis
and 15% from dietary TGs [158] (Fig. 3). The increased accumulation of
triglycerides in the liver is associatedwith the formation of toxic interme-
diates that are mainly responsible for the initiation of inflammatory pro-
cedures and later of fibrotic changes in NAFLD (Fig. 3). Lipidomic studies
have described specific changes in hepatic lipidome in patients with
NAFLD [46,159–163]. The hepatic concentrations of saturated fatty acids
(SFAs and specifically of palmitate acid, C16:0 and stearate acid, C18:0),
free cholesterol, sphingolipids, glycerophospholipids and eicosanoids in-
crease, whereas ω-3 PUFAs and specialized proresolving mediators
(SPMs) of PUFAs decrease [164] (Fig. 3).

Specifically, SFA accumulation is positively associated with liver dis-
ease severity. In hepatocytes, SFA stimulate proinflammatory cytokine se-
cretion by activation of the toll-like receptor-4 pathway, enhance
endoplasmatic reticulum stress, increase ROS, decrease mitochondrial
and peroxisome beta-oxidation by activation of JNK and induce
apoptosis by activation of TRAIL-2 signaling pathway [164–166]. In non-
parenchymal liver cells, SFA stimulate the production and secretion of
lled lipolysis from adipose tissue, the increased dietary intake of TG and the upregulated de
o. SFA stimulate the secretion of inflammatory cytokines via TLR4 and apoptosis via TRAIL2,
f hepatocytes. In stellate cells, they stimulate macrophage recruitment, whereas in Kupffer
activation of PLA2 enzyme leads to formation of LPC and depletion of PC. PC are important
DL secretion. High LPC are also triggeringmechanisms of impaired β-oxidation, apoptosis,
cumulation, promote insulin resistance by blocking Akt-mediated insulin signaling, induce
eration, ER stress and β-oxidation impairment. In hepatic stellate cells, they increase
Finally, the high ω6/ω3 ratio leads to increased synthesis of proinflammatory molecules,
atory SPMs, thus resulting in a pro-inflammatory and profibrotic net outcome.
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proinflammatory and profibrotic cytokines from Kupffer cells and induce
proinflammatory M1 polarization of macrophages [166,167]. Addition-
ally, they stimulate the secretion of chemokines from hepatic stellate
cells that recruit more macrophages in the liver [166,167].

Similar to SFA, lysophosphatidylcholines (LPC) have unfavorable he-
patic effects. Specifically, they stimulate ER stress, cause mitochondrial
dysfunction and increase apoptosis [168]. Additionally, they stimulate
the release of hepatic extracellular vesicles from hepatocytes that
trigger inflammatory procedures [169].Moreover, the increased activity
of the enzyme phospholipase A2 (PLA2) that catalyzes the formation of
LPC from PC, leads to the rapid depletion of PC which affects hepatocyte
membrane integrity and results in hepatocyte apoptosis, high release of
lipotoxic lipids and increased inflammation [170]. Additionally, PC defi-
ciency reduces VLDL secretion resulting in higher intrahepatic lipid deg-
radation and formation of toxic intermediates. Furthermore, the low PC/
PE ratio affects lipid droplet stability, leading to the formation of larger
lipid droplets. Finally, LPC is metabolized by the enzyme autotaxin to
phospholipid lysophosphatidic acid which stimulates liver fibrosis and
development of HCC [171].

Ceramides are a type of sphingolipids whose hepatic levels are in-
creased in NAFLD and correlate positively with disease severity
[46,159–163]. In hepatocytes, ceramide promotes insulin resistance by
inhibiting Akt-mediated insulin signaling, impairs beta-oxidation, in-
duces ROS production, ER stress and proinflammatory cytokine secre-
tion, enhances de novo lipogenesis, cholesterol synthesis and
triglyceride accumulation and induces apoptosis [164,172–175]. Finally,
ceramide stimulates fibrogenesis and angiogenesis by increasing extra-
cellularmatrix deposition and secretion of pro-angiogenic factors byhe-
patic stellate cells [176].

Monounsaturated fatty acids (MUFAs) and PUFAs are also partici-
pating in the pathogenesis of NAFLD. The most well-studied and abun-
dant MUFAs are palmitoleic acid (C16:1) and oleic acid (C18:1).
MUFAs are lipotoxic but in a lesser degree compared to SFAs. Thus, a
higher ratio of MUFA/SFA may be beneficial due to the lower ability
of MUFAs to stimulate ER stress and apoptosis [164]. PUFAs consists of
two classes, the ω-3 and ω-6 FA that are named after the position of
the first double bond from the methyl end of the FA. Important ω-3
FA are considered the eicosapentaenoic acid (EPA, 20:5n-3) and
docosahexaenoic acid (DHA, 22:6n-3) and important ω-6 FA are the
dihomo-γ-linolenic acid (20:3n-6) and arachidonic acid (AA, 20:4n-
6). Most of theω-3 andω-6 FA are received through diet. 5–10% derive
from 18‑carbon fatty acids, whereas in the synthesis of highly unsatu-
rated FA such as EPA, DHA and AA different enzymes are involved,
such as elongase and desaturase enzymes (fatty acid desaturase-1 or
2; FADS1 or FADS2, and the Δ9 desaturase SCD-1) [177]. In NAFLD, a
major dysregulation in the hepatic long-chain FA desaturation pro-
cesses is observed, resulting in an elevated ω-6 to ω-3 ratio and in-
creased flux in the ω-6 pathway [159,162,163]. The increased ω-6
concentrations lead to the synthesis of eicosanoids by their enzymatic
oxidation (especially of AA but also of EPA and dihomo-γ-linolenic
acid) with proinflammatory properties such as prostanglandines,
thromboxanes and leukotrienes which induce hepatic inflammation.
This occurs in expense of the synthesis of SPMs that mainly act to re-
store normal cell function and thus reduce chronic inflammation and fi-
brosis [178,179]. Finally, the highω-6 toω-3 ratio is associated with an
impaired FADS1 activity that can affect cell membrane phospholipid
composition resulting in membrane deficiency, cell necrosis and extra-
cellular deposition of lipotoxic lipids that can aggravate hepatic injury
[162,163].

6.2. Diagnostic perspective

Many studies have reported several diagnostic models based on
metabolomics, lipidomics alone or combined with other biochemical
and clinical parameters for the diagnosis and staging of NAFLD
(Table 4). The best studies use populations of biopsy-proven NAFLD to
create non-invasive algorithms based on blood measurements. The
models aim to diagnose advanced fibrosis (≥3) (inmost studies), differ-
entiateNAFLD fromhealthy status, distinguish betweenNASH andNAFL
or NASH vs non-NASH (in many studies), or detect the presence of fi-
brosis independently of its stage (in few studies). Challenges related
to the development of these models are described later (s. 8. Conclu-
sions – Challenges – Future Perspectives). Additionally, important pa-
rameters that affect study quality include: a) validity of the methods
and tools used for data generation, i.e. the use of targeted vs untargeted
approaches, level of confidence for the identity of detected lipids and
quality of samples. Such information is rarely provided in the published
studies and is in general difficult to assess or objectify. Advances in
mass-spectrometric methods and efforts to standardize the way to re-
port identified lipids has helped to improve methodology in the latest
years, b) type of statistical analysis performed in the study. Here, most
of the early approaches were focusing on identification of the most im-
portant parameters, which were subsequently hand-picked according
to univariatemethods for creating an algorithmbased on logistic regres-
sion. This approach inserts though important bias in the analysis, which
leads to overfitting, thus the algorithm is tailor-made for the investi-
gated population and will often demonstrate low reproducibility in
other populations. Novel methods involving machine learning tech-
niques (such as supervised or unsupervised learning with neural net-
works) have revolutionized data analysis in the last years and are
providing a robust framework for future studies, c) use of validation co-
horts. Formation of several consortia worldwide have enabled the eval-
uation of the created algorithms in different cohorts in the last years.
Below we are presenting the most promising studies that managed to
create diagnostic algorithms for the diagnosis and staging of NAFLD.

In a large study involving 467 subjects with biopsy-proven NAFLD
two diagnostic algorithms based on multiple logistic regression were
developed. These algorithms were subsequently validated in a second
independent cohort of 192 patients. The first diagnostic algorithm
consisted of 11 triglyceride species and focused on differentiating
NAFLD from healthy status. It demonstrated a sensitivity of 94% and
specificity of 57% in the validation cohort. The second algorithm
consisted of 20 triglyceride species and differentiatedwith 70% sensitiv-
ity and 81% specificity the presence of NASH from NAFL [180]. Based on
the above findings and methodology, the OWLiver® test was created,
which includes 25 triglycerides and aims to discriminate NASH from
NAFL patients. The test, which was initially trained in white patients
without T2DM, performed poorly in a multiethnic cohort of patients
with T2DM (AUROC = 0.69). This shows that patient heterogeneity is
an important factor and that tests developed in non-diabetic popula-
tions may not be as accurate in patients with T2DM [181]. In another
study, information from metabolomics and lipidomics were combined
with biochemical and genotypic measurements to create an algorithm
for differentiating NASH from non-NASH (i.e. combined healthy and
NAFL). 223 subjects were used to train the algorithm and 95 to validate
it. The final model consisted of AST, insulin, PNPLA3 genotype, gluta-
mate, two aminoacids (glycine and isoleucine) and two lipids (LysoPC
16:0 and PE 40:6) and was able to differentiate NASH from non-NASH
with 85% sensitivity and 72% specificity [46].However, the non-NASH
population consisted both of healthy subjects (53%) and of NAFL
(47%). It is though important to be able to distinguish accurately NAFL
from healthy status. Additionally, sensitivity and specificity in most
tests is high when healthy subjects are included, but the same tests
may not perform as well when NAFL is directly compared with NASH.

In a smaller proof-of-concept study a different approach was
followed. A lipidomics, glycomics and targeted hormonal analysis was
performed. Results were analyzed with different machine learning
methods and 19 different diagnostic models were reported for classify-
ing the subjects simultaneously to healthy or NAFL or NASH group. The
models consisted of varying number of variables (from 10 up to 29) and
demonstrated high sensitivities and specificities [144]. The variables in-
cluded in the models were mainly lipids and often adiponectin, which



Table 4
Selected metabolomics and lipidomics panels for the diagnosis and staging of NAFLD.

# N Comparisons Prediction models Sensitivity Specificity AUROC

Steatosis/any NAFLD
[239] Metab: 30

V: 230
a) S ≤ 5% vs S N 6%
b) S ≤ 5%vs S 6–30%
c) S ≤ 5%vs S 31–60%

α-ketoglutarate a) 80% a) 63% a) 0.74
b) 0.68
c) 0.78

[240] D: 287
V: 392

a) C vs NAFLD
b) Prediction of liver fat
%

a) TG 16:0/18:0/18:1, PC 18:1/22:6, PC(O-24:1/20:4)
b) TG(48:0), PC(18:1/22:6), PC(O-24:1/20:4)

a) D: 70%
V: 65%
b) D: 70%
V: 69%
Total: 69%

a) D: 79%
V: 73%
b) D: 76%
V: 74%
Total: 75%

a) D: 0.80
V: 0.77
b) D: 0.79
V: 0.78
Total: 0.79

[184] 559
Pediatric/adolescent
D: 2/3
V: 1/3

C vs NAFLD 11 metabolites and 3 clinical variables
(WC, whole-body insulin sensitivity index, TG)

73% 97% 0.94

NAFL vs NASH
[46] D: 223

V: 95
Non-NASH vs NASH NASH ClinLipMetScore: AST, insulin, PNPLA3 genotype,

glutamate, isoleucine, glycine, LPC 16:0, PE 40:6
Total: 86% Total: 72% D: 0.88

V: 0.86
Total: 0.87

[241] D:374
V: 93

NAFL vs NASH BMI-dependent metabolic profile of 292 metabolites and 51
unidentified variables

D: 71%
V: 56%
Total: 62%

D: 92%
V: 89%
Total: 97%

D: 0.87
V: 0.85
Total: 0.84

[242] D: 73
V: 49

C vs NAFL vs NASH OxNASH: 13-HODE/linoleic acid, age, BMI, AST Different cutoff points D: 0.83
V: 0.74D: 81%

V: 84%
D: 97%
V: 63%

[243] 108 a) C vs NAFL
b) C vs NASH
c) NAFL vs NASH

a) Urinary Indoxylsulfuric acid
b) Urinary Indoleacetic acid
c) Urinary Pyroglutamic acid

a) 0.79
b) 0.82
c) 0.65

[180] D: 467
V: 192

a) C vs NAFLD
b) NAFL vs NASH

a) 11 triglyceride species and BMI
b) 20 triglyceride species and BMI

a) D: 98%
V: 94%
b) D: 83%
V: 70%

a) D: 78%
V: 57%
b) D: 94%
V: 81%

a)D: 0.90
V: 0.88
b) D: 0.95
V: 0.79

NAFL vs NASH vs Fibrosis
[244] 78 a) NAFL vs NASH

b) NAFL vs NASH+F ≤ 2
C16:1n7/C16:0 FA ratio a) 0.71

b) 0.69
[144] 80

D: 2/3
V: 1/3 repeated
100×

a) C vs NAFL vs NASH
b) F0 vs F1-F4

a) 19 models with 10–29 variables
(lipids, glycans, hormones)
b) 3 models with 10 lipids, 5 glycans, 5 fatty acids

a) 91%
b) 97%

a) 95%
b) 99%

a) 0.97
b) 1.00

[183] D: 156
V1: 142
V2: 59

a) F0-F2 vs F3-F4
b) Non-NASH vs NASH

a) 10 metabolites
b) 31 metabolites

a) D: 90% a) 79% a) D: 0.94
V1: 0.94
V2: 0.84
b) D: 0.89
V2: 0.82 (10/31
metabolites)

Fibrosis
[245] 106 a) NAS 1–4 vs NAS ≥5

b) F0-F1 vs F2-F4
a) C15:0, C18:1n7c, AST, ferritin
b) C15:0, C16:1n7t, C18:1n7c, C22:5n3, age, ferritin, APRI

a) 73%
b) 82%

a) 90%
b) 90%

a) 0.82
b) 0.92

[246] 227 a) F0-F2 vs F3-F4
b) C vs F3-F4
c) C vs F4

Top 10 urinary steroid metabolites, BMI and age a) 0.92
b) 0.99
c) 1.00

[247] D: 44
V: 105

F b 3 vs ≥ F3 a) 16-OH-DHEA-S/etiocholanolone-S
b) 16-OH-DHEA-S/DHEA-S

V:
a) 76%
b) 81%

V:
a) 85%
b) 80%

V:
a) 0.85
b) 0.84

Hepatocellular balooning
[248] 132 Balooning (Y vs N) Collagen IV 7 s, plasma choline, LPE(e-18:2) 89% 71% 0.846

Validation studies
[181] 220 a) C vs NAFLD

b) Non-NASH vs NASH
c) C vs NAFLD (selected
subset)
d) Non-NASH vs NASH
(selected subset)

a, c) Panel of 11 triglyceride species and BMI
b, d) Panel of 20 triglyceride species and BMI (as in [180])

a) 0.64
b) 0.69
c) 0.79
d) 0.87

[223] 213 Non-NASH vs NASH a) 11 triglyceride species and BMI
b) 20 triglyceride species and BMI (as in [180])

66% 69% 0.68

C, controls; D, Discovery; F, Fibrosis; N, No; S, Steatosis; V, Validation; Y, Yes. Sensitivities and specificities represent authors' chosen cutoff values; whenever optimal cutoffs are not spec-
ified, values with greater sensitivity are included. Whenever multiple scores are available for each comparison, the highest-performing scores are selected.
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its protective role against steatosis, inflammation and liver fibrosis is
well established [152,153,182]. A validation cohort did not exist, but
2/3 of the study population was used to develop the models and 1/3
to validate it, with this procedure being repeated 100 timeswith several
slices of data. This approach helps to control against random results but
it still does not address population heterogeneity. Nevertheless, the
ability to diagnose between three and not two conditions (healthy,
NAFL, NASH) can be attractive for large screenings of high-risk
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population in primary care setting and without the need for any addi-
tional imaging [144] and should be further evaluated in future studies.

Several studies have attempted to develop non-invasive algorithms
for differentiating between advanced (stage 3–4) vs not advanced
liver fibrosis (stage 0–2). In one of the most comprehensive studies so
far, a cohort of 156 subjects was initially used to develop an algorithm
after a metabolomic and lipidomic analysis, which finally consisted of
10 metabolites/lipids. Among the 10 parameters, six were cholesterol-
derived precursors of steroid hormones which were significantly re-
duced in advanced fibrosis, one was the primary conjugated bile acid,
glycopholate, that was increased in advanced fibrosis and one the
aminoacid taurine that is associated with bile acid conjugation and its
levels were decreased in fibrosis. Finally, the other two parameters
were palmitoleate acid and fucose, whichwere both higher in advanced
fibrosis. Increased fucosylation, as described below (s. glycomics) is one
of the main findings of studies that investigated alterations in circulat-
ing glycome in NAFLD. The derived algorithm was further validated in
a twin and family cohort consisting of subjects that have undergone
an MRI for calculation of hepatic steatosis and a MRE for assessing ad-
vanced fibrosis as well as in another cohort of biopsy-proven NAFLD.
The model demonstrated 90% sensitivity and 79% specificity for detect-
ing advanced fibrosis, which was higher compared to FIB-4 index (39%
specificity) and NAFLD fibrosis score (59% specificity) [183].

Finally, very few studies have tried to develop such models in pedi-
atric population. The most comprehensive one so far included 222 chil-
dren and adolescent with biopsy- or MRI-proven NAFLD and 337
without the disease. Metabolomics identified 11metabolites of interest
which together with waist circumference, whole-body insulin sensitiv-
ity index and triglycerides could detect the presence of NAFLDwith 97%
specificity and 73% sensitivity [184].

6.3. Therapeutic implications

NAFLD is considered an unmet clinical need. Several treatments that
are currently in the pipeline restoremany of the abnormalities observed
in the lipidome. Specifically, agonists of farnesoid X receptor (FXR) re-
duce lipotoxicity by promoting mitochondrial beta-oxidation, decreas-
ing de novo lipogenesis and stimulating cholesterol excretion [142]. In
Phase 2 clinical trials and in an interim analysis of an ongoing phase 3
clinical trial, obeticholic acid reduced hepatic steatosis, inflammation
and fibrosis compared to placebo [142,185–187].

Dual PPARα and PPARδ agonists (e.g. elafibranor) also stimulatemito-
chondrial and peroxisome β-oxidation as well as omega-oxidation
[188–191]. PPARγ agonists reduce circulating FFA and consequently the
flow of SFA to the liver, they improve insulin sensitivity and guide
macrophage and Kupffer cell polarization from the proinflammatory M1
phenotype towards to the anti-inflammatory M2 one [142,167]. Various
selective PPARγmodulators, dual PPARα/γ agonists (e.g. Saroglitazar) or
Pan-PPAR agonists (e.g. lanifibranor) have shown promising results in
human studies and are currently under evaluation in phase 2 or phase 3
clinical trials [142,192–194]. In this context, it was recently announced,
that lanifibranor met the primary endpoint of a reduction in steatosis ac-
tivity fibrosis score, including NASH resolution without worsening of fi-
brosis in a Phase II clinical trial, thus being the first study that met both
FDA and EMA regulatory endpoints for accelerated approval [195].

ACC inhibitors (e.g. firsocostat) attenuate the function of acetyl-coA
carboxylase (ACC) that catalyzes the conversion of acetyl-CoA to
malonyl-CoA. Consequently, malonyl-CoA is reduced and hepatic de
novo lipogenesis as well as mitochondrial FA beta oxidation are down-
regulated [142,196]. In humans, ACC inhibitors reduce hepatic steatosis
and on-going clinical trials will evaluate their effect also on inflamma-
tion and liver fibrosis [142,196].

Regarding LPC accumulation, animal studies have shown that inter-
ruption of the generation of LPC from PC with inhibition of PLA2 results
in normalization of PC levels, prevention of NAFLD and reversal of NASH
and fibrosis [158,197].
Several treatments are targeting also ceramide levels by aiming to
reduce ceramide synthesis (de novo or through hydrolysis from
sphingomyelin) or increase ceramide degradation. The reduction of cer-
amide synthesis can be achieved by inhibiting relevant enzymes (i.e.
palmitoyltransferase) but it should be limited only to hepatic ceramides,
since global reduction of ceramides can negatively affect nervous sys-
tem [198]. Alternatively, lower ceramide synthesis can be achieved by
blocking intestinal FXR activation [199]. However, in that case, FXR
blocking should be limited to the intestine and not affect FXR activation
in the liver which acts beneficially. In other approaches, reduction of the
accumulation of specific ceramides (i.e. C16:0 ceramide) is targeted
with the use of several inhibitors (e.g. DES-1 70) or degradation of
ceramides is stimulated by enzymes (e.g. acid ceraminidase). These
have till now been tested only in animal studies and not in humans.

Many treatments have targeted to restore the increased ω-6/ω-3
ratio byω-3 supplementation. Although the findings from animal stud-
ies had been very promising, and the first results from human studies
had shown an improvement in liver steatosis, later studies could not
demonstrate any benefit in steatosis, necro-inflammation or fibrosis in
patients with NASH [142,200–202]. Newer experimental strategies are
focusing not on the supplementation of ω3 but on restoration of the
ω-6/ω-3 ratio with the use of ω-3 desaturase that leads to the produc-
tion of ω-3 from ω-6 PUFAs, showing beneficial effects in steatosis and
necro-inflammation in animal studies [203].

Finally, different experimental approaches are aiming to decrease
proinflammatory eicosanoids and increase the concentrations of SPMs.
Specifically, some of them are targeting the inhibition of PLA2α enzyme
that catalyzes the cascade leading to AA and lysophospholipids genera-
tion, showing promising results in animal studies [197,204]. Others are
targeting the production of proinflammatory lipids by inhibiting the en-
zyme 5-LOX [205,206] which catalyzes the lipooxygenation of AA to
leukotriene lipids or they aim to block the binding of leukotrienes to
their receptors [207]. The 5-LOX inhibitor tipelukast has been approved
by FDA for a phase IIa clinical trial. Finally, other approaches are aiming
to increase the SPMs RvD1, RvE1, protectin DX andmaresin-1 leading to
robust improvement of fibrosis in animal models of NAFLD
[164,208,209]. Given that SPMs are rapidly inactivated by oxidoreduc-
tases and that SPM receptors are downregulated in obesity, recent ef-
forts are also focusing on improving the pharmacologic properties of
them by creating either resistant to deactivation analogues [210] or by
enhancing their delivery on their site of function.

Altogether, most drugs in on-going clinical trials are targeting,
among other mechanisms, hepatic lipidome in order to improve
NAFLD. Additionally, there is a significant number of medications that
have shown beneficial effects on animal models of NAFLD by improving
hepaticmetabolome/lipidomeand remain to be further clinically tested.

6.4. Conclusions – clinical perspective

Metabolomics/Lipidomics are one of the most investigated omics in
NAFLD. They have provided important information about the pathophys-
iology and course of the disease and changes in metabolome and
lipidome have a major role in mechanisms of NAFLD development and
progression. Thus, most drug candidates aim to restore the abnormalities
inmetabolic and lipid profile observed in NAFLD. These abnormalities are
not only observed in the liver but often also in peripheral blood, which
have led to the extensive use ofmetabolomics/lipidomics for the develop-
ment of non-invasive tests for the diagnosis and staging of NAFLD. Many
of these tests have reported excellent performance in original studies,
which were though not reproducible in other cohorts. This is due to sev-
eral issues and challenges that are observed in all omic procedures and
have to be addressed (s. below 8. Conclusions- Challenges - Perspectives)
for the field to move forward. Nevertheless, among the “omics”, we still
consider that metabolomics/lipidomics have the best potentials for
leading to the development of important tools for diagnosis and staging
of the disease.
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7. Glycomics

7.1. Physiology- pathophysiology

Glycomics refers to the comprehensive investigation of glycome, i.e.
of glycan structures that circulate either as free glycans or they are
bound to proteins (glycoproteins), lipids (glycolipids) or phospholipids
(glycophospholipids). Glycome is highly dynamic as it is affected by
transcriptome, proteome, environmental factors (nutrition) and cellular
secretory machinery [125,211]. Glycans can affect protein morphology
and interaction with other proteins as well as regulate nutrient storage
and sequestration [212]. Additionally, they can protect cell stability and
facilitate cell to cell interactions [212]. Glycosylation is theprocess of the
formation of the glycoconjugates (glycoproteins or glycolipids) [213]
which can happen both intra- and extracellularly. In the extracellular
glycosylation, enzymes secreted mainly from liver hepatocytes and
platelets (i.e. glycosyltransferases) are involved [213]. Changes in gly-
can profile have been observed in numerous inflammatory diseases
and in different types of cancer and have been often linked causally
with the pathogenesis and progression of these diseases [213–215].

In NAFLD, few glycomic studies have been performed so far
(Table 5). These have either aimed to assess the circulating glycome in
untargeted approaches or they have focused on the identification of gly-
cans related to specific proteins (i.e. haptoglobin, transferrin, IgG2, IgA1,
alpha-1 antitrypsin, ceruloplasmin). The findings of these studies sug-
gest that in NAFLD and during its progression from NAFL to NASH and
liver fibrosis higher concentrations in fucosylated, sialylated and
agalactosylated glycans are observed. Sialic acids in glycolipids or glyco-
proteins have diverse functions, including formation of a protective cell
surface barrier, involvement in interactions ofwhite blood cellswith en-
dothelial lining of blood vessels, recognition by pathogens and toxins
and facilitation of cell migration by some cancers [216]. Circulating sialic
acid levels have been positively associated with metabolic syndrome
and with NAFLD [217,218]. Fucosylated glycans are also involved in a
variety of physiological and pathological procedures, including cell ad-
hesion and migration, angiogenesis, malignancy, tumor metastasis as
well as immune cell development and regulation [219]. Consequently
changes in fucosylation have been reported in numerous inflammatory
conditions, such as in rheumatoid arthritis, chronic pancreatitis, sickle
Table 5
Glycomics models for the diagnosis and staging of NAFLD.

# N Comparisons Prediction mode

[249] 57 NAFL vs NASH a) Glycan m/z 19
b) Glycan m/z 20
c) Glycan m/z 25

[250] D: 51
V: 224

NAS b 3 vs NAS 3–4 vs NAS ≥ 5 Log(NGA2F/ NA2

[220] D: 124
V: 382
US: 803

a) Hepatocellular ballooning (yes
vs no)
b) F0-F1 vs F ≥ 2
c) NASH vs NAFL
d) F3 detection

a) Fucosylated H
b) Mac-2 bindin
c, d) Fucosylated

[144] 80
D: 2/3
V: 1/3 repeated
100×

a) C vs NAFL vs NASH
b) F0 vs F1-F4

a) 19 models wi
b) 3 models with

[251] 60 a) NAFL vs NASH
b) F0-F2 vs F3-F4

GlycoNashTest (
NGA2F, NA2

Validation studies
[252] 510 a) NASH vs non-NASH

b) NAFL vs NASH
c) Fibrosis (Y vs N)d) F0-F2 vs
F3-F4

Mac-2 binding p

C, controls; D, Discovery; N, No; Se, sensitivity; Sp, specificity; V, Validation; Y, Yes.
cell disease and Crohn's disease [219]. In the liver, fucosylation serves
as a signal for the secretion of fucosylated glycoproteins from normal
hepatocytes into bile [219]. In ballooning hepatocytes, which are ob-
served in NASH, the fucosylation-related sorting machinery is dysfunc-
tionalwhichmay result in the secretion of the fucosylated glycoproteins
in the sera instead of bile [219]. Similarly, hypogalactosylation (lack of
galactose in the formed glycoprotein or glycolipid) especially of IgG
has been associated with inflammatory response and with a number
of autoimmune diseases [213].

7.2. Diagnostic perspective

Most of the glycomic studies in NAFLD have tried to identify glycans
or glycoproteins that can serve as blood biomarkers for differentiating
betweenNAFL andNASH or for detection of the presence of liver fibrosis
and its stage (Table 5). The diagnostic accuracy ofmost of these tests has
been limited, with some reporting higher accuracy for diagnosing NASH
and others for diagnosing advanced fibrosis. This suggests that although
changes in circulating glycome/glycoproteins are observed in NAFLD,
these are not sufficient in order to be used alone for the development
of diagnostic models of the disease and thus combination with other
clinical or biochemical parameters are needed. In this context,
fucosylated-haptoglobin showed below 70% accuracy at differentiating
NAFL fromNASH, but 76–81%when combinedwithMac2bp [220]. Sim-
ilarly, in our study, which detected with the use of mass-spectrometry
the highest number of glycans so far, the concentrations of glycans in
serum were able to differentiate between the presence of liver fibrosis
or not with 76% sensitivity and 74% specificity [144]. Glycans alone
could poorly differentiate betweenNAFL andNASH butwhen combined
with lipid species in models of 20 variables (18 lipid species and 2 gly-
cans) the sensitivity and specificity for discriminating between NASH,
NAFL or healthy liver status increases significantly.

7.3. Therapeutic perspective

Regarding potential treatments, no study thus far has investigated
whether targeting glycome can be a therapeutic option in NAFLD.
Treatments aiming to decrease fucosylation are currently under evalua-
tion in autoimmune diseases and cancer. In this context, inhibition of
ls Sensitivity Specificity AUROC

55
32
84

a) 0.833
b) 0.863
c) 0.866

) D: 79%
V: 86%

D: 50%
V: 43%

D: 0.75
V: 0.66

p
g protein
Hp and Mac-2 binding protein

a) D: 72%
b) D: 81%
c) D: 81%
V: 71%
d) US:
52%

a) D: 72%
b) D: 78%
c) D: 79%
V: 82%
D) US:
89%

a) D:
0.82
b) D:
0.77
c) D:
0.85
V: 0.84
d) 0.77

th 10–29 variables (lipids, glycans, hormones)
10 lipids, 5 glycans, 5 FA

a) 91%
b) 97%

a) 95%
b) 99%

a) 0.97
b) 1.00

log(NGA2F/NA2)) and its components glycans a) 90%
b) 90%

a) 45%
b) 71%

a) 0.74
b) 0.87

rotein a) 70%
b) 68%
c) 66%
d) 87%

a) 82%
b) 73%
c) 76%
d) 60%

a) 0.82
b) 0.76
c) 0.75
d) 0.74
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fucosylation with a 2-deoxy-d-galactose, a fucosylation inhibitor, re-
duces inflammation in rheumatoid arthritis bydecreasing inflammatory
macrophages and Th17 cells in the lymph nodes as well as by reducing
the levels of TNFα, interleukin-6 (IL-6), and antibodies to type II
collagen in the serum [221]. Similarly, inhibition of fucosylation by 2-
fluorofucose suppresses the proliferation, migration and tumor forma-
tion of HepG2 liver cells [222]. Whether similar interventions can be
beneficial in NAFLD by reducing inflammation, fibrosis or HCC forma-
tion should be addressed in future studies.

7.4. Conclusion – clinical perspective

Glycomics are one of the least investigated “omics” in NAFLD. Given
the strong relation between glycoprotein-glycolipid formation and liver
function, more studies assessing the potentials of glycans in biomarker
discovery and drug development are needed.

8. Conclusion – challenges - perspectives

Significant advances in omics technology and in data analysis have
provided us with important information about the pathophysiology of
NAFLD, have contributed to the creation of models for the diagnosis
and staging of the disease and have identified potential therapeutic tar-
gets. Certain omics have been widely used so far either for identifying
high risk patients (genomics), for evaluating the effect of treatments
in key pathophysiological mechanisms (transcriptomics) or for devel-
oping non-invasive diagnostic tools (metabolomics/lipidomics).

Major challenges exist that have to be overcome in order to increase
the benefits and the reproducibility of the results deriving from the use
of these technologies in NAFLD research:

a) Technical aspects: The analysis inmost omics procedures provide rel-
ative and not absolute concentrations for the measured parameters.
The relative concentrations derive often after normalization to total
MS signal, assessed by some researchers from the peaks and by
others from the area below the peaks. Background noise, sample
quality, variability between differentMS runs, differences in capabil-
ities between MS machines and in level of confidence in the identi-
fication of the investigated species (lipids, proteins etc.) can have
an important impact in the final relative concentrations and jeopar-
dize reproducibility of the results, especially when training or vali-
dating non-invasive, omics-based diagnostic tools.

b) Study design - Clinical aspects: Severalmethodological aspects related
to study design can have a significant impact in the interpretation of
omics results and especially in the development of non-invasive
tests. For example, a diagnostic model trained and validated in a pa-
tient population of a liver clinic, where a high prevalence of ad-
vanced fibrosis is observed, may not perform as well when used in
the general population and in primary care setting, where advanced
fibrosis is less common. Additionally, most of the omics studies have
been performed so far in small populations or in cohorts with spe-
cific characteristics. No adjustments for confounding factors (medi-
cations, co-existence of metabolic diseases, BMI, age etc.) are being
performed. Thus, these models often do not account for population
heterogeneity, which is crucial for the accuracy all non-invasive di-
agnostic panels. This has been repeatedly shown in studies that fo-
cused on patients with overweight, obesity and especially with
T2DM. Several and diverse biomarker panels (including SteatoTest,
ActiTest, NashTest-2, cytokeratin-18, FibroTest, OWLiver tests)
were evaluated but none of them demonstrated optimal perfor-
mance for diagnosing NASH or liver fibrosis especially in patients
with T2DM [5,13,181,223,224]. Third, very few tests have been eval-
uated prospectively. This is a very important step, which even other
simpler algorithms or imaging modalities have failed to pass [225].
Additionally, depending on their mechanism of function, medica-
tions may have different levels of impact on the metabolic and
lipid profile in the liver which may affect circulating metabolome/
lipidome and its ability to reflect the stage of the disease through a
diagnostic algorithm originally designed in untreated patients.

Altogether, diagnostic models based on omics have yet to reach
exceptional levels of performance, while satisfactory study outcomes
need to be cautiously scrutinized and repeatedly validated into
large and diverse patient cohorts both cross-sectionally as well
as prospectively. To this direction, FDA has recently approved the paral-
lel evaluation of diagnostic biomarker panels in NASH drug develop-
ment - biopsy-proven clinical trials. Specific criteria should be fulfilled
in these evaluations which include: a) the selection of the biomarkers
before study initiation in order to protect the prospective character of
the evaluations, b) submission of guidelines for the use and interpreta-
tion of the measurements from the proposed diagnostic panels,
c) detailed description of the assay performance specifications in
order to ensure independent reproducibility, d) detailed presentation
of statistical analysis to ensure replications of the results, e) validation
of the final results from a second independent to the trial data set.
Aim of this approach is first to develop non-invasive models that will
be able to identify subjects who are most likely to fail or pass in the
liver biopsy screening of the clinical trial, thus accelerating study re-
cruitment. The ultimate goal though still remains to be able to replace
liver biopsy with highly accurate and specific non-invasive diagnostic
tests both in clinical trials as well as, in the near future, in daily clinical
routine.

In conclusion, omics are contributing to the major evolution ob-
served in health research in the last years, that is characterized by the
use of big and diverse data analyzed by advanced mathematical and
computational tools in order to identify new ways of understanding
human biology and health. The power of these technologies creates sig-
nificant opportunities for addressing unmet clinical needs such as the
non-invasive diagnosis and treatment of NAFLD. In this context, it
seems reasonable to consider the first proof-of concept studies in this
area of translation research as contributions towards the understanding
and establishment of the necessary methodology and tools in order to
achieve major leaps in the treatment of our suffering fellow human be-
ings in the near future.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.metabol.2020.154320.
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