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Long-range ordered vorticity patterns in living
tissue induced by cell division

Ninna S. Rossen', Jens M. Tarp', Joachim Mathiesen!, Mogens H. Jensen' & Lene B. Oddershede’

In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low,
only sufficient to replace apoptotic cells. The division rate significantly increases during
embryonic development and under halted or turbulent flow. Cells in barrier tissue are con-
nected and their motility is highly correlated. Here we investigate the long-range dynamics
induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the
conditions during vessel formation or around blood clots. Cell divisions induce long-range,
well-ordered vortex patterns extending several cell diameters away from the division site,
in spite of the system’s low Reynolds number. Our experimental results are reproduced
by a hydrodynamic continuum model simulating division as a local pressure increase
corresponding to a local tension decrease. Such long-range physical communication may be
crucial for embryonic development and for healing tissue, for instance around blood clots.
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system—they are highly sensitive to fluid shear gradients®

and proliferate significantly more wunder no-stress
conditions®. Cells in endothelial tissue adhere tightly to their
neighbours to prevent leakage, thus causing the cells to move
highly collectively*™10. Because of this tight adhesion to
neighbouring cells, mechanical forces are transmitted over large
distances across the tissue!l. Such a mechanical signal can serve
as a guide for the cells as they most often prefer to migrate in the
direction of least shear stress'? and seem to navigate towards
empty spaces'>. A mechanical si%nal transmitted across the tissue
can cause the cells to deform!'*!°, move?!, divide!” and probably
even differentiation can be mechanically controlled'®!®, The
living tissue is distinctly different from other materials as it
consists of self-propelling cells that have a metabolism and can
divide. Here we focus on how a cell division, which can be viewed
as a local injection of energy, influences monolayer dynamics.
The process of endothelial cell division is essential for correct
embryo development?, angiogenesis and vessel repair?!, as well

as for the growth of metastasis from malignant tissue?2.

Endothelial cells line the blood vessels of the circulato

Results

Dynamics and structure following cell division. To examine the
effect of cell division on flows in the endothelial monolayer, we
tracked the motility of cells surrounding a division site. The
division site was centred in the analysed frame, and the frame was
rotated such that the daughter cells initially (time O in Fig. 1a)
move apart in a horizontal direction. The monolayer had an
average cell density of ~ 800 cellsmm ~2, a density that does not
limit cell division, and each cell had on average 6 neighbours as
shown by Voronoi analysis (Supplementary Fig. 1). We used
particle image velocimetry (PIV)®8-10:23 to track the collective
motion of cells every 10 min between 80 min before and 80 min
after the central cell’s division. PIV analysis finds the maximum
correlation between intensity patterns in two consecutive frames
and returns the velocity field (shown as vectors in Fig. 1). We
applied phase contrast microscopy, which facilitates the PIV
analysis, particularly around cell nuclei. Time 0 is defined as the
first image taken after cytokinesis where the cytoplasm of the
mother cell is divided in two. Supplementary Figure 2 confirms
that the PIV analysis correctly tracks the individual cells’
trajectories within the confluent monolayer.

To increase the signal-to-noise ratio in the analysis of the long-
range velocity fields, we aligned and averaged over 100 cell
divisions. Figure 2a-c shows the average nucleic positions of
n =100 cell divisions (centred in the frame and rotated randomly,
clockwise or anticlockwise, so that the dividing cells initially move
in a horizontal direction) 20 min before (Fig. 2a), immediately

Figure 1| Velocity field around a cell division in endothelial monolayer.
(a) First image taken after cytokinesis (time 0), the dividing cell is in the
center of the image. (b) Image taken 10 min after cytokinesis at the same
location as a. The vectors show the velocity field of the monolayer. The
monolayer is confluent, all cells are connected with their nuclei (dark blobs)
visually enhanced by phase contrast microscopy. Scale bar, 50 pm.

after (Fig. 2b) and 20 min after (Fig. 2c) cytokinesis. During
mitosis, the daughter nuclei move apart and in Fig. 1b a small
counterclockwise rotation of the daughter cells with respect to the
initial axis is visible, however, as detailed in Supplementary Fig. 3,
the average rotation angle is (4.5 £ 16.3°) which is not statistically
significantly different from zero.

Divergence and vorticity fields. The divergence field measures
the net flow across a boundary region and is calculated using
equation (4) from Methods. Figure 2d-f shows the average
divergence field of 100 aligned cells 10 min before (Fig. 2d),
immediately after (Fig. 2e) and 30 min after (Fig. 2f) cytokinesis.
The divergence analysis proves that the tissue contracts towards
the division site before cytokinesis and expands from the site of
the the daughter cells after cytokinesis. Additional time frames
of the divergence field is shown in Supplementary Fig. 4 together
with the corresponding nucleic positions.

The vorticity field (calculated by equation (5) in Methods)
describes the curl of the velocity field and carries important
information about tissue flows induced by cell division. At a
certain time, ~30min after cell division, a distinct, long-range,
well-ordered vortex pattern emerges as shown in cartesian
(Fig. 3a) and polar coordinates (Fig. 3b), respectively. At the
division site, there is no preferred sign of vorticity (as
demonstrated in Supplementary Fig. 5). Adjacent to the division
site two primary vortex pairs appear, with a clockwise (red) and a
counterclockwise (blue) vortex flanking each daughter cell. These
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Figure 2 | Average nuclei positions and divergence of the velocity field
around a cell division. In the center of each frame, a cell divides and the
daughter cells initially move in a horizontal direction, each image is an
average of 100 samples. (a-¢) Images derived from phase contrast
microscopy (the nuclei appear bright and the cytoplasm dark) displaying
the average positions of nuclei 20 min before (a), immediately after (b) and
20 min after (e) cytokinesis initiation. (d-f) Divergence of the velocity field
at corresponding times before cytokinesis initiation (d), immediately after
(e) and longer after (f) cytokinesis initiation. Scale bars, 80 pm.
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Figure 3 | Long-range well-ordered vorticity pattern induced by cell division. The vorticity field emerging 30 min after cell division shown in
cartesian coordinates (a) and polar coordinates (b). Images are the results of averaging 100 samples around an aligned cell division site. The full (D.I),
dotted (D.Il) and dashed (D.III) lines denote distances one, two and three cell diameters away from the division site, respectively, corresponding to
radii of 40, 80 and 120 um. (¢, d) Vorticity field arising from a numerical simulation of the continuum model in cartesian coordinates (¢) and in polar

coordinates (d). Scale bars, 80 um.
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Figure 4 | Extinction of the vorticity pattern over time. The average vorticity field shown for (@) 30 min (n=100), (b) 2h and 30 min (n=71),
(e) 4h and 30 min (n=71) after cell division. During time, the long-range ordering becomes more blurred and finally goes extinct at a time long

enough after the cell division. Scale bars, 80 pm.

are located approximately one cell diameter away from the
division site (D.I, full line in Fig. 3a,b). Well-ordered secondary
and tertiary vortices are also induced by the cell division and
appear farther from the division site: Approximately two cell
diameters away (D.II, dashed lines in Fig. 3a,b), an ordered ring
of eight vortex pairs is observed. Even at a distance of three cell
diameters away from the division site (D.III, dotted lines in
Fig. 3a,b) another ordered ring of vortices emerges, though at this
distance from the central division center, the pattern is somewhat
noisy due to the cell divisions taking place outside the framed
region (no other cell divisions take place within the a distance of
6 cell diameters during the span of an experiment). A vortex is
typically ~40 pm, as is the cell diameter. Supplementary Video 1
shows, in parallel, the time evolution of a dividing cell, the
average nuclei positions and the accompanying divergence and
vorticity fields.

To verify that our alignment procedure did not influence
the results, several controls were made (two are shown in
Supplementary Fig. 6) with alternative rotations of the data sets,
these controls yield results consistent with Fig. 3. Even if a smaller
subset of the data was used, n =30, a similar pattern occurred
(Supplementary Fig. 7). Tissue areas without dividing cells or
tissues where cell division had been chemically prohibited were
also examined. These controls (shown in Supplementary Fig. 8)
had significantly smaller vorticity fields and no long-range,
ordered vorticity patterns. Hence, the pattern observed around a
cell division is significantly different from random noise in the
tissue. Also, monitoring the evolution of the vorticity over longer
timescales, up to 4-5h, as shown in Fig. 4 shows that the long-
range ordered vorticity structures slowly lessen and disappear at
times sufficiently long after cell division.

Continuum model. To understand the physical origin of these
long-range, well-ordered vorticity patterns arising from a cell

division site in a two-dimensional (2D) tissue we formulated a
continuum model, which was inspired by recent theoretical work
reproducing the dynamics of bacterial suspensions®’. The
dynamics of the tissue is assumed to satisfy a momentum
balance equation:

B,V:%(V~a)—(a+ﬁ|v|2)v, (1)

where p is the mean density, v the local mean velocity of the
tissue and o is the stress tensor. The latter two terms are
parametrized by o and ff and can be thought of as the positive half
of a double well potential in |v|. Similar terms have also been
employed to describe flocks and herds?>. In this model, there is
no inertial term, as the frictional forces totally dominate inertia
for tissue movement. Stability requirements demand >0, while
o can have either sign. If o <0, in addition to the isotropic
equilibrium state v=0, we get a non-trivial solution where ¢
move in an ordered state with a characteristic speed, v, = Lo,
Shortly after cell division, it is further assumed that the tissue
moves as an incompressible fluid in which the projected area of
each cell is conserved such that V- v=0. The stress tensor, g, in
equation (1) is assumed to have the form?%:

Oij = —pé,] + No (&uj -+ 81‘1),‘) — 112V2 (8,‘!)1' + 8]‘!)1')
. 2
—I—S(U,‘U]‘—% V|2>7 ( )

where p is the pressure. The linear momentum diffusion is
parameterized by 7, and a higher-order dissipative term #),, a
nematic term, similar to the Q-tensor for nematic crystals’®,
including a fitting parameter, S, and the spatial dimension of the
setup, D=2, which describes the active stress contribution?*.
Comparing experimental data with the simulation, we find the
fitted value S/p ~2.1 £0.2. In a tissue, the cells are self-propelling
and continuously inject energy to move against viscous forces.
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Figure 5 | Quantification of primary, secondary and tertiary induced vortices. Vorticity as function of angle at radial distances of 1 (a), 2 (b)

and 3 (c) cell diameters away from the cell division site 30 min after cell division. One hundred and twenty-nine different averages, each of 100 cells,
are shown in light grey, their average is shown by a full black line. (d-f) the vorticity stemming from numerical simulation of the continuum model

at the same distance from the division site as a-¢, respectively. The insets show the corresponding power spectral densities.

In accordance with classical literature?’~2° (and with the more
recent ref. 24), we model this behaviour by setting 1o <0. This
negative viscosity, which is here introduced into our model, arises
from the classical method of describing systems in which the
fluctuation spectrum has a low non-zero extremal value and in
which the viscosity can be renormalized through an expansion
around the extremal point?’~2%. This expansion gives rise to an
unstable second-order term and a higher-order stabilizing term
(where the latter can be interpreted as a viscosity). In our
experiments, a length scale of the order of a cell diameter sets the
extremal point in the fluctuation spectrum, and we switch on the
higher-order term 7,>0 to ensure stability of the system. This
causes the two uniform solutions to become unstable and form a
dynamic state resembling tissue dynamics. Inserting the stress
tensor into equation (1) yields the following model:

1 S S
ov=—-Vp+-(v-VIv— —V |v|?
= T T SV
+ vV — Vi — (e + B | v |?)v,

where vo=1,/p and v, =1,/p.

The symmetry is broken during cell division when the two
daughter cells migrate in opposite directions. To model the
cell division, we locally add a stokeslet dipole, f(t)(d(x+ a)
—d(x—a)), on the right-hand side of equation (3). The
amplitude f(f) has the form of a square pulse in time and gives
rise to two oppositely oriented forces (see details in Methods).
The stokeslet dipole is aligned with the cell division axis and gives
rise to a symmetry breaking. This pertubation locally and
temporarily violates incompressibility; however, the system
quickly relaxes and incompressibility is recovered.

One difference between our model and previous variants of
the above equations?#2>3031 js that our model considers the

4

dynamics of a dense packing of cells, whereas previous works
have focused on dilute suspensions of self-propelled particles. Our
model is valid in a limit where the divergence of the elastic stress
is balanced by the frictional forces between the cells and the
substrate. Also, the velocities of interest here are approximately
eight orders of magnitude slower than the elastic wave in the
cytoplasm?2. More details on the model, a stability analysis and
explanation of the implementation of the numerical simulation of
equation (3) are given in the Methods section.

The proposed model nicely captures the physics of the tissue
dynamics and quantitatively reproduces the long-range vorticity
pattern after cell division as shown in Fig. 3c. Also, the radial
vorticity plot (Fig. 3d) is reproduced. The parameters entered into
the model are the time of interest (30 min to compare with
Fig. 3a,b) and the size of the analysed image (300 x 300 pm).
A Dbest fit of our model to the data returns an average speed of
L4pmmin ~ !, which corresponds well to the experimentally
observed average speed of 0.9 um min ~ !. In addition, the velocity
field, both the overall central patterns of the vector field and the
absolute peak values, is well reproduced by the simulation (see
Supplementary Fig. 9). This set of model parameters also returns
the same divergence values as experimentally observed after cell
division (Fig. 2).

Fourier analysis. To further quantify the induced long-range
ordered vorticity pattern, we performed a Fourier analysis of the
vorticity in bands at approximately one, two and three cell
diameters away from the division site, these are shown in
Fig. 5a—c. The grey lines in Fig. 5 show the vorticity as function of
angle for 129 alternative rotations, the full black line shows
their average. The simulated vorticity versus angle is shown in
Fig. 5d-f. Both the experimental and the simulated vorticities
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have a periodic pattern and to determine the periodicity the
corresponding power spectral densities were found (insets of
Fig. 5). These quantify the number vortex pairs as two primary,
eight secondary and eight tertiary vortex couples located one, two
and three cell diameters away from the division site as visually
apparent in Fig. 3a,b. Again, the numerical model reproduces the
experimental data. Even if a smaller data set, n =30, is used, the
same features are very clear in the power spectral analysis
(Supplementary Fig. 10). Hence, the model captures the essential
physics of tissue dynamics and this, combined with our experi-
mental results, proves that the endothelial tissue displays
hydrodynamic properties as a connected biomaterial rather than
as a collection of individual cells.

Discussion

The motility of cells in a confluent cellular monolayer is known
to correlate over distances of ~200-350 um (refs 6,7), and
correlated swirls exist over distances up to ~400 pum (ref. 6). In
light of these distances, it is not surprising that the motion of
new-born daughter cells stirs the endothelial monolayer and
orders the tissue at distances of up to 140 um away from the
division site. As the daughter cells move apart in the endothelial
monolayer, they exert a drag-force on the adhering neighbouring
cells, thus creating two primary vortex couples. Such primary
vortex couples have been reported for two cylinders moving apart
in a continuous viscoelastic sheet*3. However, the additional
emergence of secondary and tertiary vortices in a predominantly
viscous sheet has, to our knowledge, never been observed in a
biological system before, but only in hydrodynamical turbulent
systems characterized by high Reynolds numbers®. Using a
characteristic speed of 1 pmmin 1, a typical cell size of 40 um
(or a system size of 300 pm) and a cytoplasmatic viscosity of 14-
17 poise (for human umbilical vein endothelial cells in the
absence of vascular endothelial growth factor)®®, we estimate a
Reynolds number characterizing endothelial monolayer dynamics
to be ~1077% hence, tissue dynamics cannot be viewed as
classical turbulence. However, as the tissue is not a Newtonian
fluid, the dynamics is not well characterized by this Reynolds
number.

Our continuum model that treats cell division as a local
pressure increase, captures the tissue dynamics, both the velocity
and vorticity fields. Tissue flows determine the orientation of the
cells, and thereby of their division axes!”. The orientation of the
cell division axis could be decisive for whether a vessel lengthens
or becomes thicker, hence, for the ability of an organism, for
example, to counteract the clotting of a vessel, and this is a
property that should be mimicked in artificial vessels. In
literature, long-range tissue communications are attributed to
chemical signalling®®; however, our results show that the physical
properties of tissue alone can explain long-range ordering and
cellular communication. As stem cell differentiation can be
mechanically regulated®” and the mechanisms governing
morphogenesis are related to vortex formation 2%, it may be
that the hydrodynamical ordering following cell division also
influences differentiation and morphogenesis.

Methods

Cell culture. Human umbilical vein endothelial cells (Invitrogen) were cultured in
T25 flasks (Nunclon) with Endothelial Cell Basal Medium (Cell Applications). To
create confluent monolayers, ~ 100,000 cells were seeded in Collagen IV-coated
30-mm circular dishes and cultured for 3 days at 37 °C and 5% CO, with a media
change every 24 h.

Experiments. All experiments were conducted 3 days after seeding the cells. Phase
contrast images (2,500 x 3,000 umz) were taken of the monolayer every 10 min for
8h. All dividing cells in the monolayer were located in the phase contrast images
using a custom written MatLab programme that recognized the rounded cell before

mitosis. Only isolated dividing cells, that is, cells that had no other dividing cell
within a 240-pm radius for 20 min before to 30 min after, were used for this
analysis. Over 1,000 dividing cells were identified and followed for 80 min before
and after division, 100 of which could be considered ‘isolated’ using these
restrictions.

Image analysis. Image sequences of dividing cells were cropped from the larger
phase contrast images. These images were aligned by centring the dividing cell in a
300 x 300 pm? frame and rotating the frame so that the two daughter cells move
away from the site of division along the horizontal axis immediately after mitosis
(as shown in Fig. 1a). The rotation could in principle be done in two ways, either by
rotating an angle a clockwise or an angle 180-u counterclockwise. We chose at
random between the two and performed several controls where rotations were
done differently (examples are shown in Supplementary Fig. 6).

Particle image velocimetry. We used PIV to calculate the vector field describing
the displacement of the cells’ nuclei between images taken 10 min apart. We used
the PIVlab software package (www.mathworks.com/matlabcentral/fileexchange/
27659-pivlab-time-resolved-particle-image-velocimetry-piv-tool) for MATLAB
(The MathWorks, Natick, MA) and used an interrogation area of 15.4 x 15.4 um?
corresponding to 24 x 24 pixels®. The displacement and velocity vectors were
calculated for each pixel.

Divergence and vorticity. From the velocity vectors, we calculated the divergence
and vorticity of the flow field. The divergence and vorticity were calculated for each
pixel using the characteristic length scale of the system, the radius of the average
cell area. If the cell density of a sample is 800 cellsmm ~2, then the cells have an
average area of A= 1,250 um?, and the center of two neighbouring cells will be

~40 um apart on average. The divergence, d, has SI units of (s ~1) and measures
the net flow (in units of (m?s 1)), of the vector field across the smooth boundary
of a small region, A, divided by its area in units of (m?2). Hence, d was computed as:

0 0 V() oy (n)ry
d_avx—}— B_yuy_;ifl ) (4)

in which O is the circumference of the spherical area, A, r = (r,,1,) is the vector
from the center of A to a point on O and ¥ is the velocity vector on that point on O.

The strength of the vorticity, @ = (s ~1), was computed as the amount of
circulation, I’ = (m?s ~ 1), along the boundary of a small region, divided by the area
of the small region:

o Z _ $v(r)-dr _ Z:vx(r)ry — vy ()rg ' (5)

A re0 A

More details on the continuum model. From ref. 32, we deducted the velocity
of an elastic wave in the cytoplasm to be 1ms ™. The length and timescales of
interest for the current work are 10 pum over 10 min, hence, eight orders of
magnitude slower than the elastic wave. Therefore, our model essentially followed
from a balance between the divergence of the elastic stress and frictional forces, and
not inertia. In the model, we assume the frictional forces to be proportional to the
negative cell velocity and the stress to be proportional to the gradients in the
displacement. Applying a time derivative to this balance gives an equation where
the cell acceleration is proportional to the divergence of gradients in the velocity
field. This essentially gives equation (1) where we in addition include contributions
from the self-propelling force of the individual cells.

By taking the divergence of the vector field on both sides of equation (1), we
achieve a modified version of the conventional Poisson equation for the pressure
field encountered for incompressible Newtonian fluid flow,

Vip= ZS((?iuj) (9v1) = Bvj(vidy)vj — gvz [v]?. (6)
i

Experimentally, the dividing cell locally breaks the symmetry and chooses an
axis along which the two daughter cells migrate in opposite directions. We model
the cell division process as a stokeslet dipole, that is, by a local force perturbation
along the x axis such that

V-0 -V -a+f(t)(6(x+a,y)—d(x—a,y)), (7)

where we have introduced an amplitude f(t) of the local force and two ¢ functions.
The amplitude of the force perturbation has the shape of a square pulse in time
ft) =fo for 0<t<tgision Otherwise f(t) =0, where we set tgiyision = 1 min. fy is
fitted such that the resulting amplitude of the velocity perturbation matches the
experimentally measured amplitude. The scale a was in our simulation set to 7 um
in real units. In the simulation, the dipole is aligned with the axis of migration of
the two new daughter cells.

By inserting the stress tensor, equation (2), in equation (1) we arrive at
equation (3), which describes the tissue dynamics. Coupling equation (3) to the
incompressibility equation, V- v=0, gives the continuum model used in the 2D
simulation. Note that we need both the second- and fourth-order derivatives to
describe the cell motion. Those two terms introduce a length scale comparable to
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the cell size, below which the dynamics is stable. That is, on the scale of individual
cells, the dynamics is fairly coherent, whereas on larger scales the dynamics is
controlled by unstable wavenumbers generating an inhomogeneous state of the
velocity field. In the 2D case, this can be made further apparent by taking the curl
of equation (3) linearized around the v=0 solution

v \2 v2

For vy <0, this term will generate vorticity structures with an approximate

wavelength of 27 %L‘ ~ 1.5 cell diameters, which will describe a tendency for

nearby cells to rotate in opposite directions. As can be seen from the stability
analysis below, the long-range ordered state does not form when the second-order
term is stabilizing the dynamics, that is, when vo>0.

Stability analysis. To examine further the dynamics of the model, we performed
a linear stability analysis of equation (3) around a velocity field vy, which is
independent of space and time?#38, Therefore, all derivatives in equation (3) vanish
and the pressure computed from equation (6) is constant. Equation (3) then
simplifies to

(x+B|vo|*)vo=0, 9)

which has two solutions when >0 and 2 <0, |vo| =0 and |vo| = 1/%. We now

perform a stability analysis of the these two solutions by perturbing both the
velocity and the pressure fields by a small variation, v=v,+ v and p = p, + op.
To simplify the analysis, the coordinate system is rotated such that vy = (v, 0) and
ov= (e, € ), with €|}, €, being the parallel and perpendicular components of the
perturbation with respect to the velocity vector. Fourier transforming equation (3),
we find to linear order in ov

28y,
00 = — (vok® + vok* — iSky 5A—'<5‘+—” )k
OV (vo vy i vo)v il 6p D € (10)
- (a+[3(l)§ +21)06H))(V0+5\7),

where the ‘A’ denotes transformed quantities and K=k2+ k%. For vy =0, we find
from the incompressibility condition, V - v= 0, that the growth of the perturbation
is on the form | 6% | ox exp(At), where 4= — (o + vok? + v,k*). For v, <0 and
v,>0, the uniform solution will be unstable to perturbations with wavenumbers

in a narrow interval. For vy = ‘%I the last term in equation (10) can be

simplified into
OOV = — (v0k2 +vkt — iSkxvo)ﬁ\?f i<(3f7+ 28#6”>k+ (2% 0)50.

0 0
(11)
Again using the incompressibility condition, we find that

. . 200 0 N
0oV = 7M<(Vok2+vzk4718kxvo)lf ((z)x 0>>5v, (12)

where I is the identity matrix and

LB kk
2 - 2
M= < kxll(cy kk2>' (13)

e 1-p

The eigenvalues for the non-zero solution are 2 =0and 4 = — (vok? + vok* — iSk.v)

+ 20 % Once again for vo<0 and v,>0, we find a region of unstable wavenumbers
making both fixed points simultaneously unstable. In Supplementary Fig. 11, we show
the results of the stability analysis where the region of the unstable wavenumbers can
be observed for the two fixed points, respectively. We further observe that for o <0 and
110<0, both fixed points will be unstable when perturbed by long wavelengths implying
that equation (3) describes an inhomogeneous velocity field.

Model parameter estimation. The five model parameters with a physical
dimension are given by

_ 1 _ time 71ength2

[L] = length,  [o] = . [ﬂ]*lengthz’ Dol = me (14)
] _ length*
27 Ttime

In general, o and f describe the properties of the isotropic states, while vy and v,
describe the emergence and evolution of the vorticity patterns. Combining the
dimensional quantities, we find that the velocity of the ordered state is given by
Ve = \/I;‘, which roughly corresponds to the crawling velocity of the cells.

The length scale L is set to size of the experimental system. The four remaining
parameters have been fitted by minimizing the distance between the vorticity field
of the model and the experiments in a circle with a radius of approximately three
cell diameters and centred on a cell division event. To convert the dimensionless
model parameters to real parameters with units, we use a timescale and the length

6

scale L. In the experiment, the vorticity pattern develops fully over the course of
~t=30min, which corresponds to t=11.4 ¢, in simulation time. From that we
estimate the time conversion factor from the simulation time to be t,=2.63 min.
The physical parameters and their corresponding physical values and SI units are
provided in Supplementary Table 1. The full simulation spans a 47 x 47 square.
To ensure that the boundary effects from the simulation’s periodic boundaries
are negligible, only the central square region of the simulation is used. The
length conversion factor is found to be ;~47.7 pm. Using the conversion factors,
t, and I, and the values from Supplementary Table 1, we find the characteristic cell
speed to be v.~ 1.4 ummin ~ ! in good agreement with the experimental value
(0.9 um min ~ 1.

Numerical simulation. The model was simulated in a 2D box with periodic
boundary conditions using a pseudospectral method. After Fourier transforming
equation (1), the resulting equations were solved numerically by an exponential
time integration scheme®. The non-linear terms were evaluated in real space and
then transformed back to Fourier space by repeated use of the Fast Fourier
Transform and its inverse. To suppress aliasing errors, the 3/2-rule has been
implemented®’, The stability of the simulations were tested for a wide range of
parameters and on grid sizes ranging from 128 x 128 to 512 x 512 with timesteps
of the order At~10 % To ensure that the flow field remained incompressible, a
pressure correction term was implemented effectively driving the divergence of the
velocity field towards zero®’. The simulation was initialized with a divergence-free
flow field, which was allowed to relax. Thereafter, the perturbation in the pressure
was inserted and the flow field relaxed once more, while the vorticity field was
extracted.
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