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We present a stochastic epidemic model to study the effect of various pre-
ventive measures, such as uniform reduction of contacts and transmission,
vaccination, isolation, screening and contact tracing, on a disease outbreak
in a homogeneously mixing community. The model is based on an infectiv-
ity process, which we define through stochastic contact and infectiousness
processes, so that each individual has an independent infectivity profile.
In particular, we monitor variations of the reproduction number and of
the distribution of generation times. We show that some interventions, i.e.
uniform reduction and vaccination, affect the former while leaving the
latter unchanged, whereas other interventions, i.e. isolation, screening and
contact tracing, affect both quantities. We provide a theoretical analysis of
the variation of these quantities, and we show that, in practice, the variation
of the generation time distribution can be significant and that it can cause
biases in the estimation of reproduction numbers. The framework, because
of its general nature, captures the properties of many infectious diseases,
but particular emphasis is on COVID-19, for which numerical results are
provided.

1. Introduction

While the reproduction number is usually seen as a dynamic quantity, changing
over the course of an epidemic, the generation time distribution is often seen as
a static object. For example, during the recent COVID-19 pandemic, major
efforts have been made to continuously estimate reproduction numbers,
while often outdated estimates of the generation time distribution have been
employed in the estimation. The distribution of the generation time, which
we define here as the time between the infection of a secondary case and the
infection of the corresponding primary case, is not an intrinsic property of an
infectious disease; on the contrary, it depends on the environment and on the
behaviour of the individuals among whom the disease spreads. Consequently,
the generation time distribution can be subject to variations, for example, recent
studies hint that generation times of SARS-CoV-2 have significantly shortened
during the course of the pandemic [1-4]. When doing inference, it is important
to investigate the extent of these variations and take them into account, when
substantial.

The significance of the generation time distribution stems from its relation to
the initial exponential growth rate of the epidemic and the basic reproduction
number, or equivalently the current growth/decline rate and the current repro-
duction number. In fact, by observing the incidence, the growth rate is often
estimated and used together with the generation time distribution to derive
the reproduction number by means of the Euler-Lotka equation (see §3.2 for
more details). Therefore, using a current estimate of the growth rate together
with a generation time distribution estimated before preventive measures
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were in place could lead to a biased estimate of the reproduc-
tion number. Estimating the reproduction number R in an
ongoing epidemic is crucial for efficient control of the epidemic.
If for example R=1.25, the overall number of contacts of
infectious individuals must be reduced by at least 20% to stop
the epidemic from increasing ((1 — 0.2)R =1). Similarly, a com-
munity currently having a high level of restrictions and
current reproduction number R = 0.8 may relax restrictions as
long as the number of contacts by infectious individuals
does not increase by more than 25% ((1 +0.25)R =1). Biases
in estimates of R may hence lead to improper conclusions
regarding control measures.

Several issues arise in connection with estimation of the
generation time distribution. To begin with, in practice, it is
usually not possible to observe all of the secondary cases
caused by a cohort of primary cases, and therefore biases
due to missing cases arise. Furthermore, moments of infection
are rarely observed and surrogate time points are used, such as
time of symptom onset. When the epidemic is exponentially
growing, short generation times are overrepresented among
the observed ones. The generation time may vary during the
course of the epidemic because of significant changes in
the number of susceptible individuals, for example near the
peaks of incidence. When performing inference, it is important
to take the above mentioned issues into account (e.g. [5-9]).
Another problem, of a different nature, is that the generation
time may vary because of changes in the behaviour of individ-
uals, in particular, due to preventive measures introduced to
reduce the spread of the disease.

The latter problem has received some attention, see for
example [1,3,4] in connection with the COVID-19 pandemic,
but, unlike the other mentioned problems, has not been
extensively studied yet. It is not uncommon that studies,
which focus on the important task of estimating other quan-
tities, use an outdated estimate of the generation time
distribution which does not represent the current situation,
because of changes in the level of preventive measures
among different time periods or among different locations.
For example, many influential and highly cited studies,
such as [10,11], use the estimate of the generation time distri-
bution of SARS-CoV-2 from early 2020 in Shenzhen, China
[12]. See also [2], where this problem is highlighted, and
references therein. Other influential studies, e.g. [13], use
instead estimates of the generation time distribution [14] of
SARS-CoV-1 which despite being similar to SARS-CoV-2,
resulted in milder preventive measures.

The choice of using outdated estimates of the generation
time distribution to obtain much-needed estimates of other
quantities, such as reproduction numbers, is understandable;
however, it may lead to biases. That is why in this paper, we
focus on illustrating, both theoretically and in a COVID-19
example, how various preventive measures change the gener-
ation time distribution in emerging epidemics and we draw
attention to some scenarios in which it would be preferable
to replace the initial estimate of the generation time distri-
bution with an up-to-date estimate that takes into account
the non-negligible effect of interventions. A related problem
is the effect of asymptomatic individuals on generation
times, which we briefly discuss in §4.2.

We focus on the initial phase of an epidemic, that is, when
depletion of susceptible individuals is negligible. As the epi-
demic progresses, some of the potentially infectious contacts
of infected individuals will be with already infected or

recovered (assumed immune) individuals and thus the effec-
tive reproduction number will decrease. The reduction is
proportional to the fraction of individuals that have already
been infected and hence only slowly changing in the initial
phase of the epidemic. Determining the length of this phase
depends on the specific outbreak, and thus goes beyond the
scope of this paper, but can be done for example by observing
that the infection rate in the beginning of the epidemic is close
to constant up until a certain percentage of individuals have
been infected, say 5%. The time it takes to reach this threshold
identifies the initial phase. Our analysis of the generation
time distribution can also be easily transferred to other
phases of the epidemic in which the fraction of susceptible
individuals does not change significantly. Continuing the
previous example, also later in the epidemic the infection
rate is close to constant over a period where at most 5% get
infected. This period is usually shorter around the peak; for
example, it might take a few months for the first 5% to get
infected and later in the epidemic, around the peak, a few
weeks for 5% more to get infected. Note that considering
later phases of the epidemics would allow one to take into
account naturally acquired immunity, but not waning of
immunity if waning is observed over a longer period than
the periods mentioned above.

We present, in §2, a general stochastic epidemic model for
the spread of infectious diseases with a structure that is par-
ticularly indicated to analyse the impact of preventive
measures on the distribution of generation times and repro-
duction numbers. The key feature of the model that
facilitates this analysis is a random infectivity profile with a
random time at which the contact activity of an infectious
individual is reduced. We define this random time to be
equal to the time of symptoms onset, when no preventive
measures are in place, and equal to the time of detection
(that can occur by various means, including symptoms
onset), when interventions are in place. We assume that for
each individual the rate of symptoms onset is proportional
to infectiousness; see §4.1 for a discussion on this assumption
and further details.

In particular, we consider the following interventions:
homogeneous reduction of contacts and transmission, vacci-
nation, isolation, screening and contact tracing. Clearly, all
these preventive measures aim at reducing the reproduction
number; however, not all of them have an effect on generation
times. The analysis in this paper shows that homogeneously
reducing infectivity, by reducing contacts or transmission, as
well as vaccination do not change the generation time distri-
bution; see §§5.1 and 5.2. On the contrary, reducing the
contact activity of, or isolating, symptomatic individuals
does have a significant impact on generation times; see
§5.3. For example, in the COVID-19 scenario illustrated in
§6, the natural intuition that this preventive measure shortens
generation times is confirmed. Furthermore, our analysis
shows that other interventions affecting the generation time
distribution are those aiming at expediting the time at
which an infectious individual is isolated, or reduces their
contact activity, such as screening and contact tracing. In par-
ticular, in the COVID-19 scenario with isolation of detected
individuals, if the population is screened uniformly, that is,
each individual is randomly tested at a certain constant
rate, generation times are shortened, and if contact tracing
is put in place, the shortening becomes substantial. Using a
pragmatic approach, aimed at providing a general analysis
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Table 1. Notation summary.

infectivity process and infectivity function
infectiousness process

contact process = {C(t.)}é.o.

contact rate before and after symptom onset/ G, G
detection

time of contact activity reduction and its T, 0
conditional rate

time of symptoms onset, its conditional rate Ts, as, ag
and corresponding parameter

probability of asymptomatic infection p*¥

time of detection and its conditional ate ~~~ Tpap

time of screening and its rate

time of contact tracing and its conditional rate T, Ot
probability of successful contact tracing p
other quantities related to contact tracing o, £ cern
Ay, d
‘reduction factions of contacts and Cpep,
transmission
‘reduction fractions due to vaccination oy
and to isolation of symptomatic and Ps, Po
detected individuals
fraction of vaccinated individuals v
relative susceptibilty (vaccination response) ~~ Aa
relative infectivity (vaccination response) B b

of the impact of contact tracing at the population level, we
make an approximation of the contact tracing mechanism
and we provide a rigorous derivation of the rate at which
individuals are contact traced. See §5.4 and the electronic
supplementary material for a detailed discussion on screen-
ing and contact tracing.

In 8§5.5, we summarize the results in a general formula
for the generation time distribution that takes into account
the cumulative effect of all interventions. The model, the
analysis and the general formula for the generation time
distribution (§§2-5) are valid under general conditions and
thus can be used to study various infectious diseases by
defining a suitable infectivity profile and parameters. In §6,
we tune the model to fit a COVID-19 scenario to illustrate
the theoretical general results in a realistic example, and,
perhaps more importantly, to investigate the extent of
the impact of interventions on the generation time distri-
bution and reproduction number in a framework that
allows for further extensions.

2. The stochastic model

The model we present can be interpreted as a special case
of the very general epidemic models in e.g. [8,15], tailored
to consider preventive measures and to study their impact.
A summary of the notation, including stochastic processes,
random variables, parameters and functions, is given in
table 1. We adopt the classical assumption that the

population is homogeneously mixing. This is a natural [ 3 |

assumption, despite it being a simplification of reality, as it
allows an analysis which is valid for the numerous wide-
spread models that are based on the very same assumption.
Future investigation could consist of removing this assump-
tion and repeating the analysis for more complex models
based on networks. In this model, we also assume that
all individuals are equally susceptible at the start of the
epidemic, whereafter they might be infected and later
removed. On the contrary, infectious individuals are not
equally infectious, they have infectivity profiles which are
independent and identically distributed, as in [8,15]. That
is, the infectivity profile of an infectious individual is
the realization of a stochastic process 4, the infectivity
process, which is the product of a contact process and
an infectiousness process, described in the following. This
allows modelling some inhomogeneity in the population; in
fact, although identically distributed, individuals’ contact
behaviours and infectiousness can vary. It is known [15]
that, when the initial phase of an epidemic is considered,
and thus depletion of susceptible individuals is negligible,
this epidemic model corresponds to a Crump-Mode-Jagers
branching process [16]. This allows using results from the
theory of branching processes to analyse the epidemic model.

2.1. Infectiousness process

The infectiousness profile of an infectious individual is an
independent realization of the continuous-time, [0, 1]-valued
stochastic process X ={X(H)l;»o, the infectiousness process.
Given X, if a contact between the infectious individual with
infectivity profile X and a susceptible individual occurs at
time t (since the infection of the infectious individual), then
infection of the susceptible individual happens with probability
X(t). In the following, we mention two possible choices for the
infectiousness process.

Example 2.1 (Infectiousness profiles with a deterministic
shape). Let X; be a random variable with values in
[0, 1], X, a random variable with values in R-(, and
let h:Rsp—[0,1] be a deterministic function. Then
a possible construction of the infectiousness process is
X(t) = X1h(tX51). This is based on the assumption that the
infectiousness profile has the same shape for all individuals,
given by the function k. Furthermore, since not all individ-
uals are equally infectious, each individual is associated
with a pair of random variables distributed as (X;, X»),
which determine the strength and the location of the peak
of infectiousness.

Example 2.2 (Infectiousness profiles in the SIR model).
In the well-known SIR stochastic model, the infectiousness
process corresponds to X(t) = x1p(t), where x is the prob-
ability of infection and I is the (random) length of the
infectious period.

2.2. Contact process

The contact activity of an infectious individual is a realization
of the continuous-time, Rx-valued, stochastic process
C={C()}»o, the contact process. An individual’s contact
activity may depend on their infectiousness profile, but is
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assumed to be independent of other individuals’ contact
activities. Given C, an infectious individual with contact
activity C has contacts with other individuals at the time
points of an inhomogeneous Poisson process with intensity
C(t), time being measured since the infection of the infectious
individual.

We assume that the contact process has the following
form:

Ct) = {& ii : i T =Cilicr + ol (2.1)
where 7 is a random time at which the initial base contact
activity C; is reduced to C,. The Rxp-valued random vari-
ables C; and C,, with C, <C;, are possibly dependent on
each other, but are assumed to be independent of anything
else. We assume that the random time 7 has conditional
rate a.(t), at time ¢, given the contact activities, C;, C,, and
given the infectiousness processes until time ¢, that is, given
X which corresponds to the natural filtration associated
with the infectiousness process. This means that the
conditional distribution of 7 is of the form

t
G.(t)=P(r>t]| X, Cp, C) = exp<f [ a.(u) du>. (2.2)
Jo

Having defined a contact process of the form (2.1) allows
enough flexibility to describe realistic scenarios we are inter-
ested in analysing, while enabling a solid mathematical
formulation. In fact, as shown in the next sections, different
definitions of a,, C;, C, allow modelling contacts in several
scenarios, with and without preventive measures. In particu-
lar, 7 can be defined to model for example the time of
symptoms onset or, more generally, the time of detection by
symptoms onset or by other preventive measures, e.g.
screening and contact tracing. More details on 7 are provided
in §84 and 5.4, where modelling of symptoms onset and
detection are, respectively, addressed.

2.3. Infectivity process
Infectivity profiles of infectious individuals are independent
realizations of the continuous-time, Rx(-valued stochastic
process A = {A(t)};»0, with

A(t) = C(HX(D).

The infectivity process A combines the effects of the infec-
tiouness process and the contact process. In a susceptible
population, given A, an infectious individual with infecti-
vity profile A infects other individuals at the time points
of an inhomogeneous Poisson process with intensity A(t),
time being measured since the infection of the infectious
individual. This is equivalent, by properties of Poisson
processes, to the description in the previous subsections:
the infectious individual has contacts at the time points
of an inhomogeneous Poisson process with intensity C(t),
and a contact at time ¢ results in an infection with proba-
bility X(¢). Note that the process that counts the infectious
contacts, ie. the counting process N={N()}o, with
random intensity 4, is a Cox process, also known as doubly
stochastic Poisson process (e.g. [17]). We have described the
role of the infectivity process in a completely sus-
ceptible population; instead, if some individuals are not
susceptible, contacts with those cannot result in infection.

However, in the initial phase of an epidemic, which is what n

this paper focuses on, depletion of susceptible individuals
is negligible and thus the above description of the infectivity
process is valid.

3. Some quantities of interest
3.1. Reproduction numbers

In this framework, the infectivity function, i.e. the average
rate at which a typical infected individual infects others in
a fully susceptible population, is simply the expectation of
the infectivity process, that is,

B(t) = EIA(t)] = EIC1X(t)G,(t) + CX(H)(1 — G.(t)], (3.1)

where G,(t) is defined in (2.2). Therefore, the average number
of individuals infected by a typical infectious individual, the
reproduction number, is

R— r B(t)dt = RV 4+ R®), (32)
where
R =F Um C1X(£)G(t) dt}
0

is the average number of individuals infected by a typical
infectious individual before reducing their base contact
activity (e.g. before symptoms onset, or before detection), and

R® =F U CX(H(A — GT(t))dt}
0
is the average number of individuals infected by a typical
infectious individual after changing their contact activity.
The above formulas for R, R and R® give a theoretical
means of comparison of the effect of various preventive
measures; in particular, considering R” and R separately
can be useful to better understand strengths and limits
of a certain intervention. For example, by simply isolating
infectious individuals after they show symptoms, R® can
be significantly reduced; however, if no other preven-
tive measures are in place, R™  remains unchanged
and thus R cannot be reduced below R™". However, often
in practice, the reproduction number cannot be estimated
directly by formulae of the type above and estimates rely
instead on another approach, which is described in the
following subsection.

3.2. Generation time distribution

A valuable tool to estimate the reproduction number is
the Euler-Lotka equation which relates the reproduction
number R to the, usually more easily observable, Malthusian
parameter, the exponential growth rate r (e.g. [18]). As shown
in [5], in the initial phase of an epidemic, the incidence
quickly approaches exponential growth, with rate r, and
thus the Euler-Lotka equation, arising from population
dynamics, applies:

1= RJ e "g(t)dt.
0

This equation links the reproduction number and the
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growth rate through the function g, the generation time distri-
bution, which, in the framework of this paper, as in [8], is
expressed as

8 = o =B, 63)

E[);° A(u)du] R

It is because of its appearance in the Euler-Lotka equation
that the generation time distribution has a crucial role in
inference. In fact, knowing g allows deriving R from r or
vice versa. As pointed out in [8], the intuitive definition of
the generation time as the time between a primary and a sec-
ondary case has several mathematical counterparts, and it is
thus important to recall that ¢ in the Euler-Lotka equation
corresponds to the following definition. Consider a cohort
of infectious individuals (referred to as primary cases) and
all of their secondary cases. Choose one of the secondary
cases uniformly at random and measure the time between
the infection of the secondary case and the infection of the
corresponding primary case. The probability density function
of this random time is equal to g in (3.3); see [8] for more
details. Note that this sampling procedure is size-biased,
that is, a primary case associated with more secondary
cases is more likely to be chosen compared to one associated
with fewer secondary cases. For this reason, choosing first a
primary case uniformly at random and then one of its sec-
ondary cases (also uniformly at random) would yield a
different generation time distribution, E[A(t)/[; A(u)du],
which is not of interest here and should not be confused
with (3.3).

This paper focuses on the study of variations of the
generation time distribution due to preventive measures.
Let us explain why these variations are worth being
studied. Imagine an epidemic evolving without preventive
measures, with basic reproduction number R, generation
time distribution g, and growth rate r,. When interventions
are introduced, Ry, go, 7o are replaced by Rg, g, re. Each
of the triplets above satisfies the Euler-Lotka equation.
When doing inference before interventions, ry is observed
and R, is derived using go. The same should be done when
various interventions are put in place, that is, rz and gg
give Rg. However, if we observed rg and used gy instead of
gk, the resulting reproduction number would be biased.
The aim of this paper is to study how the generation time
distribution varies, from g, to gg, when preventive measures
are introduced, and how that affects the estimate of the
reproduction number.

4. Modelling symptoms and the neutral scenario

The stochastic model described in §2 can capture several
scenarios, including the neutral scenario in which no preven-
tive measures are in place. In this case, the random time 7, at
which the contact activity of an individual is reduced, is
assumed to be equal to the time of symptoms onset Ts.
In fact, a natural reduction of the contact activity can occur
at symptoms onset, even without preventive measures, for
example, even if isolation of symptomatic people is not
required, having flu-like symptoms naturally reduces
contact activity.

Furthermore, by defining 7=Ts, we can study all those
interventions that do not affect the time at which the contact

reduction occurs; see §85.1-5.3. Whereas, for those

interventions that aim at expediting the time at which the
contact reduction occurs, e.g. by implementing other means
of detection besides symptoms onset, 7 needs to be defined
differently, i.e. as the time of detection; see §5.4.

This section is dedicated to 7=Ts. In particular, §4.1 is
dedicated to mathematical definition of Ts, the underlying
biological assumptions, and the resulting formulae, which
will be crucial in the following sections, while §4.2 contains
a comment on the effect of asymptomatic cases.

4.1. Random time of symptoms onset

Let Ts be the time between infection and symptoms onset
of an infectious individual. Consider the model of §2 with
7=Ts. We assume that Ts has conditional rate, given &},

as(t) = asX(t), (4.1)

where a5 € R>. In this way, the distribution of the time to
symptoms onset of an individual depends on their infectious-
ness process and is independent of their contact process.
Furthermore, the above assumption implies that, at any
given time, the higher the infectiousness, the higher the rate
of symptoms onset. Therefore, it is more likely for a sympto-
matic infectious individual to show symptoms in proximity
to the peak of their infectiousness, in line with what
is observed for COVID-19 (e.g. [19,20]), and with the viral
load of patients with pandemic HIN1 2009 virus infection
peaking on the day of onset of symptoms [21]. Furthermore,
note that in this model, an infectious individual is not necess-
arily symptomatic, even if highly infectious. We call an
infectious individual who never shows symptoms asympto-
matic (to not be confused with an individual who has not
shown symptoms yet, called pre-symptomatic); this corre-
sponds to Ts=oco. The probability that an individual with
infectiousness process X is asymptomatic is

I]:D(Ts — o | X) —e ‘[OwagX(u)du.

This means that the higher the total infectiousness,
Jo  X(u)du, the higher the probability of the individual
being symptomatic. More generally, the probability that a
typical individual is asymptomatic is

P = P(Ts = 00) = E {e* K “SX(W“} ,

Making different biological assumptions on symptoms onset
would correspond to a different mathematical definition of
Ts. For example, Ts could be defined as the time at which
the infectiousness process exceeds a certain threshold. From
now on (4.1) is assumed. This is not only a realistic assump-
tion but also mathematically convenient, yielding explicit
formulae for R and R, the average number of individuals
infected by a typical infectious individual before and after
symptoms onset, respectively. See the electronic supplemen-
tary material for more details.

4.2. Biases due to asymptomatic individuals

Usually, the generation time distribution is estimated from
data related to symptomatic cases. That is, instead of the
real generation time distribution g, the generation time distri-
bution of symptomatic cases, gsy, is estimated, and in turn
used to estimate the reproduction number, leading to biases
(e.g. [4,22]). In this subsection, we briefly analyse how these
two distributions are related.
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Let B (t) =E[A(t) | Ts =] and BY(t) =E[A(t) |
Ts < o] be the average infectivity rates of asymptomatic
and symptomatic individuals, respectively. Then the average
infectivity rate is

B(t) =™ B () + (1 — p™)BY (8).

Let R*Y = [° g*Y(t)dt and R® = [° B (t) dt be the average
numbers of individuals infected by a typical asymptomatic
infectious individual and by a typical symptomatic individual,
respectively. It is straightforward to calculate that

R = pasyRasy + (] _ pasy)Rsy.

The formula above confirms the obvious intuition that the
higher the fraction p*¥ of asymptomatic individuals, the
higher the impact of asymptomatic individuals and thus,
when data on asymptomatic individuals are unavailable, esti-
mates of R might be biased, unless a correction is made.
Furthermore, g¥(f)=(1/R*)B¥(t) and the generation time
distribution of asymptomatic individuals is ¢g°¥(t) = (1/R*¥)
BY(t), thus

g(t) = g™ (t) + (1 — 4°¥)g™ (1),
where

pasy Rasy
pasyRasy + (] _ pasy)Rsy

qasy —
indicates how much asymptomatic transmission affects the
overall generation time distribution.

5. Interventions

By varying the contact process C, the infectiousness process
X, or the random time 7, several types of intervention, and
their effect on generation times and reproduction number,
can be studied. In particular, the interventions analysed in
this paper are grouped in the following categories:

— homogeneous reduction of contact level (e.g. physical
distancing, lockdown),

— homogeneous reduction of transmission probability (e.g.
face masks),

— vaccination,

— isolation of symptomatic individuals,

— screening, and

— contact tracing.

Note that the latter two interventions aim at expediting the
time at which an individual is detected and at lowering their
contact activity after detection, while the remaining ones
focus on lowering the infectivity process, without affecting
the detection time. In the following subsections, we analyse
the different types of preventive measures, considering one
at a time and comparing it with the no-interventions neutral
scenario. In §5.5, the cumulative effect of all interventions is
considered and a general formula is provided.

5.1. Homogeneous reduction of contact activity or
transmission probability

This subsection is dedicated to the analysis of two types
of preventive measures that lead to the reduction of the
infectivity process by a multiplicative factor.

The first class of preventive measures that we consider
consists of those measures, such as physical distancing or
lockdown, that reduce the contact process by a factor pc,
which is a [0, 1]-valued random variable. This means that
each individual reduces their contact activity by a factor
which is an independent realization of pc.

The second class instead consists of those measures, such
as introducing face masks, that reduce the infectiousness pro-
cess by a factor px, which is a [0, 1]-valued random variable.
This means that the infectiousness profile of each individual
is reduced by a factor which is an independent realization
of px.

These measures are homogeneous in the population, that
is, we are assuming that each individual is recommended/
required to follow the same measures independently of
their situation. The random variables pc and px are thus inde-
pendent of the infectivity process. While the measures are
homogeneous, the individual response is variable, and thus
we use random variables, instead of deterministic constants,
to represent the variability in the personal adherence.

Both classes of measures, albeit in different ways, have
the same effect on the infectivity process, which is reduced
by a multiplicative factor, i.e. Ag(t) =pcpxA(t), which yields
Be(t) = Elpcpx1B(t) and Re = Elpcpx]Ro. Therefore, the pre-
ventive measures considered in this subsection affect the
reproduction number, while leaving the generation time
distribution unchanged.

5.2. Vaccination

In this subsection, we complement the underlying epidemic
model with a vaccination model as in e.g. [23,24]. We
assume that a fraction v of the population receives a
vaccine, before the epidemic starts. While this is a simplifica-
tion of reality, it allows an analysis of the generation time
distribution in a population that is partly vaccinated and a
comparison with the scenario without interventions.
Assume that each vaccinated individual has a random
response to the vaccine, determining the reduction in suscep-
tibility and (if infected) infectivity. The response is described
by the [0, 1]-valued random variables A and B, the relative
susceptibility and the relative infectivity respectively. This
means that a vaccinated individual with response A, B has
a probability of getting infected reduced by A compared to
the probability of getting infected without vaccine, and if
ever infected, their infectivity is reduced by a factor B. Note
that we are assuming that the vaccine may reduce the
infectiousness profile by a multiplicative factor B, without
changing its shape. See the electronic supplementary material
for a discussion on this assumption.

As in the previous subsection, the infectivity function,
as well as the reproduction number, is reduced by a multi-
plicative factor, E[py,], and therefore the generation time
distribution is unchanged. For more details, see the electronic
supplementary material.

Immunity, or partial immunity, from disease exposure has
the same type of effect as vaccination, that is, it reduces the
reproduction number without changing the generation time
distribution. In fact, as explained in the Introduction, in this
paper, we are considering a period of time in which the frac-
tion of immune individuals does not change significantly;
thus the reasoning around the effect of immune individuals
is identical to the one around vaccinated individuals.
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Finally, we remark that the effect of immunity waning in
vaccinated individuals is not considered here. This goes
beyond the scope of the model, since we only focus on
dynamics over shorter time periods, i.e. the phases mentioned
in the Introduction, rather than on the long-term evolution
which usually needs to be considered when analysing the
effect of waning.

5.3. Isolating symptomatic individuals

As mentioned in §4, in a scenario without preventive measures,
the initial contact activity C; of an individual is naturally
reduced to C; at the time of symptoms onset, Ts. If symptomatic
individuals are recommended or required to isolate, then the
contact activity after symptoms onset, C,, is further reduced
by a factor pgs € [0, 1], ideally close to 0. This preventive measure
can be easily included in the model and its effect on the gener-
ation time distribution and the reproduction number can be
studied by analysing (3.1) and (3.2).

The basic reproduction number, in the no-interventions
scenario is Rg = Ré” + Réz). Now assume that symptomatic
individuals are required/recommended to isolate, while no
other preventive measures are in place. It is straightforward
to see that the reproduction number becomes R = Rél>+
pSRg). Therefore, by simply isolating symptomatic individ-
uals, the reproduction can be lowered to a minimum of Rén,
which corresponds to a scenario in which symptomatic indi-
viduals are completely isolated and do not have any contact
with others. In fact, isolating symptomatic individuals has
no impact on the amount of pre-symptomatic or asymptomatic
transmission, which defines Rél). The generation time distri-
bution, by (3.1) and (3.2), becomes

86(8) = —5—— EICX()Gr, (1) + psCaX (51 — Gy (£,
Ry’ + psR;

Therefore, isolating symptomatic individuals not only affects

the reproduction number, but also, unlike the previously ana-

lysed interventions, changes the generation time distribution.

If other detection measures are in place, the preventive
measure discussed in this subsection could be improved by
isolating detected individuals in addition to symptomatic
individuals. See the next subsections for more details.

5.4. Screening and contact tracing
In the previous subsections, the time at which an individual
reduces their contact activity, 7, was assumed to coincide with
the time of symptoms onset. While isolating symptomatic
individuals or generally reducing the infectivity process
homogeneously in the whole population does not affect 7,
other preventive measures instead aim at reducing 7.
Interventions such as screening and contact tracing act by
expediting the time at which an infectious individual is dis-
covered to be infectious. This scenario can be modelled by
letting 7= Tp, the time of detection, and

TD = min{TS/ Tscre/ TCT}/

where Ty is the time of screening, Tcr is the time of detec-
tion by contact tracing. In this framework, we assume that,
given the infectiousness and the contact process up to time
t, i.e. given &; and C;, the conditional rate of detection at
time f since infection is

ap(t) = as(t) + asere(t) + acr(t), (5.1)

where as, the conditional rate of symptoms onset, is defined
in (4.1), Qscre, the screening rate, is defined in (5.2) below, and
acy the conditional rate of detection by contact tracing, is
defined in (5.3) below.

We assume screening is performed as follows. Random
tests are carried out so that the entire population, including
infectious and non-infectious individuals, is screened uni-
formly. That is, independently of their infectiousness and
contact process, each individual is tested at a constant rate
o. At time t, given X(t), the rate of detection by screening
is thus

Qsere(t) = UlX(t)>O’ (5.2)

as an individual can only be detected when infectious. This
means that, if we consider a small time period of length €,
any individual, infectious or not, has approximately a prob-
ability eo of being tested during that period, thus roughly a
fraction o of the entire population is tested each day, if time
is measured in days. Uniform screening is not often used in
practice, and thus not representative of most real-world scen-
arios. The next section illustrates that the effect of uniform
screening is moderate, unless ¢ is large, which in practice
requires a substantial screening effort. This motivates why
uniform screening is not often implemented as a preventive
measure. In order to obtain a bigger impact, it is more effi-
cient to direct testing towards individuals that are more
likely to be infectious, as in contact tracing programmes,
rather than spreading it uniformly over the entire population.
Being a more efficient strategy, this is also more representa-
tive of the real-world practice. For this reason, we now
include contact tracing in the model.

Modelling contact tracing is notoriously challenging; see
[25] for an extensive overview. Various modelling approaches
are possible; see for example [26,27] for compartmental
models, [3] for deterministic integral equations, [28] for an
individual-based stochastic model; and important obser-
vations on data have been made (e.g. [29]). Nevertheless,
simpler models that are wide-spread in practical applications
rely on strong simplifying assumptions, while more accurate
complex models are often intractable in practice. A complicat-
ing factor is that, because of contact tracing, infectious
individuals are not independent of each other; for example,
the infectivity profile of an infector might be truncated
because one of their infectees develops symptoms quickly
and triggers contact tracing leading to detection of the infec-
tor. In order to exactly model contact tracing, it is necessary to
keep track of the status of each single individual and of
relations between individuals by building additional math-
ematical structure in the model. An example is given in
[28], where each individual in a stochastic SIRS model is
associated with an id-number and with the id-number of
their infector. This leads to complicated calculations and
large simulations, even if the underlying epidemic model is
rather simple. The heterogeneity of individuals, which is
modelled in this paper by the stochastic infectivity process,
leads to further difficulties. Therefore, instead of using a simi-
lar approach, aiming at exact expressions and keeping track
of each single individual, we focus on approximating the
effect of contact tracing to provide insight at population level.

The first approximation that we make is to assume that
the infectivity profiles of different individuals are indepen-
dent of each other, despite contact tracing. Each individual
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can be contact traced either through one of their infectees,
with conditional rate acty, or through their infector, with con-
ditional rate acro. As a result of the approximation and of the
assumptions described below, the rate at which an infectious
individual is detected through contact tracing at a certain
time ¢ since their infection, given C; and the infectiousness
profile up to time ¢, i.e. given X, is

act(t) = acri(t) + acra(t)

t—d
=p Jo CiX(u)f (t —d — u) du + pact21x@>0,  (5.3)
where p is the probability that contact tracing occurs successfully,
pact21x(y>o is the rate, approximated by a constant, at which an
infectious individual is detected through their infector, f is the
probability density function of the time between the moments
an infectee is infected and detected and 4 is the (deterministic)
contact tracing delay. It is implied that, if ¢t <d, the integral in
(5.3) is equal to zero and thus acr1(f) = 0. We assume that contact
tracing stops after one step, which is a reasonable approximation
of reality. In fact, it is unlikely that an individual is contact traced
through their infectee who in turn has been contact traced,
because this would usually take longer than the infectious
period. This latter assumption allows deriving an explicit
expression for the function f, which would not be possible other-
wise; see the electronic supplementary material. Formula (5.3)
can be easily generalized to include a random contact tracing
delay, as shown in the electronic supplementary material.
Finally, assuming that the infector is detected at a constant rate
is also an approximation of reality. In fact, this rate varies with
time and depends on how long has passed since the infector
was infected, while remaining independent of the infectivity
profile of the infectious individual under consideration. A non-
approximated derivation of this rate is challenging, as explained
in the electronic supplementary material, and would require
additional structure to be added to the model, which goes
beyond the scope of this paper and is left for future work.

5.5. The cumulative impact of all interventions

Finally, to summarize the analysis of this section, we consider
altogether the preventive measures that have been analysed
so far and provide a general formula for the generation
time distribution under the effect of all preventive measures.
When all preventive measures are in place, and in particular,
not only symptomatic individuals but also detected individ-
uals reduce their contact activity by a fraction pp, the
infectivity function becomes

Be(t) = Elpypcpx]
-E[C:1 X(H)Gr, (t) + ppCaX(t)(A — Gry (E)], (5.4)
with
t

Gr, () = exp (—us Jo X(u)du — (o + pact2)(t AT)

t—d
Gy J X(u)[1 - y(t —d — u)] du) (5.5)

0

and

y(t)=E {exp (— Jt asX (u)du — o(t A I)>

0

, (5.6)

where A indicates the minimum and I is the length of the
infectious period, i.e. I = J(;’o 1x(u)>0 du. From the expressions

above, it is clear that, while all interventions affect the repro-
duction number, R = IBE(u)du, only some interventions
are found to have an impact on the generation time distri-
bution, gg(t)=pg(t)/Rg, that is, isolation, screening and
contact tracing. In §6, the expression above is used to illus-
trate variations of the generation time distribution in a
realistic example.

To relate our results to a model used in numerous appli-
cations, we conclude this section with two examples
concerning the well-known SIR model, which can be seen
as a special case of our general model.

Example 5.1 (Basic SIR model). Continuing with the SIR
model of example 2.2, we recall that the infectivity process is
of the form A(t) = c€lp,, where & is the probability of infec-
tion, ¢ is the contact rate and I is the length of the infectious
period, which is exponentially distributed with parameter a;.
In this framework, it is straightforward to show that g(t) =4,
exp(—ayt), that is, the generation time is exponentially
distributed with parameter a; (e.g. [9]).

Example 5.2 (SIR model with interventions). Consider a
SIR model where the infectious period can be cut short by
symptoms onset. That is, the length of the infectious period
is I'=min{l, Ts}. The time of symptoms onset has rate
as(t) = asélyy, thus Gry(t) = exp(—asé&(t Al)). It is then
easy to show that the generation time is exponentially distrib-
uted with parameter asé + a;. Note that in example 5.1 neither
¢ nor ¢ influence the generation time distribution. On the con-
trary, in this example, a higher £ lowers the mean generation
time by increasing the rate of symptoms onset, as.

Screening and contact tracing can be also considered in
the SIR model and a formula for the generation time distri-
bution can be easily obtained from formulae (5.4)-(5.6), by
simply plugging in X(t) = &ljo 5, using that I is exponential
and analytically computing the integrals. Straightforward
but lengthy calculations show that the generation time
distribution in this example is a generalization of a
truncated (positive) Gumbel distribution. See the electronic
supplementary material for more details.

6. lllustration: COVID-19 outbreak

In this section, we tune the model to resemble a COVID-19
outbreak and illustrate the impact of preventive measures
in such a framework. While we use available evidence
to define the parameters of the model and thus provide a
realistic illustration of COVID-19 scenarios, we do not
directly use data in our study. The results presented here
are not to be considered as proper estimates of generation
times and reproduction numbers for the COVID-19 pan-
demic, but rather as a means to illustrate the extent of
variation caused by interventions.

The infectiousness process is assumed to be of the form
described in example 2.1 with the function h(f) being a
Gamma density, with shape 2.5 and rate 0.5, shifted by 2,
in line with the analysis in [20,30], and X; and X, are uni-
formly distributed in [0.1, 1.9] and [0.5, 1.5], respectively.
We recall that each infectious individual has an infectiousness
profile which corresponds to a realization of the random
infectivity profile, thus, in this case, to a realization of the
variables X; and Xj. In figure 1, some infectiousness profiles,
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Figure 1. In black, the deterministic curve that shapes the infectiousness pro-
cess. In colours, various infectiousness profiles, corresponding to the most
extreme cases: in blue and light blue, the highest and lowest peak of infec-
tiousness, respectively; in red and orange, the latest and earliest peaks of
infectiousness, respectively.

corresponding to different realizations of X; and X, are
plotted. In particular are plotted the underlying profile,
corresponding to X;=1, Xp=1, and the four profiles
corresponding to the extreme cases X; =0.1, 1.9, X, =0.5, 1.5.

In order to model superspreaders, the contact rate C; is
assumed to have a Pareto II distribution with shape 2.1,
scale 5 and minimum 0. The contact rate after symptoms
onset or detection is assumed to be C;=pC;. For example,
p=1 corresponds to no reduction of contact activity
after symptoms onset and p =0 corresponds to complete iso-
lation. Furthermore ag =2, as with this choice the fraction of
asymptomatic individuals is around 1, in line with [31].
Monte Carlo integration is used to compute the expectations
in (5.4) and (5.6).

6.1. Reducing the contact activity of symptomatic
individuals

In this section, we analyse the effect of reducing the contact
activity of symptomatic individuals by letting p vary between
0 and 1 and reporting variations of the generation time distri-
bution and reproduction numbers in figure 2 and table 2. We
recall that the values presented here are not estimates, they
are calculated using the formulae of §5.5 with the choice of
parameters described at the beginning of this section.

When no interventions are in place, it is still unrealistic
to expect no reduction in the contact rate due to symptoms,
ie. p=1 (first row of table 2 and blue curve in figure 2).
In fact, an individual with COVID-19 may naturally reduce
contact activity when developing symptoms, even if not
explicitly recommended or required to do so. This is simply
because symptoms, especially if severe, are often associated
with a tendency to reduce social activities, as for example is
the case with seasonal flu for which no strict isolation
measures are in place. Therefore, the scenario without
interventions should correspond to one of the first rows of
table 2, for example to p=0.8, as will be assumed in §6.4.
Whereas, the ideal scenario in which all symptomatic
individuals are completely isolated at symptoms onset corre-
sponds to p=0. It is evident that, as expected, isolating
symptomatic individuals lowers the mean generation time.
We conclude that the variation of the generation time
due to reducing the contact activity of symptomatic individ-
uals may be, as in this example, quite significant. While
the variation of the reproduction number is also significant,

variation of GTD due to contact reduction after symptoms onset

0.20
reduction (p)
— 1.0
| 0.9
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g 0.6
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< 0.10 4 0.4
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g 0.2
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Figure 2. The generation time distribution (GTD) for different values of p,
the reducing fraction of contact activity at symptoms onset. No other inter-
ventions are in place, i.e. =0, p=0. The blue line corresponds to no
reduction (o =1) and the red line corresponds to complete isolation
(0 =0) at symptoms onset.

Table 2. The corresponding reproduction numbers (total, R, before
symptoms, R“), and after symptoms, R(”) and mean generation times
(MaT).

p R R R® MGT
1 454 173 281 757
A
08 3.98 173 2.25 738
G e o s
06 342 173 169 7.15
e m hm e
0.4 2.86 173 113 6.82
b e e
0.2 2.29 173 0.56 6.31
o
0 173 173 0 5.48

this preventive measure cannot bring the reproduction
number below a certain threshold, even when applied
perfectly, ie. p=0, because of pre-symptomatic and
asymptomatic transmission.

6.2. Isolating symptomatic and screened infectious
individuals

Starting from the assumptions of the previous subsection
with p=0, we now include screening. That means that
when an individual is detected, through symptoms or
screening, their contact activity ceases.

In figure 3 and table 3, we report variations of the gener-
ation time distribution and of reproduction numbers due to
the screening rate o varying between 0 and 0.1. The impact
of uniform screening is moderate; mean generation times
and reproduction numbers are not affected as much as in
the previous subsection. Furthermore, a rate c=0.01 entails
a high effort in practice, as it requires roughly 1% of the
population being screened each day. Higher values of o are
hardly reachable in practice, and as we mentioned above,
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variation of GTD due to screening
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Figure 3. The generation time distribution (GTD) for different values of o,
the screening rate. Detected individuals are completely isolated, i.e. o =0,
and there is no contact tracing, i.e. p=0.

Table 3. The corresponding reproduction numbers and mean generation
times (MGT).

P R MGT
0 13 5.48
001 164 5.40
0.2 157 531
003 147 525

e i S
0.05 132 513

e i g
0.07 120 5.00

i b .
0.09 1.08 490

e i e

contact tracing or other targeted testing procedures might be
more efficient than increasing the value of o.

6.3. Isolating symptomatic and contact traced infectious
individuals

In this subsection, we exclude screening, i.e. ¢ = 0, and we con-
sider contact tracing. At symptoms onset or when they are
contact traced, individuals are completely isolated, i.e. p =0.
The rate at which an individual is detected by through-infector
contact tracing is chosen to be acty = 0.1. The effect of this rate
is analogous to the effect of the screening rate and can thus be
seen in the previous subsection. Here instead we focus on illus-
trating the effect of contact tracing through infectees. To this
aim, we let the probability of successful contact tracing, p,
vary between 0 and 1, which respectively correspond to the
scenario in which no contacts an individual has made can be
traced and the scenario in which all contacts can be traced.
The results are reported in figure 4 and table 4. The contact tra-
cing delay is chosen to be 24 h, i.e. d=1. This is the time
between the detection of an infectee and the detection of
their infector through contact tracing.

variation of GTD due to contact tracing
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Figure 4. The generation time distribution (GTD) for different values of p, the
probability of successful contact tracing. Detected individuals are completely
isolated, i.e. p =0, and there is no screening, i.e. c=0.

Table 4. The corresponding reproduction numbers and mean generation
times (MGT).

p R MGT
0 173 548
0.1 150 5.7
02 145 498
03 131 486
B e e
05 116 468
R i e
07 105 456
s e e
0.9 0.90 441
e s e

6.4. Biased estimates of reproduction numbers:
an example

In the previous subsections, we have illustrated that the
generation time distribution may vary significantly due to
interventions when symptomatic and detected individuals
(through screening or contact tracing) are isolated. In this
subsection, we illustrate how this variation may lead to
significantly biased estimates of the reproduction number
by presenting several scenarios, one without interventions,
one with all interventions and others with some interven-
tions. See table 5 for a summary of the chosen parameters
for the various scenarios and the corresponding variations.

6.4.1. Neutral scenario: no interventions

Using the same underlying variables as in the previous
subsections, we assume that in this neutral scenario without
interventions, ie. ¢=0, p=0, symptomatic individuals
reduce their contact activity by 20%, i.e. p =0.8. Imagine that
at the beginning of an outbreak, when no preventive measure
is in place, a growth rate, = 0.23, and a generation time distri-
bution, gy with mean 7.38, are estimated. By the Euler-Lotka
equation then an estimate of the basic reproduction number,
Ry =3.98, can be obtained.
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Table 5. For each scenario, the table reports the chosen parameters (reducing fraction of contact activity p, screening rate o and fraction of known contacts p) |l
and the resulting growth/decline rate r, mean generation time (MGT) and reproduction numbers R estimated from the actual generation time distribution and R
estimated from the generation time distribution g, of the neutral scenario.

isolation screening contact tracing
no no no 0.8

. y.e.s ............... yes .............. yé§ ................. 5
yes no no 0.2
yes yes “ no 0.2
yes no yes 0.2

6.4.2. All interventions in place

Imagine that, during the same outbreak described in the pre-
vious subsection, at a later time, preventive measures are
introduced and another growth rate, r=0.09, is estimated.
We assume that, in this scenario, detected individuals
reduce their contact activity by 80%, i.e. p =0.2, that roughly
1% of the population is uniformly screened every day, i.e.
0=0.01, and that contact tracing is performed in such a
way that 70% of the total contacts are reported, i.e. p=0.7.

If we were to use the wide-spread assumption that the
generation time distribution does not change during
the course of the outbreak, we would use the previously
estimated generation time distribution, gy, and the Euler—
Lotka equation to obtain an estimate of 1.84 for the
new reproduction number Rp. However, because of inter-
ventions, the generation time distribution has in fact
changed from go to gg, with a mean of 6.17, which is calcu-
lated through the formulae in §5.5. Using the actual
generation time distribution yields the more precise value
of 1.67 for Rg.

Therefore, the variation of the generation time distri-
bution between the neutral scenario and the scenario with
interventions causes a non-negligible bias in the estimate of
the reproduction number.

The converse problem can also arise if estimates of the
generation time distribution obtained under stricter
intervention regimes are used to provide estimates of the
reproduction number when interventions are less strict or
absent. As mentioned in the Introduction, often studies use
estimates of the generation time distribution which are
based on data collected in China, where extensive contact
tracing, including even enforced digital contact tracing, and
severe isolation measures were in place. Using this estimate
of the generation time distribution to estimate the reproduc-
tion number in other countries, where milder preventive
measures are in place, may lead to biases, analogously
to the situation described above. Likewise, the estimate of
the generation time distribution made in one country at
a certain time when stricter measures are in place may
lead to biases if used in that same country once those
measures are eased. For example, it is relevant to take this
issue into account when studying the effect of relaxing
preventive measures.

The variation of the generation time distribution, and the
corresponding bias in the reproduction number estimate, is
not always significant and thus can be in some cases neg-
lected; see for example table 5, where various scenarios
with various combinations of interventions are reported. In

0 0 0.23 7.38 3.98 3.98
0 0 0.15 6.31 2.29 2.60
0 0.7 0.10 6.12 173 1.92

particular, the closer is the growth/decline rate to zero, the
less the estimate of the reproduction number is sensitive to
changes of the generation time distribution.

7. Concluding remarks

The contribution of this paper is threefold. A general model,
suitable to describe the spread of various infectious diseases
under the effect of various preventive measures, is presented.
Variations of reproduction numbers and generation times
and related biases are analysed. General theoretical formulae
are provided and applied in an illustration of a realistic
COVID-19 scenario.

The generality of the model relies on the random infec-
tiousness profile and on the random contact activity of
infectious individuals, which allows taking inhomogeneity
into account. In this way, the infectivity can vary not only
over time but also among different individuals, depending
for example on the severity of the infection. In §6, we
choose a distribution for the infectiousness profile in line
with the results in [20,30]; however, the formulae in §5.5
can be used in other settings for any random infectiousness
profile, which should be chosen to match appropriate charac-
teristics. Similarly, the random contact activity, which is
reduced at a certain random time, allows taking into account
different social behaviours of infectious individuals, includ-
ing for example superspreaders. The model allows a variety
of possible choices of explicit forms for distributions,
dependencies between quantities and various constants,
under non-restrictive modelling assumptions, enabling the
representation of most possible interventions.

We perform an analysis of variation of reproduction num-
bers and generation times. While the variation of the former
is a main focus of numerous studies, the variation of the latter
is often neglected. In particular, we highlight that variations
of the generation time distribution, if neglected, cause bias
in the estimate of reproduction numbers. In some scenarios
the bias is significant, while in others it is negligible. When
doing inference, it is thus crucial to investigate the extent of
variations of the generation time distribution in order to
determine whether an updated estimate is necessary to
avoid significant biases.

While the general formula (3.3) is a valuable theoretical
tool for this analysis, we also present realistic, although not
fitted to real data, examples in order to illustrate the possible
variations and draw attention to the problem. We show that
in some cases variations of generation times cause significant
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biases in the estimation of reproduction numbers, which are
crucial for example to establish control measures. Because
of the general nature of our model, the tools we present can
be used in numerous scenarios, combined with real data, to
investigate the extent of the variation of the generation time
distribution. In this way, proper measures can be adopted
to avoid biases when needed, that is, either an estimate of
the actual generation time distribution is obtained, or vari-
ations of generation time distribution are taken into account
in the model itself.

Several challenges remain to be solved and interesting
new directions are open for future work. In particular, includ-
ing a more precise model for contact tracing would sharpen
the approximation while requiring additional structure to
be included in the model. Furthermore, an in-depth study
of how individual variation affects the generation time
remains to be done, for example how the variation in Cj,
X; and X, affects the efficacy of different preventive
measures. One such feature of relevance would be to analyse
which preventive measures are most efficient in detecting
superspreaders, which could be modelled by having large
variance of C;, and in particular, if effective contact tracing
is the best method for reducing their effect on an outbreak.

Finally, the random infectivity profiles in this paper are
suitable to represent the potentially different infectiousness
and severity of symptoms related to different variants of

SARS-CoV-2, thus enabling an analysis of the impact of
new variants on reproduction numbers and generation
times, while taking into account the effect of preventive
measures. A theoretical analysis, which has been tackled in
some specific cases (e.g. [32]), would be relevant for the plan-
ning of control measures in connection with the emergence of
new variants of interest and is left for future work.
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