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Purpose. Powered lower-limb exoskeleton has gained considerable interests, since it can help patients with spinal cord injury(SCI)
to stand and walk again. Providing walking assistance with SCI patients, most exoskeletons are designed to follow predefined gait
trajectories, which makes the patient walk unnaturally and feels uncomfortable. Furthermore, exoskeletons with predefined gait
trajectories cannot always maintain balance walking especially when encountering disturbances. Design/Methodology/Approach.
This paper proposed a novel gait planning approach, which aims to provide reliable and balance gait during walking assistance.
In this approach, we model the exoskeleton and patient together as a linear inverted pendulum (LIP) and obtain the patients
intention through orbital energy diagram. To achieve dynamic gait planning of exoskeleton, the dynamic movement primitive
(DMP) is utilized to model the gait trajectory. Meanwhile, the parameters of DMP are updated dynamically during one step,
which aims to improve the ability of counteracting external disturbance. Findings. The proposed approach is validated in a
human-exoskeleton simulation platform, and the experimental results show the effectiveness and advantages of the proposed
approach. Originality/Value. We decomposed the issue of obtain dynamic balance gait into three parts: (1) based on the sensory
information of exoskeleton, the intention estimator is designed to estimate the intention of taking a step; (2) at the beginning of
each step, the discrete gait planner utilized the obtained gait parameters such as step length S and step duration T and generate
the trajectory of swing foot based on S, T ; (3) during walking process, continuous gait regulator is utilized to adjust the gait
generated by discrete gait planner to counteract disturbance.

1. Introduction

SCI is a temporary or permanent damage to the spinal cord
that changes its function and might cause loss of muscle
function and sensation. According to the survey of theWorld
Health Organization [1], between 250,000 and 500,000 peo-
ple are suffering from SCI every year around the world. SCI
patients who are forced to be bedridden and wheelchair
bound are susceptible to developing decubitus, loss of bone
density, articular contracture of the lower limbs, and deep-
vein thrombosis [2]. Gait support using an exoskeleton robot
may be an effective way to address the abovementioned prob-
lems because a patient wearing the robot moves their legs
actively and the ground reaction force stimulates the sensory
and musculoskeletal system. Furthermore, the gait support
has a particularly meaningful role in the regaining of walking
function in several SCI patients. Therefore, lower-limb
exoskeletons are designed to provide movement assistance
for people suffering SCI and have attracted increasing

interest from both academic researchers and industrial
entrepreneurs [3–5].

On the development of lower-limb exoskeletons for
walking assistance, comfort and safety are two essential fea-
tures. Many efforts are made on the development of lower
exoskeletons for walking assistance. Yan et al.[6] suggest that
most of the exoskeletons for assistance still employ prede-
fined trajectories based on off-line simulations or captured
human gait data. The generated reference patterns are gener-
ally tracked by position controllers of powered joints. It
forces patients to move with exoskeletons and lead uncom-
fortable experience. Moreover, with predefined trajectories,
exoskeletons and patients cannot keep balance when encoun-
tering a disturbance. Therefore, for obtaining dynamic bal-
ance gait, we consider both when to step and how to step.

For when to step, various human-machine interfaces
(HMI) are designed. In [7], electromyography (EMG) signal
is utilized to get the intention of patients. However, it is dif-
ficult to measure EMG signal for patients with SCI motion
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features such as tilt of torso [8] and upper arms [9] are
utilized to obtain the intention of walking and trigger a
step. Center of mass (COM) based approaches are also
employed in HAL [10] and MINDWALKER [11, 12].
However, these approaches are only based on observed
information and the experience of system designer Thresh-
olds in these approaches must be adjusted manually for
different patients and situations.

For how to walk, many dynamic gait planning approaches
are proposed. In [10], the exoskeleton changes the speed of
swing foot dynamically according to duration of support
phase for improving the experience of patients. However,
balance of exoskeleton is not considered in this research. In
[11, 12], extrapolated center of mass (XCoM) [13] method
is proposed to prevent the MINDWALKER exoskeleton
from falling sideways by online adjusting the step width
(hip ab/adduction). However, disturbance in sagittal plane
is not taken in account.

In this paper, we proposed a dynamic balance gait
approach to obtain balance gait pattern for lower-limb exo-
skeleton. We model the human-exoskeleton system with lin-
ear inverted pendulum (LIP) and design the intention
estimator based on the concept of orbital energy diagram.
Discrete gait planner (planning a gait at the beginning of each
step) and online gait regulator (online adjust the gait during
step taking) are proposed for achieving balance gait. The tra-
jectory of swing foot is modeled with DMPs, which can be
adjusted dynamically and smoothly. In discrete gait planner,
we utilize an optimization method with targeting orbital
energy to obtain parameters of a gait trajectory. In online gait
regulator, we adjust DMPs dynamically for counteracting the
disturbance during a step.

Hence, our contributions are twofolded: first, our
approach enables exoskeleton walk as the intention of
patients. Secondly, our approach obtain gait trajectories and
adjust it dynamically to stabilize balance during walking.
Experimental results in simulation environment show the
effectiveness and advantages of the proposed method.

2. Literature Review

Although predefined trajectory approach is utilized in most
of exoskeleton for SCI patients, some attention is paid on
technologies for obtain balance gait patterns. In this section,
we will lay down the related works about technologies and
lower limb exoskeleton systems for keeping balance during
walking. Some biomechanics researchers reveal several
approaches balance recovery of humanoid robots [14]. These
approaches can be divided into two categories: internal joint
approach and step taking approach. These approaches also
have been used for balance control of exoskeletons.

2.1. Internal Joint Approach. Joints of exoskeletons are con-
trolled to serve some crucial features of balance like zero
moment point (ZMP) for internal joint approach. In [15],
for real-time balance control, variable physical stiffness actu-
ators were implemented to exoskeletons. An abstracted biped
model, torsional spring-loaded flywheel, is utilized to capture
approximated angular momentum and physical stiffness.

The mathematical relation between ZMP and physical stiff-
ness is described with this model. Moreover, ZMP is regarded
as conditions of stability. Thus, for keeping balance desired,
ZMP is served with the stiffness of joint actuators.

Reference [16] shows that in dynamic balance, the condi-
tion for static balance which says the projection of center of
mass (CoM) should be within the support polygon is not suf-
ficient and turns out to be instantaneous capture point (ICP)
should be within the support polygon. The paper [17] pre-
sents a balance control for a powered lower-limb exoskeleton
based on the concept ICP and implement it on the exoskele-
ton named EMY-Balance (CEA-LIST). Joint torques for the
specific actuation of EMY-Balance is computed to keep the
ICP in support polygon.

In these approaches, ankle joints are needed to be actu-
ated. However, for portability in most of the exoskeletons
for SCI patients, ankle joints are not actuated.

2.2. Stepping Approach. Stepping approach is widely utilized
in balance control for humanoid robots [18, 19] and exoskel-
etons [11, 12, 20]. MINDWALKER [11, 12] is a powered
lower-limb exoskeleton designed for paraplegics to regain
locomotion capability. It has five DOFs at each leg, with hip
flexion/extension and adduction/abduction and knee flex-
ion/extension powered by SEAs, while hip rotation and ankle
pronation/supination passively sustained with certain stiff-
ness. Finite state machine (FSM) is defined with various
states and state transitions can also be triggered when the
user manipulates the CoM position of the user-exoskeleton
system. A trigger to initiate a step will be generated when
the projection of the sagittal and lateral CoM positions on
the ground fall in the desired quadrant.

To prevent the user-exoskeleton from falling sideways,
MINDWALKER implements online correction of the step
width by adapting the amount of hip ab/adduction needed
during the swing phase. The required adjustment of hip joints
is determined using XCoM [13]. If the user-exoskeleton sys-
tem falls towards one side due to external perturbations such
as being pushed at the shoulder or internal perturbations such
as user’s upper body motion, the foot placement is adjusted
resulting in a wider or a narrower step width to counteract
such perturbations. However, this XCoM approach does
not take the adaptation of sagittal plane in count.

In [20], gait planning for balance is based on ZMP.
7-links model [21] is utilized to model exoskeleton. Trajecto-
ries of hip, knee, and ankle are modeled by parameters.
These parameters are obtained by optimal algorithm with
targeting ZMP. However, this approach is based on the
7-links model which is too complex for exoskeleton.

3. Dynamic Balance Gait

In this section, we will introduce the dynamic balance gait
approach. We first present the framework of this approach
followed by the details of subsystems.

3.1. Framework for Dynamic Balance Gait. On the develop-
ment of lower-limb exoskeletons for SCI patients, most of
their ankle joints are passive (without actuators). Therefore,
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we proposed a novel gait planning approach in this paper
which based on the stepping strategy and the LIP model.
Figure 1 shows the framework of proposed dynamic bal-
ance gait strategy, which decomposed into three parts:
intention estimator, discrete gait planner, and continuous
gait regulator.

The gait is divided into single-support phase and double-
support phase during normal walking. In single-support
phase, the upper body of the human-exoskeleton system is
controlled by hip joint of stand leg, which should keep torso
stay vertical. Therefore, the gait of human-exoskeleton sys-
tem can be expressed as foot trajectories of swing leg. We
model the trajectories of swing foot with DMPs, which can
be learned with sample trajectories of healthy people and
adjust gait trajectories online smoothly. Based on the LIP
model and gait description with DMPs, three fundamental
parts in Figure 1 are employed to achieve dynamic balance
gait. According to sensory information of exoskeleton, the
intention estimator is designed to estimate the intention of
taking a step. At the beginning of each step, the discrete gait
planner utilized the obtain trajectory of swing foot. With the
intention estimation of taking a step, discrete gait planner
obtains gait parameters such as step length S and step dura-
tion T . DMPs are utilized to regenerate trajectories with
these different parameters S, T . Joints control serve these
trajectories to lead exoskeleton and patient move forward.
During the process of taking a step, online gait regulator
adjusts the parameters S, T based on gait planer to coun-
teract disturbance.

3.2. Model of Human and Exoskeleton. In many applications
of exoskeletons, patients walk with crutches to keep balance [8,
9, 11, 12]. Thus, quadruped robot model is utilized to express
these human-exoskeleton system. With this model, static sta-
ble based on CoM is considered during the walking process.
Although patients are enabled to walk again with this
approach, for stability, they must rely on crutches, and their
gait pattern is less fluent and slower than natural gait. Thus,
for achieving fast and natural gait, we use LIP in sagittal plane
to model the human-exoskeleton system as Figure 2. Linear
inverted pendulum (LIP) is widely used in biped robot [18,
22, 23]. In LIP, wemodel the bodywith a point mass with posi-
tion r at the end of a telescoping mechanism (representing the
leg), which is in contact with the flat ground. The point mass is
kept on a horizontal plane by suitable generalized forces in the
mechanism. Most exoskeletons’ ankle joints are not actuated
and activated [8–10]. Hence, the base of the pendulum can
be seen as a point foot, with position r ankle. Foot position
changes, which occur when a step is taken, are assumed instan-
taneous and have no instantaneous effect on the position and
velocity of the point mass. Patients can apply external
force to CoM with crutches to interact with exoskeleton.

By definition mentioned before, we can obtain motion
equation of point mass (external force set to 0) as follows:

r2θ + 2rrθ − grsin θ = τ

M
,

r2 − rθ
2 + gcos θ = f

M
,

1

where r is the position of point mass (M) and θ is the angle of
LIP with ground. f denotes force applied along the LIP. g is
gravity constants. With f =Mg/cos θ and τ = 0, the point
mass is kept on a horizontal line as Mx = f sin θ . In this
situation, motion of point mass can be written as:

x = g
z
x, 2

where x and z is the position of point mass in XOZ plane.
Thus, given initial conditions x0 and x0, we can get the equa-
tion motion of CoM as follows:

x t = x0 cosh
t
Tc

+ Tcx0 sing
t
Tc

,

x t = x0
Tc

sinh t
Tc

+ x0 cosh
t
Tc

,
3

where Tc is g/z.

3.3. Intention Estimator for Taking a Step. Walking with
exoskeleton is a periodic phenomenon, and a complete
walking cycle is composed of two phases: a double-support
phase and a single-support phase. The double-support phase
begins with the heel of the forward foot touching the ground
and ends with the toe of the rear foot leaving the ground.
During the double-support phase, both feet are in contact
with the ground. During the single-support phase, one foot
is stationary on the ground and the other foot swings from
the rear to the front. After the end of a step (swing leg
touches the ground), human-exoskeleton system enter dou-
ble support phase.

In this phase, the patient has two choices: stopping to
walk and taking a new step. As shown in the left side of
Figure 3, the patient moves forward/backward slightly;
weight will load on front/behind leg. Thus, we can also use
LIP to model this system. With this model, we can design a
intention estimator for take a step according to the concept
of orbital energy diagram.

The orbital energy E [24] can be obtained with the inte-
gration of x x − g/z x = 0:

xx −
g
z
xxdt = 1

2 x
2 −

g
2z x

2 = E 4

It is the sum of two terms: dynamic energy and potential
energy. It is conserved during a single support phase. Given
E = 0, LIP moves to straight up position with x = 0. We can
infer that if initial x > 0, LIP can move over the straight up
position with E > 0, otherwise it will move back. Thus, letting
E = 0, we can obtain a line: x = ± g/zx. With axis x, x and
this line. As shown in Figure 3, we separate the motion states
of LIP x, x, E into 8 regions. Thus, we call it orbital diagram.
When x < 0 we can get results from orbital diagram:

(1) If E > 0, x < 0 and x > 0, LIP would cross the straight
up position.

(2) If E < 0, x < 0 and x > 0, LIP would move back to
initial position.
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(3) If E < 0, x < 0 and x < 0, LIP would move backward.

(4) If E > 0, x < 0 and x < 0, LIP would move backpack.

As shown in Figure 3, if stand leg is front leg and the state
of system can be described with state 1, 7, and 8, then a step
must be taken forward to prevent falling down. Commonly,
after the transition of weight, system will come to state 1
before 7 and 8. If stand leg is behind leg and the state of sys-
tem can be described in state 3, 4, and 5, exoskeleton must
take a step backward for preventing falling. Thus, after deter-
mining stand leg, we can obtain the intention of patient (step
forward or step backward) by the quadrant of orbital energy
diagram, the status x, x, E belong to.

3.4. Gait Description with DMPs. As many studies on gait
planning [25–27] have assumed that the double-support
phase is instantaneous, we focus the gait of single-support
phase. If foot trajectories and the hip trajectory are already
known, all joint trajectories of the exoskeleton can be deter-
mined by kinematic equations. The walking pattern can
therefore be denoted uniquely by foot trajectories and hip
trajectories. As most of exoskeleton ankle joints are not actu-
ated, foot of stand leg can be modeled as point. With known
initial position and velocity of LIP, trajectories of hip are
known. Thus, gait pattern can be modeled by trajectories of
ankle joint of swing leg. In [21], gait pattern is formulated
by the constraints of a complete foot trajectory and generate
the foot trajectory by third spline interpolation. In [10],

min-jert method is used to model this trajectory. However,
with these approaches, the whole trajectory must be replanned
if a single point of motion changed. In our approach, we
obtain the foot trajectory from normal person and regenerate
it with targeting step length S and duration T. DMP is utilized
to regenerate this trajectory to adjust this trajectory online.

DMP has been widely employed in robotic applications,
since it can solve flexible modelling problems with coupled
terms [28]. It is easy to learn with statistical methods and
can be adapted through a few parameters after imitation
learning [29, 30]. Moreover, it can quickly be adapted to
the inevitable perturbations of a dynamically changing,
stochastic environment. Modelling a trajectory with the
framework of DMP, a trajectory x t is supposed to be
the output of a mass spring damper system perturbed by
a force term:

τv = K g − x −Dv + g − x0 f ,
τx = v,

5

where x and v indicate the position and velocity of the sys-
tem, respectively. x0 and g are the start and goal positions.
τ is a temporal scaling factor. K and D are the spring and
damping factors of the system. Therefore, with a known x t ,
f t can be calculated through the inverse of the system. Then,
f can be learned by combining with Gaussian kernels:

f s = 〠N
i=1ωiψi s s

〠N
i=1ψi s

, 6

where ψ = exp −hi s − oi
2 are Gaussian basis functions

with center oi and width hi. wi are weights which should be
learned. The phase variable in the nonlinear function (6) is
utilized to avoid f directly dependence off on time. Use
first-order dynamics to define the phase variable x:

τs = αs 7

The goal g is close to the start position x0, a small change
in g may lead to huge accelerations, which may reach the
limitation of the exoskeleton system. Therefore, modified
system equations introduced in [31] are used:

τv = K g − x −Dv + K g − x0 s + Kf s , 8
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Figure 1: The framework of dynamic balance gait planning.

f f cos (�휃)

f sin (�휃)
z

x

-Mg
�휃

Figure 2: Model of exoskeleton and human based on LIP.
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where the third term can avoid jump movements at the
beginning of each step. After obtaining the target function:

f target s = τv +Dv
K

− g − x + g − x0 s, 9

the weighted parameters ωi are able to learn via statistical
learning methods. With specified start position x0 and goal
position g, the foot trajectories can be generated through
the learn weights ωi. In our approach, we first imitate trajec-
tories of foot of swing leg in single-support phase x t , z t
with a duration of 1 s. Then, as shown in Figure 4, we regen-
erate trajectories with different S, T by changing τ and g by
following equations:

gx = S,
gz = 0,

τnew = Tτoriginal,
10

where τoriginal is the time constant of DMP learned before.

3.5. Discrete Gait Planner. Aiming to obtain balance gait, we
define the concept of balance based on N-step capturability
[18, 32]: the ability of a legged system to come to a stop with-
out falling by taking N or fewer steps. As exoskeleton mod-
eled by LIP, “stop” means orbital energy is 0 (x = 0 when
x = 0). Thus, the balance of exoskeleton is defined as: the
orbital energy can be controlled to 0 with the limitation of
swing speed and length of leg. In other words, as shown in
Figure 5(a), if E is too large to decrease even extending swing
leg with max speed, CoM of LIP will go to the limitation of
stand leg and body rotate around the tip of toe as shown.
However, walking with exoskeleton, patients can change
orbital energy by applying external force with crutches.
Thus, for walking easily, they expect to walk several steps
continuously and smoothly without applying much force
on exoskeleton. Therefore orbital energy needs to keep at a
positive value.

To control orbital energy, we consider two steps as shown
in Figure 5 and consider that the walking gait begins with

swing leg leaving the ground and end with contacting the
ground. T denotes the time cost in this process called gait
duration. In the first step, if no external force posed on
LIP, we can obtain the x1 t and x1 t and the E1 with ini-
tial the x1 0 and x1 0 . At the moment of leg switching,
velocity of CoM does not change (x1 T = x2 0 ) [22, 23].
Thus, we obtain orbital energy of second step as the follow-
ing equation:

1
2 x1

2 T −
g
2z S − x1 T 2 = E2, 11

where S is step length shown in Figure 5(b). With this equa-
tion, orbital energy of second step can be controlled by
adjusting S, T .

Given the aiming orbital energy E2, the gait planer
obtains S, T at each beginning of step. This planner is called
discrete gait planner (DGP), since it plans the gait at the
beginning of each step.

As the x1 t and x1 t is the nonlinear function of t, we
cannot solve it directly. Moreover, for a given targeting E2,
the mount of solutions is infinite. As we learn the trajectory

1
2

3
4 5

6

7
8

Behind leg

Backward

Front leg

Forward

X= X
Z

g

·X

X

E > 0 E > 0

E < 0

E < 0

E < 0

E > 0 E > 0

E < 0

·

X=− X
Z

g

·
−

−

Figure 3: In double-support phase, state of human-exoskeleton system and orbital energy can be describe with the diagram with 8 quadrants.
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(Ŝ, T̂) recorded from healthy person, we expect that the tra-
jectory regenerated by our approach is similar to the original
one. Thus, we formulate this problem as optimization prob-
lem as follows.

argmin
S,T

 J S, T = α Ê − E T
2 + β Ŝ − S

2 + γ T̂ − T
2

s t : S
T

< vmax,  S < Smax,  T > Tmin,

12

where Ê, Ŝ, and T̂ are target values of orbital energy, step
length, and duration of gait. α, β, and γ are weighted param-
eters. Gradient descent method is utilized to solve this opti-
mization problem with gradient as follows:

Pi = Pi−1 − λ∇J S, T , 13

where Pi = Si, Ti
2 and ∇J s, t is shown as follows:

∂J
∂S
∂J
∂T

=
2β S − Ŝ + 2αg

z
E T − Ê x T − S

2α E T − Ê
xg
z

x + 1 + γ T̂ − T

14

Iterations of optimization ends with ∇J S, T = 0 or
numbers of iterations reach the limitation. If ∇J S, T is to
0 after iterations, we obtain the solution S, T closer to the
targeting Ê at this step. And E will be more closer to target
Ê step by step.

3.6. Continuous Gait Regulator.As wementioned, DGP plans
a gait at beginning of the step and adjust the orbital energy of
the next step. After gait planning, trajectory of foot is fixed
during a step. While, if a disturbance occurs during single-
support phase, the gait cannot change until leg switching
moment. Thus, we design a continuous gait regulator
(CGR) to adjust the gait continuously during swing phase.

CGR adjusts gait by changing the parameters S, T
obtained from discrete gait planner. It improve the DGP’s
ability of keeping balance. In each sample time i, we can
obtain the x i and x i . We calculate Si, Ti with the same
optimal approach of DGP and update remain time Tremain
of original trajectory generated by DGP. Then, we change
the parameter of the DMPs with g = Si and τ = T remain/Ti.

4. Experiments on Simulation

In this section, we first lay down on the performance metrics
definition and evaluate this approach in simulation platform.

4.1. Performance Metrics Definition. Evaluating the perfor-
mance of proposed approach is to evaluate the ability of
keeping balance especially when a disturbance occurs. As
we mentioned before, balance of system is depended on the
controllable ability of orbital energy. Thus, in our evaluation,
we exert disturbance and compare orbital energy of different
approaches during the whole process.

4.2. Simulator Introduction.We build a simulator to evaluate
the performance of our approach in a desktop-computing
platform with CPU:i7 4790 k and 8G RAM with Gazebo
robotics simulation software as shown in Figure 6. As the

Stand leg
Swing leg

E = − x2, x = 01 ·
2

(a) When orbital energy is too large to decrease, LIP model falls down

Stand leg Foot switch moment
Single support state

Trajectory of swing foot
Swing leg

{ 1 } { 2 }

S

x

(b) Control orbital energy by changing step length S

Figure 5: Definition of balance with orbital energy.

1 2 3 4 5 6 7 8

Figure 6: Snapshot of simulation during walking.
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patient holds crutches to preserve falling sideways during
normal walking, we model this coupled system as model
shown in Figure 6 and constrain the motion in sagittal plane.
In this model, hip joint (flexion/extension) and knee
joint (flexion/extension) are actuated just like most of

exoskeletons. PID controllers with 1000Hz sample frequency
are used in each joint with limitation of output torque
200N.M. At each joint, joint encoders are embedded to obtain
motion state of joints. We simulate 3000ms in each trail with
initial state of LIP: xinit = 0 1m, xinit = 0 1m/s, z = 0 7m. The
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(f) Foot trajectories of different gait patterns with external force 25 N

Figure 7: Experimental results of different gait patterns with external force (5N, 15N, 25N).

7Applied Bionics and Biomechanics



targeting orbital energy is set to be 0 4 J. Four gait patterns are
compared in our experiment:

Gait with fixed parameters: S = 0 35, T = 0 25 .
Gait with fixed parameters: S = 0 3, T = 0 25 .
Gait generated by DGP.
Gait generated by DGP combined with CGR.

Different disturbance: −5N, −15N, −25N, 5N, 15N,
and 25N in sagittal plane is posed on LIP from 500ms
to 2000ms. A trail ends if the model falls down during
walking. Orbital energy and foot transition of different
gait patterns are recorded for evaluating the ability to
keep balance.
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(b) Foot trajectories of different gait patterns with external force −5N
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(c) Orbital energy of different gait patterns with external force −15 N
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(d) Foot trajectories of different gait patterns with external force −15 N
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(f) Foot trajectories of different gait patterns with external force −25 N

Figure 8: Experimental results of different gait patterns with external force (−5N, −15N, and −25N).
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4.3. Experiment Results. Figure 7 illustrates the simulation
results of different gait patterns with positive external force
as disturbance: 5N, 15N, and 25N. With fixed gait pattern,
the model of human-exoskeleton in simulation falls down
forward after 5 steps. Patients have to control body with stick
to keep balance with fixed gait. Both DGP and DGP combin-
ing with CGR can keep balance with disturbance from 5N to
15N. As disturbance increases, the error orbital energy of
DGP increases significantly. With DGP alone, orbital energy
of system cannot get back to given target after step taking.
As shown in Figure 7(f), trajectory of swing foot trajectory
generated by DGP combined with CGR adjusts the step
length after encountering a disturbance. Thus, DGP com-
bined with CGR achieves better performance than DGP in
orbital energy control.

Simulation results with native external force as distur-
bance is shown in Figure 8. Walking with fixed gait model,
the patient falls down without providing force to keep bal-
ance. With external force −5N, gait generated by both DGP
and DGP with CGR can achieve balance during the whole
process. However, as shown in Figure 8(d) and 8(f), model
will fall down with the external force increasing to −15N.
Compared to DGP, DGP with OGR can still achieve balance
with disturbance (−25N) and control the orbital energy close
given value.

5. Conclusions and Future Works

In this paper, we proposed a novel approach to obtain
dynamic balance gait. We model exoskeleton-human system
with LIP and express gait trajectory with DMP. Three sub-
systems intention estimator, discrete gait planner, and con-
tinuous gait regulator, are designed. Intention estimator is
designed based on the orbital energy diagram to get the
intention to step forward or backward. With the intention
of patient, discrete gait planner obtain the gait parameters
S, T to keep balance. To improve the ability to counteract
disturbance, continuous gait regulator is designed to change
gait in time. Experiments on both simulation and real sys-
tem with different environment demonstrate the efficiency
of this approach.

In the future, we will firstly extend this approach to dif-
ferent environments. For example, external force would let
the system lose balance during walking process, which is
unacceptable. LIP should be modified with the changing
height of model for upstairs walking situation. Then the
ankle joints of exoskeletons for SCI patients are always
passively actuated. Thus, LIP model with point foot is used
to model exoskeleton-human system. However, spring
damping system are employed in exoskeletons which should
be taken into account.

Data Availability

Readers can access the data supporting this study by the
clone git of this program: “https://gitee.com/kipochen_
uestc/LIP_python.git” or from the corresponding author
upon request.
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