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ABSTRACT: We report the synthesis and characterization of seven new
tetranuclear 3d−4f complexes derived from the 3:3:1 reaction of 1,4-
diformylnaphthalene-2,3-diol (H2L) with copper(II) nitrate and a lanthanide
s a l t , L n = T b [L 3 C u 3 T bC l 2 (NO 3 ) 2 (H 2O ) 2 ] (C1 ) , H o
[ L 3 C u 3 H o C l 3 ( H 2 O ) 3 ( M e O H ) ] ( H 2 O ) ( C 2 ) , E r
[L 3Cu3ErCl 3(H2O)3 . 5 (MeOH)0 . 5 ](H2O) (C3) , Gd [L 3Cu3Gd-
(NO3)2(H2O)2(MeOH)](NO3) (C4), Dy [L3Cu3Dy(NO3)2(H2O)2(MeOH)]-
(NO3) (C5), Yb [L3Cu3Yb(NO3)2(H2O)2(MeOH)](NO3) (C6), and La
[L3Cu3La(NO3)2(H2O)2(MeOH)](NO3) (C7). Structural elucidation showed
that the self-assembly using the acyclic ligand system was successful for all seven
complexes, which exhibit the same near-planar Cu3LnO12 core. Five complexes
(C1, C2, and C4−C6) were magnetically characterized at 300 K and 1.8 K.
Complexes C1, C4, and C5 were observed to have ferromagnetic ground states
and showed appreciable frequency dependence in their AC magnetic
measurements, which yielded effective barriers between 7.82(4) and 13.2(3) K, confirming the presence of single-molecule
magnet properties.

■ INTRODUCTION
Since the slow relaxation of magnetization in the archetypal
Mn12 single-molecule magnet (SMM) was first reported nearly
three decades ago,1 the study and application of molecular
magnetism have flourished and attracted interest across the
fields of chemistry, physics, nanoscience, and materials
science.2−10 At low temperatures, the thermal energy kBT
becomes comparable to the energy barrier for the reversal or
relaxation of magnetization, Ueff, consistent with a magnetically
bistable ground state.11 A decade after the report of Mn12, the
first lanthanide-based SMM was reported, [LnPc2].

12 The
heavy rare earth metals have become popular nuclei used to
slow or prevent the reversal of magnetization in SMMs due to
their large ground-state magnetic anisotropies and spin
multiplicities.13−16 Because of the shielding of 4f electrons in
lanthanide ions, the exchange interaction between 4f centers is
inherently weak, and thus there has been a focus on combining
paramagnetic first row transition metal ions with the
lanthanide ions.17−19 The inclusion of 3d metals in proximity
to 4f ions establishes magnetic exchange pathways which can
act to suppress the quantum tunnelling of magnetization, a
common pitfall of purely 4f SMMs, and increase Ueff.

19−21

A combination of three transition metals and one lanthanide
ion have, in the past, been used to template the macro-
cyclization of 2,3-dihydroxybenzene-1,4-dicarbaldehyde with
various diamine linkers.22−26 The Plieger group have previous
experience in preparing multinuclear metal complexes with
potentially interesting magnetic properties,27−30 and the Ishida

group have expertise in the magnetic characterization of 3d−4f
complexes, particularly those involving copper(II).31−35

Inspired by the Zn3La system first reported by Nabeshima et
al.22 and later extended to other metal combinations by
Brooker et al.,24,25,35−40 we investigated the self-assembly and
successful crystallization of L3Cu3Ln complexes using the
acyclic ligand system 1,4-diformylnaphthalene-2,3-diol (H2L).
While there are numerous examples of magnetically coupled
Cu−Ln systems,41,42 throughout the literature, there are very
few Cu3Ln complexes featuring four in-plane metal ions;43−45

and a CCDC search indicated that, outside of the previously
mentioned complexes of Nabeshima and Brooker, there are no
other structurally characterized examples which exclusively
contain Cu−O−Ln bridges. The Brooker group have reported
macrocyclic Cu3Ln complexes for the entire available
lanthanide family, excluding promethium. Of the numerous
compounds, only variations of the macrocyclic Cu3Tb complex
showed promise as SMMs. Although isolation and structural
elucidation of analogous systems prior to Schiff base/
macrocycle formation have been reported in the literature,
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magnetic characterization of such “intermediate” species is
notably absent; however, we recently reported the structures
and magnetic properties of four acyclic Ni3Ln complexes
containing planar Ni3LnO12 cores.

30 Herein, we extend this to
include a series of acyclic Cu3Ln complexes with near planar
Cu3LnO12 cores and report the first magneto−structural
correlations for this class of complexes (Figure 1).

■ RESULTS AND DISCUSSION
The addition of a methanolic Cu(NO3)2 solution (3 equiv.) to
the ligand suspension (3 equiv.) was accompanied by rapid
dissolution and a subsequent color change from a murky
orange-brown to a deep red-brown solution. There were no
notable changes upon addition of the lanthanide containing
solution (1 equiv) nor were there any changes when the
lanthanide metal was added prior to the transition metal
solution. IR spectroscopy revealed a new band in the 1610−
1616 cm−1 region corresponding to the coordinated aldehyde
groups, and no bands corresponding to unreacted aldehyde
(1673 and 1641 cm−1) were present. X-ray quality single
crystals of C1−C7 were grown by vapor deposition of diethyl
ether into a concentrated methanolic solution of the complex.
Two complexes (C2 and C3) crystallized in the orthorhombic
space group Pbcn, and the other five complexes crystallized in
the monoclinic space groups (C1 in P21, and the remaining
five complexes in C2/c), with π−π stacking being the
dominant supramolecular interaction in all seven complexes.
Selected bond lengths and angles are given in Table 1 as ranges
over all copper ions in each complex. Crystal packing diagrams
and details on interactions can be found in Supporting
Information, Figures S1−S8. Bulk purity was confirmed by
microanalytical analysis. Continuous shape measurement
(CShM) calculations46,47 indicate that all copper ions have
approximately C4v square pyramidal geometries (average
CShM values for SPY-5 geometry: C1 1.01, C2 1.08, C3
1.07, C4 0.646, C5 0.649, C6 0.771, and C7 0.689). CShM
values below unity correspond to complexes which crystallize
in the monoclinic space group C2/c. The geometry of Cu4 in
each complex also tends toward C4v vacant octahedron
geometry (C1 1.13, C2 1.34, C3 1.33, C4 1.07, C5 1.22, C6
1.48, and C7 1.26).
The crystal structure of C1 (Figure 2) revealed a relatively

nonplanar system with a mixture of nitrate and chloride caps.
Although C1 was not the only complex prepared using a
LnCl3·xH2O/Cu(NO3)2·3H2O combination, it is the only
complex to feature both chloride and nitrate capping groups−
as confirmed by single-crystal X-ray diffraction and elemental

Figure 1. Schematic showing the general metalligand connectivity
of the complexes reported in this work. Carbon = gray, oxygen = red,
CuII = purple, and LnIII = green.
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analyses. As expected, the large TbIII sits in the middle of an O6
equatorial binding environment formed from the three sets of
catechol-like groups with its axial sites occupied by two water
molecules on one side of the Cu3 plane and a η2-NO3 group on
the other side of the plane. Each CuII sits in a square pyramidal
coordination environment bound between a phenol and an
aldehyde each from two ligand units. In the case of C1, the
copper ions are axially capped by either a chloride (Cu2 and
Cu3) or a methanol molecule (Cu4), with all three copper ions
being capped on the same side of the Cu3 plane. While the
entire ligand unit that bridges Cu2 and Cu4 sits below the Cu3
plane, the remaining two ligand units form a separate plane,
and the terbium ion is displaced above the Cu3 plane by
0.162(3) Å.
The two complexes which crystallized in the orthorhombic

space group Pbcn, C2 (Figure 3) and C3, are isomorphous and
feature only chloride capping groups. The LnIII center in each
of these complexes is displaced above the Cu3 plane by
0.245(1) Å, with the ligand unit bridging Cu2 and Cu3 in each
sitting well below the plane. Much like C1, Cu2 and Cu3 are

each axially capped by a chloride on one side of the plane,
while Cu4 is axially capped below the Cu3 plane. The Cu4 cap
is the only structural difference between C2 and C3, with the
Cu4 cap of C2 being a methanol molecule, whereas for C3, it
was crystallographically determined as a disordered one-to-one
mixture of water and methanol. Holmium and erbium, being
slightly smaller than terbium, occupy nine-coordinate sites in
C2 and C3 each with two water caps above the plane and one
below. In C1, the Cu−Cl bonds can be thought of as diverging
away from the catechol moiety which bridges Cu2 and Cu3
(forming a 129.6° angle from the centroid of the two oxygen
atoms, O2 and O3) allowing for a parallel arrangement of
water caps on Tb1 with a Cl−Cl separation of 8.327 Å. This
allows the chloride caps to each accept a hydrogen bond from
a different water molecule (O14−H14A···Cl1 = 2.494 Å and
O15−H15A···Cl2 = 2.047 Å). In contrast, the Cu−Cl bonds in
C2 and C3 converge relative to their respective catechol O2−
O3 centroid (forming 77.1 and 76.9° angles, respectively). The
much smaller Cl−Cl separations (4.828 Å for C2 and 4.914 Å
for C3) means the two water caps on Ho1 and Er1 run

Figure 2. X-ray crystal structure of C1. Thermal ellipsoids of metal atoms shown at 50% probability. Carbon = gray, oxygen = red, nitrogen = blue,
and chlorine = green. Hydrogen bonds shown as a segmented yellow bond.

Figure 3. X-ray crystal structure of C2. Thermal ellipsoids of metal atoms shown at 50% probability. Carbon = gray, oxygen = red, nitrogen = blue,
and chlorine = green. Hydrogen bonds shown as a segmented yellow bond.
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perpendicular with a single water molecule forming hydrogen
bonds to both Cl1 and Cl2 (average of 2.029 Å for C2 and
2.122 Å for C3). Considering the charge balance of the
elements present in the crystal structure, an additional negative
charge is required per unit complex. A third, non-coordinated
chloride anion was crystallographically observed in both C2
and C3 but was heavily disordered over multiple sites which
were not stable to refinement, and has thus been included
within identical solvent masks for each complex of 38 electrons
in 98 Å3 which is consistent with the presence of one chloride
and two water molecules per unit complex. This final charge
being present as a chloride rather than a nitrate (as in C1) is
also consistent with the nitrogen content determined by
elemental analyses.
Complexes C4, C5, C6, and C7 (Figure 4) are isomorphous

and crystallize in the monoclinic space group C2/c. They form
relatively planar complexes with only minor deviations of the
LnIII center and ligands from the Cu3 plane. Each Ln

III center is
10-coordinate with an axially bound η2-NO3 group on both
sides of the Cu3 plane, with the CuII centers of each complex
being square pyramidal and all bound on the same side of the
Cu3 plane. Gd1 is displaced below the Cu3 plane by 0.050(2)
Å, while Dy1 and La1 are each displaced below their respective
Cu3 plane by 0.053(2) Å and Yb1 is displaced below its Cu3
plane by 0.060(2) Å. Each complex contains two water caps
(on Cu2 and Cu3) and a methanol cap (on Cu4), with the
axial sites of each copper in C6 being poorly ordered and
modeled with only 50% chemical occupancy. All four of these
complexes exhibited further crystallographic disorder with the

location of a non-coordinated nitrate which is required to
balance all charges. This nitrate group was identified to occupy
a special position on a 2-fold rotation axis in C4, C5, and C6,
with 50% occupancy per unit complex. For C4, a disordered
fragment of a nitrate anion was located but was only stable to
refinement at 25% occupancy, with the remaining 25%
occupancy being contained within a solvent mask. In C5, the
remaining half occupancy nitrate was located and stable to
refinement only when very hard isotropic restraints were
applied. The remaining half occupancy nitrate for C6 and the
one nitrate per unit complex for C7 could not be located via
the difference map and thus were included in a solvent mask.
The formulation of these complexes to include the non-
coordinated nitrates within a solvent mask is consistent with
elemental analyses.

Magnetic Analysis. Five of the complexes reported here
(C1, C2, C4, C5, and C6) have been magnetically
characterized (Table 2). The other two complexes, C3 and
C7, could not be prepared in sufficient quantities to facilitate
magnetic characterization.

DC Magnetic Measurements. It was found that upon
decreasing the temperature, C2 and C6 both exhibited a
monotonic decrease in the χmT product (Figure 5a) which
may be associated with the progressive depopulation of the
Stark sublevels of each lanthanide ion. This suggests an
apparent weak antiferromagnetic coupling between the CuII

and LnIII ions, which is further evidenced by the M − H data
collected (vide inf ra).

Figure 4. X-ray crystal structure of C7. Thermal ellipsoids of metal atoms shown at 50% probability. Carbon = gray, oxygen = red, and nitrogen =
blue.

Table 2. Magnetic Properties of C1, C2, C4, C5, and C6

Complex gJ of Ln
III χmT/cm

3 K mol−1 (exp. at 300 K)a χmT/cm
3 K mol−1 (calculated) M/NAμB (exp. at 7 T)b Msat/NAμB (calculated)

C1 3/2 11.70 12.9 7.52 12c

C2 5/4 13.79 15.2 7.81 13c

C4 2 9.06 9.00 9.84 10
C5 4/3 14.06 15.3 7.98 13c

C6 8/7 3.63 4.39 4.39 7c

aMeasured at 500 Oe, fixed with eicosane. bMeasured at 1.8 K, fixed with eicosane. cCalculated for strongly anisotropic LnIII ions where |Jz| ≈ J.
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Complexes C1, C4, and C5 all exhibited a sharp increase in
the χmT product when cooled below ca. 50 K, with C1
reaching a peak of 14.6 cm3 K mol−1 at 2.2 K and C4 reaching
a peak of 12.5 cm3 K mol−1 at 7.5 K (Figure 5b). These peaks
strongly suggest ferromagnetic coupling between the LnIII and
CuII centers. The M vs H measurement for C4 (Figure 6)
unequivocally evidences a high-spin ground state of Stotal = 10/
2. The χmT vs T plot for C4 shows a monotonic increase down
to 7.5 K originating from the three CuII−GdIII interactions.
Quantitative separation of J-coupling terms is difficult due to
the approximate C3h symmetry about the GdIII center of C4,
and thus to avoid overparameterization, C4 has been
approximated to feature only a single Cu−GdIII coupling
term, that is, J12 = J13 = J14 = J, where J can be estimated with
the following van Vleck equation (eq 1) based on the spin
Hamiltonian H = −2J(S1·S2 + S1·S3 + S1·S4)
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=
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The Weiss mean field parameter, θ, has also been included
to account for intermolecular interactions. Optimization of eq
1 gave 2J/kB = +5.78(6) K, gave = 1.976(2), and θ = −0.898(7)
K. The calculated curve reproduced the trend of the

experimental data well (Figures 5b and 6b). The final χmT
drop below 7 K could not be reproduced when modeling the
Cu−Cu interactions (J23, J24, and J34; see Figure S9 in the
Supporting Information) with MAGPACK.48,49

Figure 6 shows the magnetization curves for fixed
polycrystalline samples of C1, C2, C4, C5, and C6, as

measured at 1.8 K. The magnetization of C4 exhibited the
theoretical saturation magnetization (Msat) with 10 NAμB, and
those of C1 and C5 did not reach the theoretical Msat values at
7 T (Table 2) owing to the presence of strong magnetic
anisotropy. However, these values exceeded the antiferromag-
netic limit values, thus supporting the presence of a
ferromagnetic ground state. The magnetizations of C2 and
C6 similarly exceeded the antiferromagnetic limit, but
practically noncoupled systems would also show similar
behavior due to the additive property. Combining the
susceptibility results, we can cautiously conclude that the
Ho−Cu and Tb−Cu exchange couplings in C2 and C6,
respectively, are weak.

AC Magnetic Measurements. As expected from the DC
measurements, only C1, C4, and C5 exhibited meaningful
frequency dependence for the AC susceptibility measurements
(Figure 7 for C1 and Figure S10, Supporting Information for
C1, C4, and C5). Complex C1 exhibited slow relaxation of
magnetization as indicated by the appreciable frequency
dependence of the AC susceptibility below ca. 5 K (Figure
7). The effective barrier to the reversal of magnetization, Ueff,
for C1 was estimated using a modified Arrhenius plot (Figure
8a) according to eq 250

χ
χ

πντ″
′

= +
i
k
jjjj

y
{
zzzz

U
k T

ln ln(2 )0
eff

B (2)

Figure 5. Plots of χmT vs T for (a) C2 and C6 and (b) C1, C4, and
C5 measured at 500 Oe below 100 K and at 5000 Oe above 100 K.

Figure 6.Magnetization plots for (a) C2 and C6 and (b) C1, C4, and
C5 (b) measured at 1.8 K.
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The Ueff values are 10.49(8) K (zero applied bias) and
13.3(2) K (1000 Oe applied bias; Figure S11a, Supporting
Information), with τ0 values of 5.02 × 10−8 and 3.1 × 10−8 s,
respectively. Similarly, C4 and C5 showed appreciable
frequency-dependent AC susceptibilities below 5 K with
applied DC bias fields of 2000 and 1000 Oe, respectively. As
Figure 8a shows, optimization of eq 2 for C4 and C5 leads to
Ueff values of 10.8(2) and 7.82(4) K and τ0 values of 8.8 ×
10−8 and 6.05 × 10−8 s, respectively. Details on various DC
bias fields are shown in Figure S11, Supporting Information.
Figure 8b shows the Cole−Cole plot for C1 in the presence

of 1000 Oe static magnetic field at the indicated temperatures.

The solid line represents the best fit obtained at the given
temperature by considering the generalized Debye model51

χ ω χ
χ χ

ωτ
= +

−
+ α−i

( )
( )

1 ( )S
T S

1 (3)

where χS is the adiabatic susceptibility, χT is the isothermal
susceptibility, ω is the frequency, τ is the relaxation time, and α
is the Cole−Cole parameter.52 The best fit lines at 2.0, 2.1, and
2.3 K almost trace quarter circles where α = 0.24(2), 0.21(2),
and 0.19(5), respectively. In this low-temperature regime, the
thermal energy is of the order of the exchange-coupled excited
states, thus allowing thermal population of these states and
serving as a magnetization relaxation pathway, where the
Orbach process may be operative. Unfortunately, a normal
Arrhenius plot cannot be drawn from the data, so the operative
relaxation mechanisms cannot be determined with accuracy;
however, the relatively small Cole−Cole parameter values
indicate that only a single relaxation process is likely to be
occurring.
Table 3 summarizes the results of the AC magnetic

susceptibility measurements. In general, superexchange be-

tween the 3dx2−y
2 and 4f spins of heavy lanthanide metals

depends on the geometry of the Cu−O−Ln−O four-
membered chelate ring, where more planar MO2 and LnO2
dihedral angles will lead to stronger ferromagnetic cou-
pling.53−56 Based on the macrocyclic Cu3Ln analogues
previously prepared by Brooker et al., C1, containing the
Cu3TbO6 core, was expected to show the greatest potential as
an SMM with the Cu3TbL

Bu complex57 (LBu = 3 + 3 Schiff
base of 1,4-diaminobutane and 1,4-diformyl-2,3-dihydroxyben-
zene) containing a 10-coordinate Tb ion reported to have a
barrier of 19.5(5) K. A smaller Cu3TbL

Pr analogue24 (LPr = 3
+ 3 Schiff base of 1,3-diaminopropane and 1,4-diformyl-2,3-
dihydroxybenzene), which contained a nine-coordinate Tb ion,
was also determined to be an SMM although a barrier height
could not be extracted. C1, being a Kramers-type molecule,
indeed shows the most promising SMM properties as indicated
by the magnitude of χ′ and its frequency dependence. C4 and
C5 also showed appreciable frequency dependence in an
applied field but yielded lower effective barriers, which may be
related to the fact they are not Kramers-type molecules.32,58

Since GdIII itself is an isotropic ion, the origin of the slow
relaxation of magnetization for C4 is unclear; however, the
observed anisotropy could arise from an asymmetric crystal
field environment where Jz is not equal to Jx and Jy.

59

■ CONCLUSIONS
The reaction between the ligand, H2L, and Cu(NO3)·3H2O
with various lanthanide salts has yielded seven new complexes
which have been characterized by single-crystal X-ray
diffraction. These self-assembled metallo−cyclic complexes
had previously been overlooked in favor of macrocyclic

Figure 7. Temperature and frequency dependence of the AC
susceptibilities in the zero applied DC field.

Figure 8. (a) Modified Arrhenius plots for the 1000 Hz data of C1 in
the zero applied DC field, C4 in a 2000 Oe static field, and C5 in a
1000 Oe static field. (b) Cole−Cole plot for C1 with traces for data
sets recorded at 2.0, 2.1, and 2.3 K.

Table 3. Summary of the AC Susceptibility Measurements

Complex H/Oe τ0/10
−8 s Ueff/kB K

C1 0 5.02(14) 10.49(8)
1000 3.1(2) 13.3(2)
2000 3.6(3) 13.2(3)

C4 2000 8.8(6) 10.8(2)
C5 1000 6.05(11) 7.82(4)

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c07001
ACS Omega 2022, 7, 5537−5546

5542

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c07001/suppl_file/ao1c07001_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c07001/suppl_file/ao1c07001_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c07001/suppl_file/ao1c07001_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07001?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c07001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


analogues where peripheral diimine chelators are typically used
to stabilize complexes involving a transition metal ion with
five- or six-membered chelation rings. Macrocyclic ligand
formation was found to be unnecessary in the construction of
the self-assembled tetranuclear clusters in the present system.
The compartmental ligand in this work being acyclic in nature
is in sharp contrast to the work by Nabeshima et al.8

Complexes C2 and C3 were both prepared using LnCl3·6H2O
salts [Ln = Ho (C2) and Er (C3)] and were found to be
isomorphous containing only the chloride ions present from
the lanthanide salt. Similarly, complexes C4−C7 are all
isomorphous in the monoclinic space group C2/c, containing
only nitrate ions despite the presence of the acetate from
Yb(OAc)3·6H2O in the preparation of C6. Five of the
complexes (C1, C2, and C4−C6) were prepared in sufficient
quantity and purity to elicit magnetic characterization. DC
susceptibility measurements implied a ferromagnetic ground
state in three of the complexes (C1, C4, and C5).
Furthermore, the three compounds exhibited appreciable
frequency dependence in their AC magnetic measurements.
Macrocyclic analogues indicated that the TbIII-centered
complex was likely to exhibit SMM properties; however,
observation of the slow relaxation of magnetization in
monomeric Cu3Ln (Ln = Gd or Dy) complexes of this type
had yet to be reported. Fitting of the AC data yielded small
values of the Cole−Cole parameter, α, implying that only a
single relaxation pathway is present for the three SMM
candidates. Complex C1, containing TbIII, is a Kramers-type
molecule and had an observable barrier to relaxation even with
zero applied bias, with the maximum barrier determined to be
13.3(2) K in a 1000 Oe applied field. Complexes C4 and C5
are not Kramers-type molecules but still yielded meaningful
frequency dependence in their AC susceptibility measure-
ments. The Gd-containing complex, C4, was found to have a
barrier to relaxation of 10.8(2) K in a 2000 Oe applied bias,
while C5, the Dy containing complex, had a barrier energy of
only 7.82(4) K in a 1000 Oe applied bias. Observation of the
slow relaxation of magnetization in this type of Cu3Ln complex
which utilizes an acyclic ligand system has not yet been
reported in the literature. Investigation of analogous systems
using 3d metals with a greater number of unpaired electrons
such as MnII/III, FeIII, or CoIII could yield even more promising
results.

■ EXPERIMENTAL SECTION
General Experimental Section. All experiments were

carried out in air. Solvents and reagents were used as received
from commercial sources (Merck/Sigma-Aldrich, Thermo-
Fisher) without further purification. The synthesis of ligand
H2L has recently been reported30 and was adapted from the
method originally reported by MacLachlan et al.60 IR spectra
were collected on a Nicolet 5700 FT-IR spectrometer with an
ATR sampling accessory. Elemental analyses were determined
by the Campbell Microanalytical Laboratory at the University
of Otago.
Single-crystal X-ray diffraction experiments were carried out

on a Bruker D8 Venture diffractometer equipped with an IμS
Diamond microfocus Cu Kα source (λ = 1.54187 Å) and a
Photon III detector. Single crystals were mounted on
MiTeGen mylar loops using Fomblin Y perfluoroether oil
and cooled to 100 K with an Oxford Cryostream 800. Data
were collected and processed using the APEX3 software
package.61 The structures were solved by intrinsic phasing with

SHELXT62 and refined against least-squares using SHELXL63

as implemented in Olex2.64 Non-hydrogen atoms were refined
anisotropically, and hydrogen atoms were calculated to their
ideal positions unless otherwise stated and refined using a
riding model with fixed Uiso values. Crystal structure and
refinement details for C1−C7 can be found in Table S1,
Supporting Information. CCDC deposition numbers
2103942−2103948.
Magnetization and magnetic susceptibility measurements

were carried out with a Quantum Design MPMS-XL7 SQUID
magnetometer using a static field of 0.05 T. A field of 0.5 T was
used to measure the susceptibility of samples with small
magnetic moments. Measurements were corrected with
diamagnetic blank data from the empty sample holder. The
diamagnetic contribution of the sample itself was estimated
using Pascal’s constants. The AC magnetic susceptibilities were
recorded on a Quantum Design PPMS apparatus equipped
with an AC/DC magnetic susceptibility option. To avoid
possible field-alignment effect, the polycrystalline samples were
fixed with a small amount of eicosane.

General Procedure for the Preparation of Complexes
C1−C7. Cu(NO3)2·3H2O (121 mg, 0.5 mmol) was reacted
with H2L (108 mg, 0.5 mmol) and the corresponding
lanthanide salt (0.167 mmol) in methanol (10 mL) in a
3:3:1 equiv. Each mixture was stirred for 24 h and then filtered,
and diethyl ether was allowed to passively diffuse into the
methanolic solutions.

C1 [L3Cu3TbCl2(NO3)(H2O)2]. Orange blocky crystals, 77%
yield based on TbCl3·6H2O. ATR-IR ν:̅ 1612, 1569, 1485,
1450, 1432, 1382, 1351, 1314, 1259, 1141, 1030, 975, 756, 718
cm−1. Microanalytical data found (calcd) for C1 (calculated for
[L3Cu3TbCl2(NO3)(H2O)2], Mr = 1161.03 g mol−1) C,
37.19(37.24); H, 1.71(1.91); N, 1.22(1.21).

C2 [L3Cu3HoCl3(H2O)4(MeOH)](H2O). Orange blocky crys-
tals, 56% yield based on HoCl3·6H2O. ATR-IR ν:̅ 1611, 1568,
1486, 1433, 1382, 1352, 1313, 1259, 1141, 1029, 975, 755, 717
cm−1. Microanalytical data found (calcd) for C2 (calculated for
[L3Cu3HoCl3(H2O)4MeOH], Mr = 1208.55 g mol−1) C,
36.47(36.77); H, 2.38(2.50).

C3 [L3Cu3ErCl3(H2O)3.5(MeOH)0.5](H2O). Orange platelike
crystals, 84% yield based on ErCl3·6H2O. ATR-IR ν ̅: 1612,
1567, 1484, 1428, 1381, 3152, 1310, 1264, 1143, 1027, 981,
756, 710 cm−1. Microanalytical data found (calcd) for C3
(calculated for [L3Cu3ErCl3(H2O)4.5MeOH0.5], Mr = 1203.87
g mol−1) C, 36.70(36.42); H, 2.48(2.43).

C4 [L3Cu3Gd(NO3)2(H2O)2(MeOH)](NO3). Orange platelike
crystals, 88% yield based on Gd(NO3)3·6H2O. ATR-IR ν:̅
1616, 1566, 1485, 1429, 1382, 1351, 1314, 1258, 1140, 1029,
975, 756, 718 cm−1. Microanalytical data found (calcd) for C4
(calculated for [L3Cu3Gd(NO3)3(H2O)2MeOH], Mr =
1244.50 g mol−1) C, 36.07(35.71); H, 1.97(2.11); N,
3.59(3.38).

C5 [L3Cu3Dy(NO3)2(H2O)2(MeOH)](NO3). Orange platelike
crystals, 47% yield based on Dy(NO3)3·6H2O. ATR-IR ν:̅
1611, 1568, 1486, 1432, 1382, 1351, 1313, 1259, 1141, 1030,
974, 755, 711 cm−1. Microanalytical data found (calcd) for C5
(calculated for [L3Cu3Dy(NO3)3(H2O)2MeOH], Mr =
1249.75 g mol−1) C, 35.72(35.56); H, 1.97(2.10); N,
3.31(3.36).

C6 [L3Cu3Yb(NO3)2(H2O)2(MeOH)](NO3). Orange blocky
crystals, 44% yield based on Yb(OAc)3·6H2O. ATR-IR ν:̅
1610, 1567, 1488, 1434, 1383, 1355, 1316, 1260, 1143, 1032,
975, 752, 699 cm−1. Microanalytical data found (calcd) for C6
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(calculated for [L3Cu3Yb(NO3)3(H2O)2(MeOH)], Mr =
1260.30 g mol−1) C, 35.08(35.26); H, 1.90(2.08); N,
3.36(3.33).
C7 [L3Cu3La(NO3)2(H2O)2(MeOH)](NO3). Orange platelike

crystals, 28% yield based on La(NO3)3·6H2O. ATR-IR ν ̅:
1614, 1566, 1488, 1434, 1387, 1351, 1317, 1261, 1144, 1030,
975, 751, 710 cm−1. Microanalytical data found (calcd) for C7
(calculated for [L3Cu3La(NO3)3(H2O)2MeOH],Mr = 1226.15
g mol−1) C, 36.40(36.24); H, 1.80(2.14); N, 3.41(3.43).
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