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Abstract: Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and
Phytoalexin Deficient 4 (PAD4) were discovered a quarter century ago as regulators of programmed
cell death and biotic stress responses in Arabidopsis thaliana. Recent studies have demonstrated that
these proteins are also required for acclimation responses to various abiotic stresses, such as high light,
UV radiation, drought and cold, and that their function is mediated through secondary messengers,
such as salicylic acid (SA), reactive oxygen species (ROS), ethylene (ET) and other signaling molecules.
Furthermore, LSD1, EDS1 and PAD4 were recently shown to be involved in the modification of cell
walls, and the regulation of seed yield, biomass production and water use efficiency. The function of
these proteins was not only demonstrated in model plants, such as Arabidopsis thaliana or Nicotiana
benthamiana, but also in the woody plant Populus tremula x tremuloides. In addition, orthologs of
LSD1, EDS1, and PAD4 were found in other plant species, including different crop species. In this
review, we focus on specific LSD1, EDS1 and PAD4 features that make them potentially important for
agricultural and industrial use.
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1. Introduction

Enhancing agricultural production is one of the greatest challenges of the 21st century. This goal
should be achieved with the least possible use of pesticides and fertilizers, that despite their benefits,
can contaminate groundwater and the surrounding soils, and are highly hazardous to both humans
and the environment [1–5]. Moreover, along with the need for increasing yield quantity and quality, a
major challenge for modern agriculture is the reduction of water consumption, as a high proportion of
available freshwater from rivers and groundwater goes into crop irrigation, and the availability of
these waters is rapidly decreasing, due to global climatic changes and dwindling water resources [6–9].

For three decades, genetic engineering has made it possible to develop genetically-modified
(GM) crops and trees designed for yield improvement and efficient agriculture management [10–13].
GM crops were introduced into commercial use in the USA in 1994 [14]. To date, soybean, cotton
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and corn are the most common genetically-modified crops [15]. Nearly 93% of soybean and 88%
of corn crops in the US are genetically modified, according to the United States Food and Drug
Administration (FDA). Many GM crops have been engineered to resist certain herbicides, e.g., the
majority of currently-cultivated GM plants are resistant to the herbicide Roundup (Monsanto/Bayer,
Leverkeusen, Germany) [11,16]. These make it possible to use soil-protective and no-till cultivation
methods, significantly reducing pesticide usage. Another successfully used strategy is the cultivation
of insect-resistant plants containing the bacterial gene encoding the Bt toxin (Cry protein), that is
poisonous for noxious insects [17]. Almost one-third of all genetically-engineered crops have combined
herbicide tolerance and insect resistance (stacked genes).

Thus far, crops with genetically-modified genes enhancing resistance to abiotic stresses have not
been cultivated on a large scale. This situation results from the fact that most abiotic stress tolerance
traits are controlled by multiple genes present at multiple loci [18,19]. However, genome-editing
tools, particularly the CRISPR/Cas9 technology, provide the premise for multiple and efficient target
modifications of the plant genome [20]. Additionally, faster and cheaper sequencing techniques, such
as Next-Generation sequencing of crop genomes, enables the identification of multiple genes involved
in responses to abiotic stresses [21]. The coupling of these techniques with traditional and advanced
breeding practices could revolutionize plant biotechnology in the coming years.

In this review, we discuss the benefits of modification to genes involved in the regulation
of programmed cell death (PCD) and acclimation to biotic and/or abiotic stresses, with a focus
on Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and Phytoalexin
Deficient 4 (PAD4) that have orthologs in many plant species, including Arabidopsis thaliana, Nicotiana
betnhamiana, Populus tremula x tremuloides, Oryza sativa [22,23], Triticum aestivum [24,25], Gossypium
barbadense [26,27], Vitis vinifera [28,29], Lycopersicon esculentum [30,31], Pisum sativum [32] and others.
Although the potential benefits of lsd1, eds1 and pad4 mutants over wild type plants have been
previously addressed [33–35], here we discuss new discoveries related to the applications of LSD1,
EDS1 and PAD4 in improving crops and woody plants for different biotechnological applications.

2. LSD1, EDS1, and PAD4 Play a Crucial Role in the Response to Both Biotic and Abiotic Stresses

LSD1 is known as a negative regulator of PCD, since it was found that the Arabidopsis thaliana lsd1
mutant exhibits an inability to stop cell death once it was activated [36]. Under unfavorable conditions,
the phenotype of lsd1 is manifested by a fast spread of lesions i.e., a runaway cell death (RCD). The
RCD phenotype is induced by a superoxide anion (O2

−) and H2O2, which are excessively produced in
an lsd1 mutant [37–44]. Hormones important for plant defense i.e., salicylic acid (SA) and ethylene
(ET) are also over-accumulated in lsd1 [35,40,42,44,45]. It was found that in the NahG/lsd1 plants that
are unable to accumulate SA because of the NahG bacterial gene, encoding salicylate hydroxylase
that converts SA to catechol, cell death was suppressed [46]. Similarly, a mutation in the ET receptor
AtEIN2, introduced into the lsd1 background, mitigated the cell death phenotype in lsd1/ein2 double
mutants [47]. These results suggest that LSD1-dependent cell death is associated not only with ROS,
but also requires SA and ET function.

LSD1 plays an important role in the response and acclimation of plants to a broad range of stresses
such as drought [35,48], UV-C radiation [44,46], cold stress [49], excess light [41], root hypoxia [42] and
pathogens [43]. Interestingly, the lsd1 phenotype shows conditional dependence on environmental
conditions, and the morphology and seed yield of the mutant does not differ from the wild type
when plants are grown under field conditions [35,45]. LSD1 acts as a negative regulator of EDS1 and
PAD4 [43–45,50,51] in PCD, and double mutants eds1/lsd1 and pad4/lsd1 demonstrate a reverted RCD
phenotype, even under stress conditions [44,45].

EDS1 and PAD4 proteins function in resistance (R) gene-mediated and basal disease resistance,
and can physically interact with each other [52,53]. Both EDS1 and PAD4 show sequence homology to
eukaryotic acyl lipases [54,55]. The complexes of EDS1 and PAD4 regulate PAMP-triggered immunity
(PTI) as well as Toll–interleukin-1 receptor–nucleotide binding-leucine-rich repeat (TIR-NB-LRR)
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protein-mediated signaling in response to pathogens [56–58]. The EDS1–PAD4 complex is also required
for the accumulation of SA and systemic-acquired resistance (SAR) [52]. Mutations in AtEDS1 and
AtPAD4 result in impaired SA, ET and ROS homeostasis, disrupted acclimatory responses and cell
death signaling [38,42,50,51,54]. However, the role of EDS1 in promoting cell death under biotic and
abiotic stresses appears superior to PAD4, and a mutation in AtEDS1 reverses the lsd1 mutant cell
death phenotype stronger than the mutation in AtPAD4 [43,45]. It was found that LSD1, EDS1 and
PAD4 are involved in lysigenous aerenchyma formation [42]. Aerenchyma formation is an acclimation
response that allows plants to survive a low availability of oxygen in the soil, for example during
flooding [59]. This process is under ROS and ET control, and it was found that in eds1 and pad4 mutants
with lower ET and ROS content, the percent of the secondary xylem core was smaller than in the lsd1
mutant with higher ET and ROS content [42]. Numerous studies demonstrate that LSD1, EDS1 and
PAD4 form a specific hub that regulates cell death and acclimation responses to both, biotic and abiotic
stresses [28,41–44,46,50,51].

3. LSD1, EDS1 and PAD4 Molecular Properties

The LSD1 protein possesses three zinc (Zn)-finger domains, which enable DNA or protein
binding [51,60,61]. The Zn-finger motif in LSD1 contains the conserved consensus sequence:
CxxCRxxLMYxxGASxVxCxxC that belongs to the C2C2 class [62]. In Arabidopsis thaliana, LSD1
was found in both the nucleus and cytoplasm [50]. However, another study on Pisum sativum showed
only a nuclear localization of LSD1 [32]. So far LSD1 has been found to interact directly or indirectly
with 33 proteins [50,63–69], acting as a scaffold protein. Importantly, these interactions depend upon the
cell’s oxidative status [50]. Moreover, it was shown that LSD1 can act as a transcriptional regulator [50].
Significant changes in the transcriptome of the lsd1 mutant grown under field conditions were found
in comparison to the laboratory conditions [35], underlining the conditional-dependent role of LSD1.

Recently it was shown that LSD1 interacts directly with EDS1 [50], while EDS1 forms hetero-dimers
with PAD4 [53]. EDS1 is mostly present in the cytoplasm, whereas EDS1–PAD4 and EDS1–LSD1
complexes appear in the nucleus [70]. This suggests dynamic interactions between EDS1 and its
signaling partners in the plant cell [50,52,53]. Co-interactions of these proteins appear to be important
for their cellular function [53,71]. Moreover, EDS1 interacts with seven other proteins including
AT3G48080, considered to be a defense response protein [70], Response to Low Sulfur 1 (LSU1) [72],
Recognition of Peronospora Parasitica 8 (RPP8) [73], Resistant to Pseudomonas syringae 4 (RPS4) [74],
Ribsomal Protein S6 (RPS6) [75], Suppressor OF NPR1-1 (SCN1) [76], and Suppressor OF RPS4-RLD 1
(SRFR1) [77], while PAD4 has been found to interact only with AT3G48080 [71].

4. The LSD1, EDS1, and PAD4 Regulatory Hub Links Plastoquinone, Salicylic acid, Ethylene, and
ROS Signaling in Arabidopsis thaliana

Stress factors, such as high light, UV radiation and high temperature have an influence on the
quantum-redox status of the photosynthetic electron transport chain (ETC) components [78], and
thus on ROS production and the glutathione/ascorbate redox status. The resulting changes in redox
status affect hormone levels (including SA), ion and sugars signal transduction pathways [79,80].
As a feedback, these signals can lead to stomata closure, induce photorespiration, and trigger the
overproduction of cell-death-signaling molecules, e.g., ROS and ET [48,79–86]. Importantly, ROS, ET,
and SA signaling during cell death are under the control of LSD1, EDS1 and PAD4 [35,51,53,87].

The lsd1 mutant exhibits lower stomatal conductance, lower catalase (CAT) activity, and higher
H2O2 content, even under control conditions of short-day and low light [35,46]. In response to high
light or long-day conditions, lsd1 over-accumulates H2O2, ET and SA, that induce RCD [41,42].

It was found that a mutation in the Chrloroplast Signal Recognition Particle 43 (AtCAO) gene rescues
the lsd1 phenotype. The cao/lsd1 double mutant absorbs fewer photons due to smaller photosystem
II antennas size and higher NPQ, and this leads to an inhibition of RCD in response to excess light,
compared to the lsd1 single mutant [41]. Therefore, the RCD phenotype of lsd1 is linked to the amount
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of absorbed light and redox status of plastoquinone (PQ) [51]. lsd1 also exhibits an RCD phenotype in
response to UV stress [44], and it is known that UV irradiation affects the photosynthetic apparatus
and redox status of the PQ pool [88,89]. LSD1 conformation and its activity are controlled by changes
in the PQ pool [64], and it was hypothesized that under stress conditions, changes in the activity of
LSD1 can reduce the activity of SOD and CAT proteins, and downregulate PR1 gene expression [51]
(Figure 1). Under non-stress laboratory condition, eds1 and pad4 mutants accumulate less H2O2 than
wild type plants [45], while double eds1/lsd1 and pad4/lsd1 exhibit similar [35] or lower [41] H2O2 level
than wild type.
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Figure 1. Proposed models of regulation and integration of seed yield, maximal photosynthetic efficiency,
reactive oxygen species (ROS)/hormonal cellular homeostasis and water use efficiency by LESION
SIMULATING DISEASE 1 (LSD1)/ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)/PHYTOALEXIN
DEFICIENT 4 (PAD4) in Arabidopsis. LSD1/EDS1/PAD4 is proposed to function as a regulatory hub in
laboratory (A) and field (B) conditions. Bold lines—strong regulation, thin lines—weak regulation.
WUE—water use efficiency, Yield—seed yield. Average light intensity (µmol of photons m−2s−1) and
temperature (◦C) are given on the triangle borders that symbolize the capacity of the photosystems to
absorb excess light energy (EEE). Chloroplast (Chl), nucleus (N), photosystem II and I (PSII and PSI),
plasma membrane (PM), reactive oxygen species (ROS) and salicylic acid (SA).

Arabidopsis thaliana EDS1 and PAD4 form a regulatory hub, influencing the accumulation of
SA [45,90]. Moreover, SA induces stomatal closure [91], which leads to photoinhibition [92–94]. Both
inhibition of the antioxidant system and photoinhibition cause higher ROS accumulation [78,95–98]. It
was found that eds1 and pad4 mutants accumulate less SA than the wild type during biotic stress, while
there is no difference in SA accumulation in plants overexpressing EDS1 or PAD4 [90]. Importantly,
Arabidopsis plants overexpressing both EDS1 and PAD4 accumulate significantly more SA than wild
type in response to biotic stress [87].

5. Involvement of Salicylic Acid, Ethylene, and ROS in Plant Productivity

LSD1, EDS1 and PAD4 can regulate SA, ET and ROS metabolism during systemic acquired
acclimation [41,42] and systemic acquired resistance [43].

High foliar SA and H2O2 levels were found in the lsd1 mutant under both control and stress
conditions. EDS1 and PAD4 mediate the ROS-derived signal leading to RCD in the lsd1 mutant [35,42].
LSD1 is also required for the SA-dependent induction of the antioxidant enzyme copper-zinc superoxide
dismutase (Cu–Zn SOD) and potentially other antioxidant genes [33,41,44].

A ROS level exceeding the capability of the plant cell to mount an effective antioxidant response
is harmful and could damage DNA, RNA, proteins and membranes, and in extreme cases, cause plant
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death [81,98]. However, H2O2 and O2
− and their derivatives are also natural by-products of cellular

metabolism, and are involved in a broad range of plant physiological and biochemical processes i.e.,
signaling, defense response and photosynthesis regulation during the entire plant lifespan [98–100].
Reactive Oxygen Species (ROS) do lead to growth inhibition and lower plant productivity during
biotic and abiotic stress. Therefore, deregulation of genes involved in ROS metabolism or signaling
(inclulding LSD1, EDS1 and PAD4) also affects plant growth and development [44,45,101–103].

Similarly, high levels of SA that accumulate during plant responses to environmental stresses
are close to phytotoxicity, and could reduce plant growth or induce cell death [104–106]. However,
through a complex signaling network, SA plays an important role in seed germination, root initiation,
floral induction and thermogenesis [107–109]. SA is a negative regulator of auxins, and interferes
with auxin-mediated responses [108,109]. In support of this link, SA-accumulating dwarf mutants
such as cpr5, cpr6, and snc1 were shown to contain lower endogenous levels of free IAA and reduced
sensitivity to auxins, compared with wild-type plants [110]. Moreover, the effects of the cpr1 and cpr6
mutations on SA-related gene expression were dependent upon PAD4 function, while SA accumulation
in the lesion-mimic mutant cpr5 was partially PAD4-independent, and in other dwarf mutants, such as
dnd1 and dnd2, it was completely PAD4-independent [111]. The significance of SA in plant growth
is also demonstrated by the fact that the expression of bacterial NahG, which decomposes SA to
katehol, in lsd1 or acd6 (Accelerated Cell Death 6) backgrounds reverts their dwarf phenotypes [46,112].
Recent studies on Arabidopsis thaliana have also shown that SA content in plant tissues is strongly
correlated with seed yield [45]. Accordingly, mutations in genes encoding positive regulators of SA
signaling, EDS1 and PAD4, revert impaired growth and seed yield in the lsd1 mutant [35,45]. Further,
the EDS1-PAD4 complex is required for SA accumulation [52] and SA causes the up-regulation of EDS1
and PAD4 expression [113]. However, the SA role in plant productivity is not clear, since exogenous
treatment with a low concentrations of SA increases the growth of soybean [114], wheat [115,116] and
maize [117], while exogenous SA treatment with a higher SA concentration can inversely influence
plant growth [118]. The impact of SA levels on plant growth and biomass production is presented in
Table 1.

Table 1. Effect of mutation, gene silencing or bacterial genes expression in plant on SA level and
plant phenotype.

Organism Mutation, Transgene or
Gene Silencing Effect on SA Level Growth Phenotype Reference

Arabidopsis thaliana Bacterial NahG expression Lower level of SA
in transgenic plants

Higher biomass,
higher seed yield [106]

Arabidopsis thaliana Mutation in ICS1 Lower level of SA
in the mutant

Higher biomass,
higher seed yield [106]

Arabidopsis thaliana Mutation in CPR1
A significantly

higher level of SA
in the mutant

Dwarf phenotype [119]

Arabidopsis thaliana Mutation in LSD1
A significantly

higher level of SA
in the mutant

Lower seed yield [35]

Arabidopsis thaliana Mutation in MPK4
A significantly

higher level of SA
in the mutant

Dwarf phenotype [120]

Populus tremula x
tremuloides Lower expression of PAD4 Lower level of SA

in transgenic lines
Higher stem diameter,
higher % of dry weight [48,121]

Populus tremula x
tremuloides Lower expression of EDS1 Lower level of SA

in transgenic lines

Higher CO2
assimilation, changed

plant morphology
[38]

Populus tremula x
tremuloides Lower expression of MPK4

Two times higher
level of SA in

transgenic lines

Lower perimeter of
main stem [107]
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It has been shown that the ROS levels in plant tissues are highly interconnected with ET [82,104],
and cooperate in the regulation of plant productivity [122]. ET as a gaseous hormone can freely
enter plant cells [123]. It regulates many aspects of plant physiological processes, such as ripening,
abscission, vegetative development, senescence and response to stress [123–125]. In both shoots
and roots, ET causes the inhibition of cell expansion, affecting plant growth [126,127] and biomass
production [128]. EDS1 and PAD4 operate upstream of ET and ROS production during light stress
responses, and together with LSD1 regulate the signaling of PCD, light acclimation and defense
responses through redox changes of the PQ pool [47]. Mutant analysis confirms that LSD1 suppresses
EDS1- and PAD4-dependent ROS and ET signaling, and that EIN2, the ET signal transduction protein,
acts downstream of EDS1 and PAD4 [47]. Propagation of PCD in the lsd1 mutant is also dependent
upon EIN2, since the ein2/lsd1 double mutant has significantly reduced runaway cell death, compared
with lsd1 under stress conditions [47].

Further evidence points to an important role for photosynthesis, chloroplasts and the redox
status of the PQ pool in regulating LSD1-, EDS1- and PAD4-modulated stress responses [51]. Plants
evolved unique mechanisms that depend upon excess excitation energy and redox (including ROS)
signaling, originating at the chloroplast. Such response systems are likely to be crucial for plant growth,
biomass production and their development in the natural environment. Naturally occurring changes in
light intensity, temperature and humidity make plant growth dependent on successful acclimation to
fluctuating conditions. Taking into consideration the research described above, the LSD1/EDS1/PAD4
hub may be a key regulator of plant acclimation and defense responses, as well as potentially, plant
growth and development.

6. LSD1, EDS1, and PAD4 are Involved in Biomass Production, Seed Yield Regulation, and Water
Use Efficiency in Arabidopsis thaliana

Acclimation and defense responses are regulated by redox sensing and modifications in the
proximity of photosystem II and non-photochemical quenching (NPQ), the redox status of glutathione
and plastoquinone pools, photoelectrophysiological signaling, ROS metabolism, hormonal circuits
and cellular light stress memory [52,79,98,129–132]. Disturbances or changes in these processes may
significantly affect the balance between plant cell death and cell division processes, and thus acclimation
responses, biomass production and growth, these being processes that are under the control of LSD1,
EDS1 and PAD4 [48,50,51].

From the moment of its discovery, the lsd1 mutant was described as a dwarf [36], due to lsd1 rosette
size, that in non-permissive conditions is significantly smaller compared to wild-type plants. Moreover,
dry biomass of lsd1 was significantly lower than wild type [48]. Interestingly, no significant differences
were found between the biomass of lsd1 mutants and wild-type plants under field conditions [45].

Under non-permissive conditions (long photoperiod, UV-C episode) the lsd1 mutant produced
less biomass than wild-type, eds1, or pad4 mutants [33,45,87]. Mutations in AtEDS1 and AtPAD4 result
in a reversal of the lsd1 phenotype, since double eds1/lsd1 and pad4/lsd1 mutants do not differ from the
wild type in terms of biomass production [45].

The LSD1/EDS1/PAD4 hub is not only involved in vegetative growth regulation, but also in the
regulation of inflorescence development and seed production. Under laboratory conditions, reduced
inflorescence growth and lower seed yield were found in lsd1, but not in double eds1/lsd1 and lsd1/pad4
mutants [35,45]. Surprisingly, this phenomenon was not observed under field conditions, in which the
inflorescence and seed yield were similar between wild type, lsd1, eds1, pad4, eds1/lsd1 and pad1/lsd1
mutants [35,45]. It was proposed that under natural conditions, the LSD1 suppressive role of cell death
and its role in growth regulation are dependent upon other, yet unknown regulators. The fact that lsd1
mutants differ from the wild type in terms of biomass, inflorescence development and seed yield in the
laboratory, but not in the field [35,45], indicates that LSD1, EDS1 and PAD4 conditionally regulate the
signaling pathways engaged in plant development.
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The amount of biomass produced by plants is determined, among others, by the availability of
water [133]. Although the role of LSD1, EDS1 and PAD4 in the regulation of water use efficiency (WUE)
is not clear, it was found that the lsd1 mutant produces significantly less dry mass per 1 mL of water
utilized, in comparison to the wild type under field conditions, whereas double mutants eds1/lsd1 and
pad4/lsd1 exhibit similar WUE values to the wild type. Under laboratory conditions, no differences
were found between lsd1 and the wild type [35]. On the other hand, water loss, corresponding
to transpiration, was reduced in both laboratory- and field-grown lsd1 mutants, compared to wild
type [48]. Lower water requirements dependent upon LSD1 could be only partly explained by lower
stomata density, because a noticeable decrease in stomata number seems to have an effect only on lsd1
plants grown under stable laboratory conditions, but not under multivariable field conditions [48].
Therefore, other mechanisms should be considered in explaining this LSD1-dependent control of
water loss (stomatal regulation), and its utilization. SA, ET and H2O2, which are important during
photosynthesis and the control of stomatal conductance [134–137], can be potential candidates. Indeed,
mathematical models confirm that LSD1, EDS1 and PAD4, together with SA and H2O2, are involved
in the regulation of water use efficiency (WUE) and vegetative and generative development [45].
Additionally, a strong correlation between SA and H2O2 content in 4-week-old plants and seed yield,
determined for 9-week-old plants, may indicate that mechanisms dependent upon LSD1, EDS1 and
PAD4 are involved in the algorithmic computation performed by plants, in order to optimize ROS and
hormone content at early stages of plant development, in order to ensure maximal seed yield.

In summary, LSD1, EDS1 and PAD4 constitute a signaling hub, which integrates plant responses to
water stress, vegetative biomass production and generative development. This hub plays a significant
role in at least in two different species, Arabidopsis thaliana and Populus tremula × P. tremuloides.

7. LSD1, EDS1, and PAD4 Regulate Morphology, Photosynthetic Efficiency, and Wood Properties
in Populus tremula L. × P. tremuloides

Poplar, referred to as the “Arabidopsis of forestry” [138], is widely used for the study of molecular
mechanisms, as well as for industrial applications, mainly paper and bioethanol production [139,140].
Thanks to the availability of genetic engineering methods, new poplar genotypes with improved growth
and biomass accumulation were created [38,107,121,141,142]. Biomass accumulation in woody plants
is strictly related to cell division at the primary and secondary meristems [143]. Therefore, plant growth
and biomass production can be improved by an overall increase in cell number [144–146], which is
under the control of genes involved in cell cycle regulation [147,148] or hormone biosynthesis [149,150].

Down-regulation of LSD1, EDS1, and PAD4 affects poplar growth and biomass accumulation [48].
In transgenic poplar lines LSD1-RNAi, EDS1-RNAi and PAD4-RNAi were found a higher number of
cells, but only in PAD4-RNAi and LSD1-RNAi lines did it result in larger stem diameter and stem
length [48]. Nevertheless, a greater number of lateral shoots was observed in EDS1-RNAi lines, and
this may also result in improved total biomass production [38]. Furthermore, LSD1, EDS1 and PAD4
influence wood structure. The cell wall was thicker in all LSD1-, EDS1- and PAD4-silenced lines, among
others as a result of changes in the cell wall composition. The increase in hemicelluloses, decline in
cellulose, and reduced lignin quantity and stability in the LSD1-RNAi wood, resulted in easy wood
degradation, which may be important for its improved industrial application. In contrast, the cell wall
of PAD4-RNAi trees had more cellulose and lignin, and less hemicelluloses, and was more resistant to
degradation (Figure 2).
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Figure 2. Photograph of transgenic poplar plantation (A), and the regulation of tree growth by LSD1,
EDS1 and PAD4 (B). Percentage changes in growth parameters are presented in relation to wild-type
trees (T89). Lower expression of LSD1 and PAD4, but not EDS1, increased biomass accumulation,
measured as stem length and diameter, stem dry weight and xylem accumulation. Higher cell numbers
and improved diameters were observed in young parts of the stems of PAD4-RNAi trees, while
LSD1-RNAi trees also displayed a higher diameter of the older part of the stem, accompanied by
higher stem length. Fluorescent microscopy of stem cross-sections demonstrate: Pi = pith, X = xylem;
∆ = cambium, P = phloem. Based on these results the following model was suggested: PAD4 deregulates
(inhibits) periclinal cell division. LSD1 has a significant effect upon both periclinal and anticlinal
divisions, on cell elongation and differentiation, while EDS1 is a positive regulator of cell division and
differentiation in poplars [38,48].

These changes may be linked to higher H2O2 content in poplar transgenic lines [38,121], since ROS
are important in the development of the cell wall [86,151–154]. H2O2 is involved in the differentiation of
secondary cell walls and in the polymerization of cinnamyl alcohols in lignifying xylem vessels [155,156].
Moreover, SA is an important component of signaling pathways engaged in plant cell growth [157].
Lower levels of SA were found in poplar lines with silenced EDS1 [38]. These results suggest that it is
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possible to engineer the plant cell-walls without negative impact on their growth and development.
From the wood industry point of view, i.e., the production of paper and bioethanol, material obtained
from such wood is cheaper, and its production is less harmful for the environment [158].

Since biomass production is tightly dependent upon photosynthesis [159], it is not surprising
that producing more abundant lateral shoots in the EDS1-RNAi lines correlates with improved
photosynthetic parameters (quantum yield of photosystem II, photochemical and non-photochemical
quenching), chlorophyll content, and thus photosynthetic efficiency. Moreover, EDS1-silenced trees
have a higher CO2 assimilation and photosynthetic capacity and maintain their leaves longer, since
processes involved in senescence are delayed [38].

8. Orthologs of LSD1, EDS1, and PAD4 in Crops

Orthologs of LSD1, EDS1 and PAD4 were found in many plant species, including crops and
industrial plants (Table 2). While most model plants are dicotyledonous, many crop plants are
monocotyledonous. However, it was postulated that despite some clade/species-specific changes, an
evolutionarily-conserved regulon containing core components of plant innate immunity is present [160].
LSD1, EDS1 and PAD4 originated prior to the differentiation of monocots and dicots [24]. Despite
some structural differences, LSD1, EDS1 and PAD4 seem to have a similar function in all plant species
where they are identified. The different crops described below are of great importance in agriculture,
and thus genes involved in their resistance, biomass production, productivity and development are
important from the agricultural point of view.

Rice (Oryza sativa) is one of the most important crops, and is a crucial dietary component for over
3.5 billion people [161]. Approximately 480 million metric tons of rice is produced annually [162].
Rice was the first fully-sequenced crop [163], which makes genetic studies of rice relatively easy.
Orthologs of AtLSD1, AtEDS1 and AtPAD4 were found in rice [22,23] (Table 2). Similarly to Arabidopsis,
LSD1 in rice is light-induced and dark-suppressed [23,41,47]. In LSD1 antisense transgenic rice, a
higher expression of PR1 and a lesion phenotype was observed, which indicates that LSD1 is a
negative regulator of cell death in rice [23]. Expression of OsLSD1 in Nicotiana tabacum was shown
to enhance resistance to mycotoxins [23]. Furthermore, the regulation of PCD by OsLSD1 occurs
through direct interactions of LSD1 with rice metacaspase (OsMC) [164], similar to Arabidopsis,
where AtLSD1-dependent cell death is associated with metacaspase activity [60]. To date, no studies
were performed on mutants or transgenic crop plants with deregulated expression of the OsEDS1.
However, the expression of OsEDS1 was shown to be upregulated in response to biotic stress and SA
treatment [165,166]. Interestingly, the function of OsPAD4 is different from AtPAD4 [22]. While AtPAD4
is localized in the cytoplasm and nucleus [50,167], OsPAD4 encodes a plasma membrane protein [22].
Furthermore, the AtPAD4-induced pathway against biotrophic pathogens is SA-dependent, while
OsPAD4 is involved in JA-dependent defense responses [22]. OsPAD4-silenced plants exhibit enhanced
susceptibility to biotrophic pathogens associated with impaired accumulation of jasmonic acid (JA)
and phytoalexinmomilactone A (MOA) [22]. Moreover, exogenous JA application complemented the
susceptibility phenotype of OsPAD4-silenced rice [22].

Grape (Vitis vinifera) is an important fruit plant with world production of about 27 million
tons [168]. This plant is susceptible to infection, especially by fungi [28,169–173]. However, there
is currently no information about LSD1 orthologs in Vitis vinifera, or also studies were not carried
out on grapes with deregulated VvLSD1 expression, or even the VvLSD1 expression profile was
not investigated. In contrast, Vitis vinifera orthologs of AtEDS1 and AtPAD4 have been studied in
grape [28,29,174,175], and EDS1-LIKE (EDL) genes were found in the grape genome [29]. There is
a molecular evidence that EDS1 and PAD4 form a stable complex in grape, which supports the SA
defense pathway in response to biotic stress [29,175]. However, it was postulated that the EDS1/PAD4
hub in grape is more complicated, compared to Arabidopsis [29]. The expression of VvEDS1 and
VvEDL was up-regulated by pathogens [28,174] and that of VvEDS1 additionally by SA [29]. VvEDS1
expression complemented the Arabidopsis eds1 phenotype, whereas the expression of VvPAD4 did not
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complement the pad4 mutant phenotype. Interestingly, VvEDS1 and VvEDL proteins can interact not
only with VvPAD4, but also with AtPAD4, while VvPAD4 cannot interact with AtEDS1 [29]. These
results support a similar role for EDS1 in grape and Arabidopsis, but also show some differences between
AtPAD4 and VvPAD4.

Cotton (Gossypium barbadense) is widely used in textile, feed, food, biooil and biofuel
production [176]. Cotton crops are susceptible to pathogens such as Verticillium dahlia, which
significantly reduces yield [177,178]. An ortholog of AtEDS1 was found in cotton with an amino
acid sequence similarity of 46%, 53%, and 54% with Arabidopsis thaliana, Solanum lycopersicum and
Nicotiana benthamiana, respectively. Similarly to EDS1 orthologs from other species, GbEDS1 contains a
conserved N-terminal lipase domain and an EDS1-specific KNEDT motif, and is localized to both the
cytoplasm and nucleus [26]. GbEDS1 expression is drastically increased in response to pathogens [26,27].
Moreover, overexpression of GbEDS1 triggers higher SA and H2O2 production, while its silencing
results in significantly-decreased SA and H2O2 accumulation [27]. It was found that orthologs of
AtPAD4 were up-regulated in cotton during pathogen infection [178]. So far, no data describing the
role of LSD1 in cotton was shown.

A functional homolog to AtLSD1 and orthologs of AtEDS1 were found in Triticum aestivum. [24,25].
TaLSD1 encodes 146 amino acid long protein, which contains three zinc-finger domains, similarly to
AtLSD1 [61]. Generally, TaLSD1 is a regulator of cell death and is involved in disease resistance of
wheat against pathogens [25]. This suggests that the role of AtLSD1 and TaLSD1 is similar [43,61]. The
expression of TaLSD1 is up-regulated during interaction with the fungal pathogen, Puccinia striiformis,
and in response to oxidative stress-generating compound methyl viologen [25]. Using an onion
epidermal system, TaLSD1 was found in the nucleus [25]. Interestingly, TaLSD1 overexpression in
Nicotiana benthamiana inhibits cell death induced by the expression of the mammalian BAX gene, which
encodes a regulator of apoptosis [179–181]. Moreover, silencing of TaLSD1 in wheat resulted in higher
TaPR1 expression and enhanced hypersensitive response [25]. TaEDS1 was also described recently
in wheat [24]. Three orthologs of AtEDS1 were found in the Triticum aestivum genome (TaEDS1-5A,
5B and 5D). The similarity between these TaEDS1 cDNA sequences was greater than 96%. Moreover,
TaEDS1-5A, 5B and 5D genes share sequence similarity of about 99% with the respective diploid
ancestor orthologs. TaEDS1 is strongly up-regulated in response to pathogen and SA treatment [24].
Most importantly, the expression of TaEDS1 in the eds1 mutant complemented its susceptible phenotype
to powdery mildew [24].

Orthologs of AtLSD1 or AtEDS1 have been also found in crops such as Solanum melongena,
Lycopersicon esculentum, Pisum sativum, Glycine max and Solanum tuberosum [30,32,182–184]. LeEDS1
is involved in SA accumulation since tomato eds1 mutants have significantly reduced SA level and
impaired R gene-mediated resistance to viral, bacterial, and fungal pathogens [30]. It was also reported
that tomato EDS1 is involved in both basal and R gene-mediated resistance [30,31], and its expression
is up-regulated in response to pathogen infection [185,186]. Moreover, it was found that LePAD4
expression is up-regulated in response to green peach aphid [187]. A single copy of SmEDS1 was
mined from the Solanum melongena genome draft. Using bioinformatic methods, it was determined
that the full-length SmEDS1 gene is 4.5kb long and contains three exons coding for 1.8kb mRNA. The
described gene encodes a protein consisting of 602 amino acids [184].
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Table 2. Characterized orthologs of LSD1, EDS1 and PAD4 in crops.

Ortholog of: Species Reference

AtLSD1
Oryza sativa

Triticum aestivum
Pisum sativum

[23]
[25]
[32]

AtEDS1

Oryza sativa,
Gossypium barbadense

Vitis vinifera
Lycopersicon esculentum

Triticum aestivum

[166]
[26,27]

[28,176]
[30,186,188]

[24]

AtPAD4
Oryza sativa
Vitis vinifera,

Gossypium barbadense

[22]
[176]
[179]

The LSD1 protein has been well characterized in Pisum sativum [32]. It was found that PsLSD1 is
involved in PCD regulation and the overexpression of PsLSD1 in the Arabidopsis lsd1 mutant reverts
the RCD phenotype in response to SA treatment [32]. It was shown that PsLSD1 is a nuclear-localized
protein containing zinc finger motifs, and can act as a transcription regulator [32], similar to AtLSD1 [50].
The Glycine max genome encodes two EDS1 isoforms and one PAD4 ortholog. GmEDS1 and GmPAD4
are necessary for defense signaling in Glycine max, and their structure is similar to AtEDS1 and
AtPAD4, respectively. Moreover, the expression of GmEDS1 and GmPAD4 in eds1 and pad4 mutants
complemented their pathogen-resistant phenotypes [188], while the expression of GmEDS1 and
GmPAD4 in eds1/pad4 double mutant did not complement pathogen-induced SA accumulation [188].
Importantly, transgenic soybean lines with silenced GmEDS1 or GmPAD4 demonstrated reduced basal
and pathogen-induced SA accumulation and increased susceptibility to virulent pathogens [188].
GmLSD1 is involved in response to biotic stress, and GmLSD1 is a negative regulator of cell death [183].
In addition, genomic sequences of StEDS1 and StPAD4 were obtained from the potato genome [182].
All those studies seem to be a great starting point for future research, cloning and expression analysis
of LSD1, EDS1 and PAD4 genes.

9. Future Perspectives

The role of LSD1, EDS1 and PAD4 is well known in model plants, such as Arabidopsis thaliana,
Nicotiana benthamiana and Populus tremula × P. tremuloides, but some mechanism and dependencies are
still unknown. The function of LSD1, EDS1 and PAD4 appears to be highly conserved, and is similar
in many plant species, both monocots and dicots. Because of their high importance, the function of
these proteins should be studied further in model plants, and new knowledge should be transferred to
crops and industrial plants.

In this article, we described different examples suggesting that manipulating LSD1, EDS1 and
PAD4 could be beneficial and useful for enhanced agriculture production. To date, no studies have
been performed on crops with modified expressions of LSD1, EDS1 and PAD4 orthologs in the context
of yield and biomass production. Interestingly, the role of AtPAD4 orthologs in crops seems to be
different from its role in model plants [22]. Precise determination of the role of LSD1, EDS1 and PAD4
in the regulation of plant productivity and their role in regulating SA/ROS homeostasis may allow
faster crop selection in the future. Climate change impacts also involve a reduction in the availability
of water resources. Therefore, the role of proteins, that can participate in the regulation of the WUE,
such as LSD1, EDS1 and PAD4, should be studied.

Climate change causes not only stronger and more frequent abiotic stress, such as heat, high
light or drought, but also more intense biotic stresses. It is estimated that in the near future, losses to
agricultural production associated with excessive stress may increase by 10–25%. LSD1, EDS1 and
PAD4 have been described as universal regulators of responses to both biotic and abiotic stresses in
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Arabidopsis thaliana, but also potentially in crops. Therefore, manipulating their expression could be an
interesting alternative for adapting different crop varieties to climate change. The different LSD1, EDS1
and PAD4 mutants have also been used as an example in the development of algorithms to determine
future yield at early stages of cultivation, based upon some physiological traits. Implementing such
algorithms could significantly accelerate the breeding process and reduce the cost of agricultural
production. Manipulating genes involved in responses to biotic stress in order to improve plant
yield or biomass production may carry the risk of greater susceptibility to pathogens. However, our
10 year-long field experiment with poplar and Arabidopsis thaliana did not show increased susceptibility
to pathogens in any of the mutants or silenced lines tested.
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79. Karpiński, S.; Szechyńska-Hebda, M. Secret life of plants: from memory to intelligence. Plant Signal. Behav.
2010, 5, 1391–1394. [CrossRef] [PubMed]
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Dąbrowska-Bronk, J.; Tomsia, N.; Szechyńska-Hebda, M.; et al. Mitogen activated protein kinase 4 (MPK4)
influences growth in Populus tremula L. × tremuloides. Environ. Exp. Bot. 2016, 130, 189–205. [CrossRef]

108. Iglesias, M.J.; Terrile, M.C.; Casalongué, C.A. Auxin and salicylic acid signalings counteract the regulation of
adaptive responses to stress. Plant Signal. Behav. 2011, 6, 452–454. [CrossRef] [PubMed]

109. Klessig, D.F.; Choi, H.W.; Dempsey, D.A. Systemic acquired resistance and salicylic acid: Past, present, and
future. Mol. Plant. Microbe Interact. 2018, 31, 871–888. [CrossRef] [PubMed]

110. Wang, D.; Pajerowska-Mukhtar, K.; Culler, A.H.; Dong, X. Salicylic acid inhibits pathogen growth in plants
through repression of the auxin signaling pathway. Curr. Biol. 2007, 17, 1784–1790. [CrossRef]

111. Jirage, D.; Zhou, N.; Cooper, B.; Clarke, J.D.; Dong, X.; Glazebrook, J. Constitutive salicylic acid-dependent
signaling in cpr1 and cpr6 mutants requires PAD4. Plant J. 2001, 26, 395–407. [CrossRef]

112. Rate, D.N.; Cuenca, J.V.; Bowman, G.R.; Guttman, D.S.; Greenberg, J.T. The gain-of-function Arabidopsis
acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell
death, defenses, and cell growth. Plant Cell 1999, 11, 1695–1708. [CrossRef]

113. Makandar, R.; Nalam, V.J.; Chowdhury, Z.; Sarowar, S.; Klossner, G.; Lee, H.; Burdan, D.; Trick, H.N.;
Gobbato, E.; Parker, J.E.; et al. The combined action of ENHANCED DISEASE SUSCEPTIBILITY1,
PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 promotes salicylic acid-mediated
defenses to limit Fusarium graminearum infection in Arabidopsis thaliana. Mol. Plant Microbe Interact. 2015, 28,
943–953. [CrossRef] [PubMed]

114. Gutiérrez-Coronado, M.A.; Trejo-López, C.; Larqué-Saavedra, A. Effects of salicylic acid on the growth of
roots and shoots in soybean. Plant Physiol. Biochem. 1998, 36, 563–565. [CrossRef]

http://dx.doi.org/10.1007/s000180050041
http://www.ncbi.nlm.nih.gov/pubmed/10892343
http://dx.doi.org/10.1104/pp.106.078295
http://www.ncbi.nlm.nih.gov/pubmed/16760492
http://dx.doi.org/10.1016/j.bbabio.2006.11.019
http://www.ncbi.nlm.nih.gov/pubmed/17207454
http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.011
http://www.ncbi.nlm.nih.gov/pubmed/29331649
http://dx.doi.org/10.1111/tpj.13299
http://dx.doi.org/10.1104/pp.16.00434
http://dx.doi.org/10.1073/pnas.0702061104
http://dx.doi.org/10.1111/j.1365-313X.2004.02105.x
http://www.ncbi.nlm.nih.gov/pubmed/15200641
http://dx.doi.org/10.1016/j.febslet.2007.12.039
http://www.ncbi.nlm.nih.gov/pubmed/18201575
http://dx.doi.org/10.1046/j.1365-313X.1996.10010071.x
http://dx.doi.org/10.1093/jxb/ern363
http://www.ncbi.nlm.nih.gov/pubmed/19188277
http://dx.doi.org/10.1016/j.envexpbot.2016.06.003
http://dx.doi.org/10.4161/psb.6.3.14676
http://www.ncbi.nlm.nih.gov/pubmed/21358272
http://dx.doi.org/10.1094/MPMI-03-18-0067-CR
http://www.ncbi.nlm.nih.gov/pubmed/29781762
http://dx.doi.org/10.1016/j.cub.2007.09.025
http://dx.doi.org/10.1046/j.1365-313X.2001.2641040.x
http://dx.doi.org/10.1105/tpc.11.9.1695
http://dx.doi.org/10.1094/MPMI-04-15-0079-R
http://www.ncbi.nlm.nih.gov/pubmed/25915452
http://dx.doi.org/10.1016/S0981-9428(98)80003-X


Plants 2019, 8, 290 18 of 21

115. Shakirova, F.M.; Sakhabutdinova, A.R.; Bezrukova, M.V.; Fatkhutdinova, R.A.; Fatkhutdinova, D.R. Changes
in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 2003, 164, 317–322.
[CrossRef]

116. Singh, B.; Usha, K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under
water stress. Plant Growth Regul. 2003, 39, 137–141. [CrossRef]

117. Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E.G.; Cicek, N. Salicylic acid induced changes on some
physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.)
grown under salinity. J. Plant Physiol. 2007, 164, 728–736. [CrossRef] [PubMed]

118. Kovácik, J.; Grúz, J.; Backor, M.; Strnad, M.; Repcák, M. Salicylic acid-induced changes to growth and
phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 2009, 28, 135–143. [CrossRef] [PubMed]

119. Scott, I.M.; Clarke, S.M.; Wood, J.E.; Mur, L.A. Salicylate accumulation inhibits growth at chilling temperature
in Arabidopsis. Plant Physiol. 2004, 135, 1040–1049. [CrossRef] [PubMed]
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