
����������
�������

Citation: Ziegler, D.V.; Huber, K.;

Fajas, L. The Intricate Interplay

between Cell Cycle Regulators and

Autophagy in Cancer. Cancers 2022,

14, 153. https://doi.org/10.3390/

cancers14010153

Academic Editor:

Vanessa Soto-Cerrato

Received: 17 November 2021

Accepted: 23 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

The Intricate Interplay between Cell Cycle Regulators and
Autophagy in Cancer
Dorian V. Ziegler * , Katharina Huber and Lluis Fajas *

Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
katharina.huber@unil.ch
* Correspondence: dorian.ziegler@unil.ch (D.V.Z.); lluis.fajas@unil.ch (L.F.)

Simple Summary: Autophagy is an intracellular catabolic program regulated by multiple external
and internal cues. A large amount of evidence unraveled that cell-cycle regulators are crucial in
its control. This review highlights the interplay between cell-cycle regulators, including cyclin-
dependent kinase inhibitors, cyclin-dependent kinases, and E2F factors, in the control of autophagy
all along the cell cycle. Beyond the intimate link between cell cycle and autophagy, this review opens
therapeutic perspectives in modulating together these two aspects to block cancer progression.

Abstract: In the past decade, cell cycle regulators have extended their canonical role in cell cycle
progression to the regulation of various cellular processes, including cellular metabolism. The regula-
tion of metabolism is intimately connected with the function of autophagy, a catabolic process that
promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient
deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection,
autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer.
As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress
signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during
tumor development and progression remains highly context-dependent. Recently, multiple arti-
cles has suggested the importance of various cell cycle regulators in the modulation of autophagic
processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-
dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors,
are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight
the importance of autophagy in cancer progression, we finally evoke new perspectives in thera-
peutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize
antitumor efficacy.
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1. Introduction

The cell cycle constitutes a fundamental biological process divided into four successive
steps: G0/G1, S, G2, and M phases. Cell-cycle progression is tightly regulated by both
extrinsic (e.g., nutrient quantity, presence of growth factors) and intrinsic (e.g., cell size,
macromolecular damage) cues [1]. Downstream, cell-cycle regulators integrate these
signals to adapt a pro- or anti-proliferative response. As crucial effectors of cell-cycle
progression, cell-cycle regulators participate in a myriad of pathophysiological processes,
including development, tissue regeneration, and cancer [2]. These cell-cycle effectors
include the cyclin-dependent kinase (CDKs) holoenzymes, which contain and are activated
by the regulatory subunits, the cyclins. When active, these CDKs phosphorylate multiple
substrates, including the retinoblastoma protein (pRB), ultimately resulting in the release of
the E2F transcription factors and the transcription of genes involved in cell cycle progression
and cell division [3] (Figure 1a). The activity of CDKs is inhibited by cyclin-dependent
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kinase inhibitors (CKIs), thus arresting the cell cycle. The cyclins/CDK-pRB-E2F pathway
is commonly deregulated during tumorigenesis, making CDK inhibitors valuable and
promising antitumoral therapeutic tools [4,5].
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erone-mediated autophagy (CMA), and second, non-selective bulk autophagy, termed 
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Figure 1. Cell-cycle regulators and autophagy players. (a) Overview of the main cell-cycle regulators.
The cell cycle is divided into four steps: G0 (grey)/G1 (blue), S (green), G2 (red), and M (orange)
phases. Cyclin-dependent kinases (CDKs) associate with cyclins along the cell cycle, allowing its
progression. In early G1, CDK4 and CDK6 bind to cyclin D. In late G1, CDK2 is associated with Cyclin
E. CDK4/6-cyclin D and CDK2-cyclin E phosphorylate RB leading to E2F release and transcription at
E2F-target loci of cell-cycle associated genes. Cyclin A associates with S-phase CDK2 and G2/M-phase
CDK1. CDKs are inhibited upstream by cyclin-dependent kinase inhibitors (CKIs). In G1 phase, INK
family including p15INK4B, p16INK4A, p18INK4C and p19INK4D, inhibits CDK4/6-cyclin D. In other
phases, CIP/KIP family including p21CIP1, p27KIP1 and p57KIP2. Additional cell-cycle regulators
include the Aurora Kinase A and the ARF/MDM2/p53 axis. (b) Overview of steps and actors of
autophagy, called macro-autophagy. Initiation is mediated by the ULK1 complex, which mediates
phosphorylation of VPS34 and formation of phagophore through nucleation and the association of
UVRAG, Beclin-1 and ATG14. Elongation of phagophore is allowed by LC3II formation, by ATG7
and ATG4B, and LC3II association, by ATG5 and ATG12. Proteins can be also specifically targeted to
phagophore by p62. Organelles, such as mitochondria, can be Fusion of phagophore with lysosome
constitutes the last step, ultimately followed by degradation of internal components.

Beyond their canonical role, cell cycle regulators also control cellular metabolic func-
tions, especially in the cancer context [6]. Conversely, important metabolic and gly-
colytic enzymes, including pyruvate dehydrogenase kinase (PDK) [7], pyruvate dehy-
drogenase [8], glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [9], and pyruvate
kinase M2 (PKM2) [10] possess non-canonical roles in the regulation of cell-cycle progres-
sion [11]. As cancer cells need to adapt to an increased demand for growth and proliferation,
metabolic reprogramming is a key hallmark of tumor cells, offering several advantages to
highly proliferating cells, concerning both bioenergetics and biosynthetic requirements [12].
In this setting, the importance of cell-cycle regulators in coupling cell proliferation and
intracellular metabolism has been recently unraveled [6,13,14].

Upon the receipt of stress signals, autophagy is a catabolic process allowing the
removal and recycling of metabolic intermediates. Autophagy is divided into two in-
dependent complementary mechanisms. First, selective autophagy through micro- or
chaperone-mediated autophagy (CMA), and second, non-selective bulk autophagy, termed
macroautophagy [15]. Many advanced stage cancers have increased autophagic activity,
which could reflect a pro-survival adaptation to extrinsic stress [16]. Autophagy was found
to modify the fate of cancer cells, promoting in some cases cellular senescence and resis-
tance to cell death. In line with this, systemic or cancer-specific inhibition of autophagy
dampens the progression of many cancers [16]. Thus, this autophagic process is necessary
for the survival of many cancer subtypes, including RAS and BRAF-driven tumors [16].
Notably, host autophagy is also crucial in modulating the tumor microenvironment, with an
opposite effect on cancer progression. On the one hand, the immune system autophagy has
an antitumoral effect because it ensures tumor recognition and elimination [17]. On the
other hand, host autophagy could also be pro-tumoral, as demonstrated by increased levels



Cancers 2022, 14, 153 3 of 19

of circulating arginine, which is essential for tumor growth [18]. Taken together, these
data suggest a critical role for autophagy in tumor promotion, supported by multiple
clinical trials in sarcoma, melanoma, pancreatic cancer, and glioblastoma, demonstrating
the potential benefit of the clinical inhibition of autophagy [16]. Nonetheless, the current
view of the tumor-promoting role of autophagy was also revised with the discovery of an
opposite role of autophagy as a tumor suppressor mechanism in early tumor development,
which could notably facilitate the degradation of oncogenic molecules or enhance cancer
immunosurveillance [17,19]. Collectively, these data underline the fact that the dual role of
autophagy during tumorigenesis is highly context-dependent [15].

At the molecular level, macroautophagy requires the creation of autophagosomes (the
nucleation phase) and their subsequent fusion with lysosomes (the elongation phase) to
ultimately form autolysosomes. The initiation step involves the formation of the ULK1/ATG1
complex, later directly phosphorylating a key component of the Class III PI3K complex, VPS34.
The further association of this Class III PI3K complex, notably with UVRAG, ATG14, and Beclin-
1, allows the proper nucleation of phagophores vesicles. The incorporation of organelles or
targeted proteins are mediated by chaperones, including p62 (Figure 1b). In the next step,
the concomitant action of ATG4B and ATG7 generates mature LC3II, later incorporating into
growing phagophore external membrane (Figure 1b). Finally, the fusion of autophagosome
with lysosome leads to the terminal degradation of engulfed materials (Figure 1b).

Autophagy is controlled by multiple signaling cues that are notably integrated by the
main intracellular sensor of cellular stress and growth factor stimuli, i.e., the mammalian
target of rapamycin (mTOR). Via AKT or MAPK signaling, the activation of mTOR reduces
macroautophagy by inhibiting the ULK1/ATG1 kinase. In contrast, the downregulation
of mTOR by AMPK or p53 signaling activates ULK1/ATG1 kinase promoting autophagy.
During the progression of the cell cycle, autophagy mostly occurs during interphase,
in particular in the G1 and S phases [20–22]. Indeed, repression of autophagy during
mitosis protects condensed genomes and organelles movements from accidental autophagic
engulfment. Hence, there is a required control of autophagy by the cell-cycle regulators.
An increasing number of studies confirmed this hypothesis and unraveled additional
non-canonical roles for cell-cycle regulators. [23–25].

In this review, we will describe how main cell-cycle regulators, particularly in focusing
on cyclin-dependent kinase inhibitors (CKIs), CDKs-cyclins complexes, and E2F transcrip-
tion factors, impact key steps of the autophagic process. In addition, how autophagy
impacts cell-cycle regulators, notably modulating their quantity all along the cell cycle,
will be addressed. Finally, the idea of a therapeutic avenue combining both cell-cycle and
autophagy modulators during tumorigenesis will be examined.

2. Cell-Cycle Regulators Modulate Autophagy

Cell-cycle regulation integrates both external and internal stimuli to sustain cellular
viability. Multiple regulators of the cell cycle, including (among others) CKI, CDKs, and E2F
transcription factors, were found to regulate autophagic processes.

2.1. Cyclin-Dependent Kinase Inhibitors and Autophagy

CKIs constitute crucial regulators of cell-cycle progression, as they directly inhibit the
CDKs’ activities that mediate the mitotic checkpoints. Acting to mediate cell-cycle arrest
transiently or permanently depending on contexts, CKIs act as tumor suppressors and
most CKI-deleted mice are prone to develop multiorgan hyperplasia [26]. Among them,
p27Kip1, p21CIP1, p57CIP2, and p16INK4A (Figure 1a) were shown to regulate some features
of autophagy.

2.1.1. The CIP/KIP Family and Autophagy

The protein p27KIP1 belongs to the CIP/KIP family of CKI inhibiting CDK1-CDK2/cyclins
A-B and CDK4-6/cyclin D complexes (Figure 1a) and is mostly activated by extracellular
antimitogenic signals [27]. For example, serum starvation and cell density promote its
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expression, ultimately resulting either in cell-cycle arrest in G1 or apoptosis. Importantly,
the subcellular localization of p27KIP1 dictates its function and displays apparent opposite
roles. On the one hand, the tumor suppressor role of p27KIP1 is primarily associated with its
nuclear form-enhancing cell-cycle inhibition and sensitivity to cellular senescence and apop-
tosis [28]. On the other hand, cytoplasmic p27KIP1 drives survival mechanisms, notably
through the activation of autophagy [29]. Indeed, constitutive expression and accumulation
of p27KIP1 induce autophagy in glioma cells and myeloma [28,30]. Mechanistically, p27KIP1

activation of autophagy has been linked to its phosphorylation at Thr298, notably by the
activation of the LKB1/AMPK pathway upon amino acid starvation [31,32]. Activated
p27KIP1 is recruited to lysosomes, where it interacts with LAMTOR1 to prevent mTORC1 ac-
tivation, ultimately resulting in the induction of autophagy [25] (Figure 2a). It is noteworthy
that p27KIP1 mediates the survival of cells through autophagy. Thus, it is at the crossroads
of the cell fate decision, including cell death. Indeed, while the absence of p27KIP1 induces
caspase-dependent apoptosis, its accumulation triggers cell death through both caspase-
independent and autophagy-dependent mechanisms in multiple cancer cells [28,30,31].
Altogether, balanced nuclear and cytoplasmic p27KIP1 levels appear necessary to mediate
optimal tumor cell survival.
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TSC2 to inhibit the mTORC1 complex. CDK5 phopho-substrates include Endophilin B1 (EndoB1), 
Acinus (ACN), and RKIP promoting autophagy. (c) Regulation of autophagy by RB-E2F axis. E2F 
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Among the CIP/KIP family, p21CIP1/WAF1 also inhibits multiple cyclin-CDK complexes, 
including cyclin E-CDK and cyclin A/B-CDK1, stopping cell-cycle progression at the G1 
and S phases [33] (Figure 1a). In contrast to p27KIP1, p21CIP1/WAF1 is mostly activated by 
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Figure 2. Regulation of autophagy by cell-cycle regulators. (a) Regulation of autophagy by cyclin-
dependent kinase inhibitors (CKIs). Phosphorylation of p27KIP1 by the LKB/AMPK signaling
pathway participates in the recruitment of LAMTOR1 to lysosome and the subsequent inhibition of
mTORC1, resulting in autophagy induction; p27KIP1 is also pro-autophagic through CDK2 inhibition,
while p21CIP1 is pro-autophagic through mechanisms involving LC3II interaction, ATG5 stabilization,
and AMPK phosphorylation. P57KIP2 is anti-autophagic with unknown clear mechanisms. p16INK4A

mediates autophagy through the RB-E2F axis. (b) Regulation of autophagy by cyclin-dependent
kinase (CDKs). CDK1 phosphorylates multiple key autophagic players, including VPS34, p62, ULK1,
ATG13, ATG14, and TFEB, in inhibiting global autophagy. CDK4 phosphorylates folliculin (FLCN)
modulates mTOR recruitment at lysosomal surface. CDK4-6 can also phosphorylate TSC2 to inhibit
the mTORC1 complex. CDK5 phopho-substrates include Endophilin B1 (EndoB1), Acinus (ACN),
and RKIP promoting autophagy. (c) Regulation of autophagy by RB-E2F axis. E2F target loci include
many autophagy-encoding genes, namely BNIP3, GABARAP, UVRAG, ULK1/ATG1, ATG5, ATG9A,
ATG12, and MAP1LC3B.

Among the CIP/KIP family, p21CIP1/WAF1 also inhibits multiple cyclin-CDK com-
plexes, including cyclin E-CDK and cyclin A/B-CDK1, stopping cell-cycle progression at
the G1 and S phases [33] (Figure 1a). In contrast to p27KIP1, p21CIP1/WAF1 is mostly activated
by stress-signaling, such as irradiation or pro-apoptotic stresses, and is a direct target of the
well-known tumor suppressor p53. Therefore, p21CIP1/WAF1 is not only linked to the arrest
of cell proliferation; it is also associated with cellular senescence and apoptosis, depending
on the nature, intensity, and duration of the stress [34]. The sole p21CIP1/WAF1 ectopic
expression functionally induces both autophagy and cellular senescence in triple-negative
breast cancer cells [35] (Figure 2a). Multiple stresses, including oxidative stress, link in-
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creased p21CIP1/WAF1 expression with the induction of autophagy [36–40]. Mechanistically,
p21CIP1/WAF1-induced autophagy seems to rely on ATG5 stabilization in fibroblasts [36]
and AMPK phosphorylation [39], or LC3B interaction [40], in cardiomyocytes. Nonetheless,
whether p21CIP1/WAF1 may directly modulate the activity of autophagy key players in
tumoral contexts remains to be addressed and confirmed in future investigations. Finally,
and according to these studies, the pro-autophagic role of p53 (comprehensively reviewed
elsewhere) [41] through the inhibition of mTORC1 complex may rely partially on the
contribution of p21CIP1/WAF1.

The last CKI of the CIP/KIP family is p57CIP2. Only one study reported a link between
p57CIP2 and autophagy. In contrast to p27KIP1 and p21CIP1/WAF1, p57CIP2 accumulation
decreases autophagy in hepatocarcinoma cells upon EGFR-targeted therapy, through up-
regulation of the PI3K/AKT/mTOR axis [42]. Nonetheless, whether the sole expression
of p57CIP2 may impact autophagy is unknown. Taken together, these results demonstrate
that the CIP/KIP family of CKI, specially p27KIP1 and p21CIP1/WAF1, has an overall pro-
autophagic role (Figure 2a).

2.1.2. The INK Family and Autophagy

The protein p16INK4A is a member of the INK family and inhibits the association of
cyclin 4/6 with cyclin D, arresting cell-cycle progression at the G1 phase [43] (Figure 1a).
Similar to p21CIP1, the expression of p16INK4A induces both senescence and autophagy
in triple-negative breast cancer cells [35]. This pro-autophagic effect of p16INK4A was
shown to be RB-dependent in glioblastoma [44] and could be partially explained by the
transcriptional regulation of autophagic genes by the E2F transcription factors (see the
subsection “”). More recently, some studies emphasized that the autophagic process
regulates p16INK4A quantity and localization, indicating crucial cross-talks and feedbacks
between the cell-cycle regulators and autophagy [45–47]. Interestingly, the role of p16INK4A

in autophagy seems to be interrelated with its role during cellular senescence [48]. Finally,
the role of other INK family CKI members, namely p15INK4B, p18INK4C, and p19INK4D,
remains unknown in the modulation of autophagy.

2.2. Cyclin-Dependent Kinases and Autophagy

Cyclin-dependent kinases (CDKs) are direct targets of CKIs and, when associated with
distinct cyclins, constitute the main effector kinases regulating key processes during all
phases of the cell cycle. They include two distinct subfamilies: cell-cycle-associated CDKs
(CDK1, 2, 4, and 6), which directly participate in the cell-cycle progression; and transcription-
associated CDKs (CDK7, 8, 9, 11, 12, and 13), which directly participate in the regulation
of gene transcription. Importantly, most of the studies highlighted the role of cell-cycle-
associated CDKs in the control of autophagy.

2.2.1. S/G2/M Phases CDKs in the Control of Autophagy

CDK1 is a kinase associated with cyclin A in the G2 phase and with cyclin B during the
mitosis phases of the cell cycle (Figure 1a). CDK1 has been linked to macroautophagy and to
multiple autophagic key players. Indeed, CDK1 phosphorylates the Thr159 of VPS34, and
inhibits the interaction of the latter with Beclin-1, subsequently blocking the initial steps of
autophagy nucleation [49]. Furthermore, CDK1 phosphorylates p62 at Thr269 and Ser272,
thus stabilizing cyclin B1 levels [50]. An additional mechanism of the anti-autophagic
role of CDK1 was demonstrated by two independent studies [24,51]. The protein complex
mTORC1 represses the autophagic process in the interphase of the cell cycle; however,
mTORC1 is inhibited during mitosis, and therefore cannot repress autophagy at this phase.
In a similar way to mTORC1, mitotic CDK1/cyclin B1 phosphorylates and thus inhibits
multiple autophagic key players, including ULK1, ATG13, ATG14, and TFEB [24,51].
In addition to its role in macroautophagy, CDK1 limits the chaperone-mediated autophagy
of HIF1-α, facilitating cell-cycle progression under hypoxic conditions [52]. Taken together,
these data indicate that CDK1 inhibits autophagy through phosphorylation of multiple key
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autophagic effectors. This CDK1-mediated inhibition of autophagy appears to be necessary
to avoid the accidental engulfment of condensed genomes or organelles during critical
steps of mitosis.

CDK2 is another key kinase associated with cyclin A or E and is mostly involved in
late G1/S interphase and in G2 (Figure 1a). CDK2 has been not directly shown to play a
role in autophagy induction, but genetic manipulation of p27KIP1 through miR-221 demon-
strates the functional involvement of CDK2 in inhibiting autophagy in cardiomyocytes.
Mechanistically, the inhibition of CDK2 restores p27KIP1 and mTORC1 mediates autophagy.
Interestingly, like CDK1, CDK2 also promotes the lysosomal degradation of HIF-1α at
the G1/S transition phase, allowing cell-cycle progression under hypoxic conditions [52].
Altogether, these data also underscore the anti-autophagic role of CDK2.

2.2.2. G1 Phase CDKs in the Control of Autophagy

CDK4/6 associate with cyclin D to phosphorylate pRB and release E2F transcription
factors during the G1 phase (Figure 1a). Beyond the Rb-dependent role, many other sub-
strates are phosphorylated by CDK4 or CDK6 [14]. CDK4/6 were most recently studied in
the context of autophagy and cellular senescence, through the use of the multiple chemical
inhibitors available, including (among others) abemaciclib, palbociclib, or ribociclib [4].

CDK4/6 inhibitors (CDK4/6i) also induce cellular senescence in cancer cells [53]
promoting in parallel autophagy [54–57]. Mechanistically, CDK4/6 inhibits senescence
through the phosphorylation and stabilization of DNMT1 [54]. CDK4/6i may thus mediate
senescence through autophagy-dependent degradation of DNMT1 [54]. Similarly, palboci-
clib also induces autophagy and cellular senescence in Rb-positive cytoplasmic cyclin E
negative cancers [56]. Two recent studies investigated the importance of CDK4/6 coupling
cell-cycle progression and the cell growth of breast cancer cells [57,58]. cyclinD-CDK4/6
regulates both the activation and localization of mTORC1.

On the one hand, CyclinD-CDK4/6 negatively regulates TSC2 through phosphory-
lation of Ser1217 and Ser1452, subsequently activating mTOR [58]; on the other hand,
it phosphorylates folliculin to enhance its recruitment to the lysosomal surface upon amino
acids deprivation [57]. Finally, a recent study demonstrates the importance of CDK4/6 in
the inhibitory regulation of lysosome biogenesis through TFEB/TFE3 phosphorylation [59].
Taken together, these data indicate that cyclinD-CDK4/6 is crucial in promoting mTORC1
activation and localization and determinant in negatively regulating lysosome biogenesis
(Figure 2b). The use of CDK4/6i counteracts these actions and leads ultimately to impaired
autophagic flux [57,58].

2.2.3. Non-Canonical CDKs and Autophagy

Only a few studies reported a role in autophagic process for non-canonical CDKs,
in particular, the roles of CDK5 and CDK11. Not typically activated by cyclins, CDK5
phosphorylates pRB, ultimately resulting in the progression of the cell cycle [60]. CDK5
was documented for its pro-autophagic function, especially in the neuronal context [61–65].
Macroautophagy is thus universally enhanced by CDK5 kinase activity in mice, monkeys,
and flies [61,63,64]. CDK5 mediates the phosphorylation of Acinus at Ser437, promoting
basal autophagy in the fly brain [64]. Endophilin B1 is also phosphorylated by CDK5
to sustain neuronal autophagy upon starvation [61]. In chaperone-mediated autophagy,
CDK5 has a dual role. On the one hand, CDK5 phosphorylates RKIP at Thr42 to promote
its chaperone-mediated autophagy through Hsc70 [62]. On the other hand, CDK5 promotes
the phosphorylation-mediated degradation of BAG3 [65], one key component of the HSP70-
BAG3-mediated autophagy machinery [66]. In addition to brain-related studies, it would
be of interest for future studies to address the role of CDK5 during autophagy in the cancer
context. Concerning CDK11, which is mostly activated by L-type cyclins [67], only an
anti-autophagic role has been reported. CDK11 knockdown induced autophagy according
to accumulated LC3II levels in breast cancer cells [68].
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Collectively, and beyond the canonical cell-cycle-associated CDKs (CDK1, 2, 4, and 6),
these studies also suggest a relative and neglected role of non-canonical CDKs in the
modulation of autophagic process.

2.2.4. CDKs and Mitophagy

Mitophagy is a selective autophagy process, involving sequestration of damaged
dysfunctional mitochondria to maintain global mitochondrial homeostasis [69]. Mitochon-
dria fragments are more sensitive to mitophagy, and mitochondrial fission is necessary to
initiate proper mitophagy processing [69]. The importance of cell-cycle regulators in mito-
chondrial dynamics emerged with the various observations of hyperfused mitochondria in
genetically and pharmacologically alterations of CDK and cyclins. For instance, cyclin D1
−/−mammary gland adipocytes [70] or CDK4/6 inhibition in pancreatic cancer cells [13]
display hyperfused mitochondria. Interestingly, the cyclinB-CDK1 complex promotes the
mitotic phosphorylation of DRP1, a key fission protein [71]. Nevertheless, the specific role
of cyclins-CDK complexes in the global regulation of mitophagy needs be further evaluated.

2.3. E2F Transcription Factors and Autophagy

The adenoviral early region 2 binding factors (E2F) family of transcription factors,
which is comprised of at least eight members (E2F1-8), are the downstream effectors of
CDKs (Figure 1a). Their binding to pocket proteins RB, p107 also known as RBL1 and
p130 also known as RBL2) are regulated by cyclin/CDK complexes, which phosphory-
late pocket proteins, thereby causing the release of E2Fs from pocket proteins and the
induction of E2F-dependent transcriptional activation. E2F targets include genes involved
in the regulation of a myriad of cellular processes, such as the mitotic checkpoint, DNA-
damage checkpoints, DNA synthesis and repair, differentiation, development, apoptosis,
and metabolism [72–76]. E2F1 is also a transcriptional regulator of autophagy. Polager
et al. demonstrated that in an inducible E2F system in human osteosarcoma (U-2 OS) cells,
activation of E2F1 leads to the upregulation of the expression of crucial autophagy-related
genes, such as ULK1/ATG1, ATG5, DRAM, and MAP1LC3B/LC3B, and enhances basal
autophagy. In contrast, decreasing endogenous E2F1 expression using short hairpin RNAs
(shRNAs) inhibits DNA-damage-induced autophagy [77]. In addition, the promoter region
of Beclin-1 (encoded by BECN1), a key activator of the autophagy pathway, has been
reported to be regulated by E2F transcription complexes [78]. Furthermore, the E2F down-
stream target BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3) has
also been shown to induce autophagy [79]. Moreover, a computational prediction from
multiomics profiling of transcriptomes, proteomes, and phosphoproteomes during silica
nanoparticles (SiNP)-induced autophagy in normal rat kidney cells identified ATG9A,
MAP1LC3B/LC3B, UV radiation resistance associated gene (UVRAG), and GABA type A
receptor-associated protein (GABARAP) as transcriptionally regulated by E2F1. Although
the exact mechanisms of how SiNPs activate autophagy are not clear, this study suggests
that signaling through the CDK7-CDK4 axis potentiates SiNP-induced autophagy by phos-
phorylating pRB, activating E2F1 or FOXO3, and enhancing mRNA expression levels of
several autophagy regulators and ATG genes [80].

Autophagy can be induced by the tumor suppressor transforming growth factor-β
(TGFβ) in various cancer cell lines [81]. To be precise, TGFβ may regulate autophagy
through pRB/E2F1-dependent transcriptional activation of multiple autophagy-related
genes that function at various stages in the autophagy process. Indeed, the loss of E2F1
expression by siRNA significantly attenuates the TGFβ-mediated regulation of autophagy
measured by impaired induction of Beclin-1, degradation of p62, and accumulation of
LC3II. Together, these data suggest that E2F1 plays an important role downstream of
TGFβ-mediated transcriptional activation of autophagy-related genes [82].

In addition to cancer, autophagy is associated with obesity; autophagy-related gene
expression is upregulated in visceral fat in human obesity [83]. Interestingly, E2F1 ex-
pression is upregulated in the human adipose tissue of obese patients, which correlates
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with the increase in the expression of several key autophagic genes such as ATG5 and
MAP1LC3B/LC3B. Moreover, a direct binding of E2F1 to the MAP1LC3B promoter in
adipose tissue explants has been demonstrated by chromatin-immunoprecipitation exper-
iments. In cellular models, E2F1 overexpression in HEK293 cells triggered the promoter
activity of autophagy-related genes and the autophagy flux and sensitized cells to tumor
necrosis factor (TNF)-induced hyperactivation of ATG12, MAP1LC3B, and DRAM1 pro-
moter activity. Conversely, in mouse embryonic fibroblast-derived adipocytes from E2f1
knockout mice (E2f1−/−), autophagic gene expression and autophagic flux are downregu-
lated in both basal and stimulated conditions [84].

However, the literature connecting pRB-E2F and autophagy is complex, as suppression
of autophagy by E2Fs has also been reported. A study by Jiang et al. demonstrated that
pRB restoration in a panel of pRB-deficient cells positively regulates autophagosome
formation, maturation, and autophagy flux. In addition, they showed that increased pRB
activity or lack of E2F1 trigger autophagy, and pRB-E2F interaction, is required for pRB-
mediated autophagy. Moreover, excessive E2F1 activity blocked pRB-induced autophagy.
One possible mechanism for how E2F1 mediates suppression of autophagy is the activation
of Bcl-2 [44]. Bcl-2 has been previously revealed as a transcriptional target of E2F1 [85],
which antagonizes autophagy by binding Beclin-1 and prevents activation of the PI3Kc3
complex [86]. This mechanism reveals a function of the pRB-E2F1 pathway that might
contribute to its role in cancer suppression and resistance to cancer therapy.

Another suppressive function of the pRB-E2F pathway in the regulation of autophagy
has been reported in ovarian cancer. Autophagy is one mechanism by which dormant,
drug-resistant ovarian cancer cells survive in nutrient-poor environments. A frequently
downregulated tumor suppressor gene in ovarian cancer, DIRAS3, has been illustrated
to facilitate autophagy induced by amino acid deprivation in the presence or absence of
serum. In fact, nutrient-depleted conditions lead to transcriptional upregulation of DIRAS3
by decreased binding of E2F1 and E2F4 and increased binding of CEBPα to the DIRAS3
promoter [87]. This mechanism was further confirmed by genetic and pharmacological
inhibition of E2F1 and E2F4, which induced DIRAS3-mediated autophagy in ovarian
cancer cells [88].

It is now evident that E2F1 transactivates more than 2000 genes and that the tran-
scriptional regulation is highly contextual [89]. Therefore, further study will be required
to determine the delicate balance between pRB and E2Fs in the regulation of autophagy.
Nevertheless, in addition to E2Fs, pRB interacts with more than 200 proteins [90], including
the hypoxia-inducible factor 1, that initiate the transcription of multiple genes involved
in autophagy under hypoxic conditions [91]. Therefore, it will be necessary to distinguish
between normoxic and hypoxic conditions when studying the regulation of autophagy by
the RB-E2F pathway.

Collectively, previous works explicitly documented a prominent role of the pRB-E2F1
pathway in the regulation of autophagy (Figure 2c). Notably, in light of the numerous
studies on this role of the pRB-E2F1 pathway, most of the previous studies on the roles of
CKI and CDKs in autophagy (see the sections on cyclin-dependent kinase inhibitors and
autophagy/cyclin-dependent kinases and autophagy) could be at least partially explained
by modulation of the pRB-E2F axis and its pro-autophagic transcriptional program. Future
studies must also address in more detail the relationships between pRB-E2F-induced
autophagy and apoptosis. The elucidation of the molecular mechanisms by which the pRB-
E2F pathway regulates cell fate through autophagy may provide a better understanding of
how autophagy affects physiological and pathological processes.

3. Autophagy Modulates Cell-Cycle Regulators

While cell-cycle regulators interact with autophagic key players and modify au-
tophagic processes, there is increasing evidence of a feedback loop of autophagy compo-
nents that could influence the activity of cell-cycle regulators. Previously, mTOR inhibition
through rapamycin has demonstrated the role of this complex in the regulation of the
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cell cycle, notably via the degradation of cyclin D1 and upregulation of p27KIP1 [92,93].
Additional later clues reinforce the importance of mTOR in cell-cycle regulation [94–96],
indicating that autophagy is a potential determinant process modulating cell-cycle reg-
ulators. By regulating their availability, the autophagic program does not promote cell
survival but enhances cell-cycle progression and may contribute to tumorigenesis.

3.1. Autophagy and Cyclin-Dependent Kinase Inhibitors

The protein p21CIP1 can be targeted by autophagy [97–99]. Under various conditions,
inhibition of autophagy is able to stabilize p21CIP1 levels [97–99]. Of note, a recent study
demonstrates that the ectopic expression of one of the master transcription factors of
lysosomal biogenesis, TFEB, also induces p21CIP1 expression [100]. In addition, in the
immune system, the expansion of immune CD8+ T cells requires autophagy to degrade
specifically p27KIP1 [101]. Moreover, inhibition of multiple key elements of autophagy also
increases the expression of p16INK4A [45,46]. Indeed, while hepatic inhibition of autophagy
through deletion of ATG5 increases the expression of p16INK4A in liver [46], the loss of ATG7
enhances p16 level in satellite muscle stem cells [45]. Interestingly, an elegant study using
time-lapse fluorescence microscopy and tracking an endogenous p16-mCherry reporter
demonstrated that p16 accumulates in acidic cytoplasmic vesicles upon pro-autophagic
stresses, including amino acid deprivation or oxidative stress [47].

Taken together, these data highlight the importance of autophagy in regulating p21CIP1,
p27KIP1, and p16INK4A levels, further impacting cell-cycle progression. While most of these
studies were conducted in a non-tumoral context, these data are also in line with a pro-
tumoral role of autophagy via the degradation of tumor suppressor proteins, such as CKIs
(Figure 3).
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Figure 3. Cell-cycle regulators are targets of autophagy. p21CIP1, p27KIP1 and p16INK4A are among
the three CKIs targeted by autophagy, their degradation ultimately leading to the progression of
the cell cycle. Cyclins and CDKs are also degraded by autophagy. CDK1 binds to p62. Cyclin D1
and cyclin A2 are degraded by macroautophagy. Altogether, degradation of CDKs and cyclins block
cell-cycle progression.

3.2. Autophagy, Cyclin-Dependent Kinases and Cyclins

Both CDKs and cyclins are also targets of autophagy. For example, CDK1 is ubiqui-
tinated by SCFBTrCP, enhancing its lysosomal degradation upon treatment with a DNA-
damage chemotherapeutic agent, such as doxorubicin [102]. The CDK1 degradation is
facilitated by the p62/HDAC6-mediated selective autophagy in breast cancer cells [103].
Cyclin D1, which is associated with CDK4 or CDK6, is frequently degraded by the mod-
ulation of autophagy. A first clue came out directly from the colocalization of cyclin D1
with Beclin-1 in glioblastoma recurrence [104]. Two more recent studies demonstrated
that cyclin D1 is specifically degraded during autophagy in hepatocellular carcinoma
and breast cancer [105,106]. In addition to cyclin D1, high-resolution live-cell imaging
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of breast cancer cells displayed ubiquitination of cyclin A2 in foci, further targeted by
autophagy/lysosomal degradation [107].

Altogether, these results indicate that cell cycle regulators, including CKIs and CDKs-cyclin
complexes, may be targeted by the autophagic process during cell cycle progression (Figure 3).

3.3. Mitophagy and Cell-Cycle Regulators

Notably, and similar to the role of autophagy, some studies display a role for mi-
tophagy players in the regulation of cell-cycle regulators. Beyond the initiation step of
mitochondrial fission, mitophagy is mastered by two key proteins, namely parkin and
PINK1. Alterations in these proteins lead to impaired mitophagy and have been linked
to cell-cycle arrest. Indeed, reduction of parkin results in cell-cycle arrest, and to some
extent cellular senescence in primary lung, cochlear, or myocardial cells, via upregulation
of p21CIP1 and p16INK4A [108–110]. Mechanistically, the accumulation of dysfunctional
mitochondria and abnormal ROS generation is suspected to participate in this pheno-
type [111]. Finally, genetic studies linked parkin-mediated effects with downstream CDKs:
CDK6 [112,113], CDK1, and CDK2 [114]. Taken together, these studies underscore that the
main mitophagic effectors modulate cell-cycle regulators. Nevertheless, the determination
of whether this modulation consists of a direct targeting of cell-cycle regulators or is, rather,
the result of multiple upstream molecular events, requires additional mechanistical studies.

4. Therapeutic Interventions Combining Cell-Cycle and Autophagy Modulators

The above-mentioned results suggest a strong reciprocal regulation between au-
tophagy and cell-cycle regulators; perturbation of one leads to modulation of the other,
as evidenced, for instance, by CDK4/6 or mTOR inhibitors. The importance of mTOR in
cell-cycle regulation [94–96] reinforces the interest in using mTOR inhibitors in clinics as
powerful anti-proliferative compounds, and for many cancer clinical trials as front-line
therapy or alternative treatment to overcome resistance [115]. Unfortunately, faced with
clinical data, either CDK4/6 or mTOR inhibitors are found to have clinical limitations as
single agents in cancer therapy, as some patients develop clinical resistance. In addition,
there is a lack of reliable biomarkers that can be used as prognostic indicators. Therefore,
a combination therapies that provide additional therapeutic benefits is required. Interest-
ingly, the interconnection between autophagy and cell-cycle regulators makes autophagy a
promising co-target [56].

Chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are FDA-approved
modulators of autophagy that inhibit lysosomal acidification and thereby impair autophago-
some maturation. The effects of HCQ are explored in phase I and II clinical trials for various
cancers. However, its use as a monotherapy does not provide satisfactory results [116,117].

Several preclinical studies have consistently shown that CDK4/6 inhibitors lead
to autophagy activation in different cancer cells [55,118,119]. For instance, palbociclib
treatment leads to autophagy activation in breast cancer cells, which prevents palbociclib-
induced senescence. However, combined usage of the CDK4/6 inhibitor palbociclib and
the autophagy inhibitor HCQ results in growth arrest, accumulation of reactive oxygen
species, and cellular senescence in cancers with an intact G1/S transition. In addition,
this study identified that the Rb-positive and low-molecular-weight isoforms of cyclin
E (cytoplasmic)-negative are reliable prognostic biomarkers in ER-positive breast cancer
patients, and predictive of preclinical sensitivity to the combination of these drugs [56].
The synergistic effect of CDK4/6 and autophagy inhibitors has also been found in some
solid cancers possessing a functional G1/S checkpoint, thereby suggesting a promising
biomarker-driven antitumor strategy to treat breast tumors and other solid tumors [56,120].

In pancreatic ductal adenocarcinoma (PDAC), the co-encapsulate CDK4/6 inhibitor
palbociclib and the autophagy inhibitor HCQ also generate synergistic antitumor effects in
subcutaneous and orthotopic PDAC models [121]. Furthermore, a study of the malignant
brain tumor glioblastoma multiform (GBM) combined the autophagy inhibitor, MPT0L145,
with the CDK4/6 inhibitor abemaciclib. The results demonstrate significantly decreased
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cell proliferation, suppressed RB phosphorylation, and elevated ROS production, indicating
the inhibition of autophagy by MPT0L145-sensitized GBM cancer cells to abemaciclib [122].
Furthermore, the efficacy of combination therapy is suggested by studies in acute myeloid
leukemia (AML), i.e., the inhibition of CDK4/6 by abemaciclib or palbociclib and autophagy
by CQ-suppressed cell growth and induced apoptosis in t(8;12) AML cells [123] and in a
mouse xenograft model of t(8;12) AML [124] (Table 1).

Table 1. Combination therapies of cell-cycle inhibitors and autophagy inhibitors. CQ: chloroquine;
HCQ: hydroxychloroquine.

Intervention Cancer Type Refs

– CDK4/6 inhibitor: palbociclib
– Autophagy inhibitor: HCQ

Breast cancer, solid tumors [56]

– CDK4 inhibitor: 2-bromo-12 and 13-dihydro-5 H-indolo-dione [2 and 3-a]
pyrrolo [3 and 4-c] carbazole-5 and 7 (6H)-dione

– Autophagy inhibitor: CQ
Solid tumors [120]

– CDK4/6 inhibitor: palbociclib
– Autophagy inhibitor: HCQ

Pancreatic cancer [121]

– CDK4/6 inhibitor: abemaciclib
– Autophagy inhibitor: MPT0L145

Brain cancer (glioblastoma multiforme) [122]

– CDK4/6 inhibitors: abemaciclib and palbociclib
– Autophagy inhibitor: CQ

t(8;21) Acute myeloid leukemia
[123]

[124]

– CDK4/6 inhibitor: palbociclib
– Autophagy inhibitor: HCQ

Estrogen receptor-positive, HER2-negative
metastatic breast cancer [125]

These promising preclinical results led to several clinical trials (NCT04841148, NCT04523857,
NCT04316169, and NCT03774472 [125]) to assess the safety and efficacy of cell-cycle regula-
tors and autophagy inhibitors in breast cancer, as summarized in Table 2.

Table 2. Clinical trials in breast cancer patients with CDK4/6 and autophagy inhibitors. Information
obtained from ClinicalTrials.gov in December 2021. HCQ:hydroxychloroquine.

Clinical Trial Official Title Condition Intervention Study Description ClinicalTrials.gov
Identifiers

PALAVY

A phase II trial of Avelumab or
hydroxychloroquine with or

without palbociclib to eliminate
dormant breast cancer

Early-stage
ER + breast

cancer

HCQ,
Avelumab,
palbociclib

Randomized, open label phase II
clinical trial that will assess the

safety and early efficacy of
hydroxychloroquine or

Avelumab, with or without
palbociclib, in early-stage ER+
breast cancer patients who are
found to harbor disseminated
tumor cells (DTCs) in the bone
marrow after definitive surgery
and standard adjuvant therapy.

NCT04841148

ABBY

A phase II pilot trial of
abemaciclib or abemaciclib and
hydroxychloroquine to target
minimal residual disease in

breast cancer patients

Invasive breast cancer abemaciclib
HCQ

Randomized, open label phase II
clinical trial that is testing

whether the use of
hydroxychloroquine and

abemaciclib can reduce the
number or eliminate DTCs in

bone marrow.

NCT04523857
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Table 2. Cont.

Clinical Trial Official Title Condition Intervention Study Description ClinicalTrials.gov
Identifiers

Hydroxychloroquine,
abemaciclib, and endocrine

therapy in hormone receptor
positive (HR+)/Her 2 negative

breast cancer

HR+/Her 2-
advanced breast

cancer,
advanced solid

tumors

Abemaciclib
HCQ

Non-randomized, open label
phase I clinical trial that assessed
safety, tolerability, and efficacy of
abemaciclib combined with the

autophagy inhibitor
hydroxychloroquine in advanced

solid tumors and HR+/Her
2-advanced breast cancer

NCT04316169

Phase I/II safety and efficacy
study of autophagy inhibition
with hydroxychloroquine to

augment the antiproliferative and
biological effects of pre-operative

palbociclib plus letrozole for
estrogen receptor-positive and
HER2-negative breast cancer

HR+/HER2-bbreast
cancer

HCQ,
letrozole,

palbociclib

Open label phase I/II clinical trial
investigating the side effects and
best dose of hydroxychloroquine

when given together with
palbociclib and letrozole before
surgery in treating patients with

estrogen receptor positive,
HER2-negative breast cancer.

NCT03774472

5. Conclusions

In constant interactions, cell-cycle regulators and modulators of autophagy are in-
trinsically related, facilitating the synchronization of the cell cycle and catabolism during
cell-cycle progression. These observations explain most of the previous observations that
link cellular senescence, stable cell-cycle arrest, and autophagy pathways. In addition to
CKIs, CDKs, and cyclins, other cell-cycle regulators were found to participate in autophagy,
as Aurora Kinase A [126,127] or p53 (comprehensively reviewed in [41]). Altogether, these
studies reinforce the intimate link between the cell cycle and autophagy, adding another
layer of complexity in the inter-regulation of these two processes.

The cell cycle and autophagy are two critical processes during tumorigenesis. In the
tumorigenesis steps, cell-cycle and autophagy fluxes are coordinated (and especially
conversely-correlated) during tumor progression and tumor therapeutic interventions
(Figure 4). During these two processes, cancer cells stop proliferating and activate an au-
tophagic program, leading ultimately to cell survival. In advanced stages of tumorigenesis,
blocking the cell cycle appears to be required to sustain an important autophagic flux for
cancer cells. This time-window to inhibit autophagy and overcome cancer cell survival will
need further consideration.
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Figure 4. Cell-cycle and autophagic processes during tumorigenesis. During tumor initiation, the cell
cycle and autophagy are mostly downregulated. Autophagy is then antitumoral initially, limiting this
tumor initiation step, notably via the degradation of oncogenic molecules. During tumor promotion,
cell-cycle progression is reactivated while autophagy is partly enhanced. Tumor progression, notably
through epithelial-mesenchymal transition (EMT), migration, survival, and mesenchymal-epithelial
transition (MET), reduces drastically cell-cycle progression, while enhancing autophagic fluxes.
Resister cells of therapeutic interventions display cell-cycle arrest and autophagy induction.

Beyond the temporal modulation of autophagy during tumorigenesis (Figure 4),
the importance of specifically and spatially targeting a tumor, rather than its microenvi-
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ronment, remains crucial. Indeed, recent studies emphasized deleterious and pro-tumoral
effects of modulating autophagy in tumor microenvironment, notably in immune cells and
stromal cells [17,128]. For instance, autophagy inhibition may block cancer immunosurveil-
lance, as its determinant to ensure tumor recognition and elimination [17]. Interestingly,
not only autophagy modulators, but also cell-cycle blockers (including CDK4/6 inhibitors)
are able to induce cellular senescence in normal and cancer cells [35,129,130]. Senescent
cells display a specific senescence-associated secretory phenotype, which includes pro-
inflammatory cytokines (IL-6, IL-8), growth factors (EGF, VEGF), and matrix metallo-
proteases (MMP-1, MMP-3) [131]. SASP contributes to local inflammation, establishing
a pro-tumoral microenvironment contributing notably to cancer growth and tumor re-
lapse [131–134]. Modifying autophagy and the cell cycle via induction of cellular senes-
cence in the tumor microenvironment is thus an important factor to consider in future
therapeutic-associated interventions. The use of senolytics (specific compounds eliminating
senescent cells) or senomorphics/senostatics (specific agents limiting SASP), appears to be
an important avenue to consider [135].

Overall, combining autophagy and cell-cycle modulators opens new therapeutic per-
spectives to initiate additional cell death mechanisms and synergetic antitumoral effects.
Altogether, these studies reinforce the importance of timing, duration, and selective effi-
ciency of drug administration, which are three main parameters to optimize for autophagy-
/cell-cycle-related therapeutic interventions in the future.
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HCQ Hydroxychloroquine
HSP Heat shock protein
IL Interleukin
LAMTOR Late endosomal/lysosomal adaptor
LKB1 Liver kinase B1
MAPK Mitogen-activated protein kinase
MDM2 Mouse double minute 2
MET Mesenchymal-epithelial transition
MMP Matrix metallopeptidase
mTOR Mechanistic target of rapamycin kinase
PDAC pancreatic ductal adenocarcinoma
PDH Pyruvate dehydrogenase
PDK Pyruvate dehydrogenase kinase
PIK3C3 Phosphatidylinositol 3-kinase catalytic subunit type 3
PINK1 PTEN induced kinase 1
PKM Pyruvate kinase M1/2
RKIP-PEBP1 Phosphatidylethanolamine binding brotein 1
TFEB Transcription factor EB
TFE3 Transcription factor binding To IGHM enhancer 3
TGFβ Tumor suppressor transforming growth factor-β
ULK Unc-51 Like autophagy activating Kinase
UVRAG UV radiation resistance associated gene
VEGF Vascular endothelial growth factor
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