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Abstract: Ischemic brain injury represents a major cause of death worldwide with limited treatment
options with a narrow therapeutic window. Accordingly, novel treatments that extend the treatment
from the early neuroprotective stage to the late regenerative phase may accommodate a much
larger number of stroke patients. To this end, stem cell-based regenerative therapies may address
this unmet clinical need. Several stem cell therapies have been tested as potentially exhibiting
the capacity to regenerate the stroke brain. Based on the long track record and safety profile of
transplantable stem cells for hematologic diseases, bone marrow-derived mesenchymal stromal cells
or mesenchymal stromal cells have been widely tested in stroke animal models and have reached
clinical trials. However, despite the translational promise of MSCs, probing cell function remains to
be fully elucidated. Recognizing the multi-pronged cell death and survival processes that accompany
stroke, here we review the literature on MSC definition, characterization, and mechanism of action in
an effort to gain a better understanding towards optimizing its applications and functional outcomes
in stroke.
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1. Introduction

Stroke is the leading cause of disability in the United States. Ischemic stroke has a
greater prevalence, contributing to 87% of overall stroke incidents. Within hours, excitotoxi-
city, neuroinflammation, and cell death can contribute to damage and, conversely, recovery,
in the brain [1]. Despite the growing incidence of stroke, there are limited therapeutic
options available for patients [2,3]. Recombinant tissue plasminogen activator (rtPA) is
the only neuroprotective agent therapy for thrombotic stroke [3]. However, this therapy
has a limited clinical reach, as it has a therapeutic window of 3–4.5 h, leaving only a small
percent of patients eligible for this therapy [3]. Endovascular mechanical thrombectomy
can be considered an interventional treatment for patients with an acute ischemic stroke
with a large vessel occlusion presenting in the anterior circulation and onset within 6 h [4].
However, despite successful intervention, disability-free survival remains low [4]. Physical
therapy is an option available for stroke patients to improve mobility and motor skills
which may be beneficial for patients [3]. While public stroke education has resulted in a
decrease in stroke death, a significant disparity remains between patients who are able to
receive stroke intervention and those who must rely on rehabilitation therapies [4]. The
therapeutic focus has thus shifted to stem cell therapy as a potential bridge to address the
significant incidence of disability.

A review of the definition, characterization, and mechanism of action of MSCs is
crucial to gain a better understanding towards optimizing its applications and functional
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outcomes in stroke. An outdated definition of MSCs has led to inconsistencies in the field
of research and treatment. We believe there needs to be a call for standardization of this
topic moving forward. A secondary issue surrounds the diverse mechanism of action, as
well as the underlying ones, of MSC. This review discusses inaccurate MSC definitions,
a lack of universal standard across academia regarding MSC characterization, and the
biologically complex processes completed by MSCs within applications associated with
ischemic stroke outcomes. Regarding the current literature surrounding MSC application in
stroke events, this review dissects errors present within said current literature that impact
and circumvent further scientific growth due to the standardization and characterization
issues currently present. As corresponding literature has begun to compile surrounding
this topic, the novel aspect of this review pursues a greater analysis of the current literature
to drive more substantial and detailed growth as the topic is pursued in more substantial
quantities in the future. By providing a detailed and systemic investigation regarding
stroke outcomes associated with MSC utilization, scientific and clinical communities can
further combine characterizations and definitions to drive a more widely understood and
discussed employment of MSC therapies.

2. Stem Cell-Based Regenerative Medicine

Stem cells are defined by their ability to differentiate into a variety of different cell
types and continuously self-renew [5–7]. The application of stem cells has been of great
interest in regenerative medicine regarding tissue restoration and repair. This includes
their use in treatment for neurological disorders and brain injuries, such as stroke, although
deciding how to transplant stem cells and what type of stem cells to use is still a significant
focus of research [8]. Further classification of stem cells is primarily based on their potential
for differentiation into different cell types as well as the developmental stage from which
they arise [5–7]. Stem cells with the greatest capacity for differentiation are totipotent stem
cells, so-called because of their ability to divide into all tissue types of the organism during
embryological development, as well as extraembryonic tissues such as the placenta [6,7].
Pluripotent stem cells are secondary to totipotent stem cells in their ability to differentiate,
as they are capable of differentiating into all cell types in the body except for extraembry-
onic tissues [6,7]. Pluripotent stem cells include both the naturally occurring embryonic
stem cells and the clinically relevant adult induced pluripotent stem cells, which can be
engineered and cultured to possess pluripotent capacity [6,9]. Multipotent stem cells are
further reduced in potency, restricted to only differentiate into all of the cells of a single
cell line, and even more limited are oligopotent stem cells, which are able to divide into
only some of the cells in a cell line [6]. Finally, the least potent stem cells are unipotent
stem cells, such as unipotent epidermal stem cells, which are restricted to dividing rapidly
and only giving rise to a single cell type, with their propensity for division also being of
particular interest for use in regenerative medicine therapies [6,9,10]. Muscle satellite cells,
for example, have been explored for their regenerative capacity in ameliorating the effects
of muscular dystrophies [11,12].

MSCs are generally recognized as fibroblast-like cells with multipotent capacity for
differentiation into various connective tissue lineages, chiefly osteoblasts, chondrocytes,
and adipocytes [13–15]. MSCs constitute a largely heterogeneous population of cells, mean-
ing that different MSCs belonging to the same culture will commit themselves towards
differentiation into different cell lineages; however, it does not alone contribute to their
efficacy [16,17]. Animal models have shown promise for the use of MSCs through both
their restorative and immunomodulatory properties [7,18]. MSCs are particularly desir-
able because of their immunosuppressive effects, chiefly their ability to suppress T-cell
proliferation [19]. As a result, they have emerged as a potential therapeutic in preventing
complications related to acute graft-versus-host disease (GVHD) following hematopoietic
stem cell transplantation [19–22]. While variability in protocols exists, clinical results in
children have consistently shown MSCs to be an effective treatment for GVHD, with cer-
tain MSC-based treatments being approved for pediatric use when corticosteroids prove
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ineffective [20,22]. Outside of steroid-resistant GVHD, outcomes for MSC treatment have
been shown to be effective in tissue repair and enabling engraftment [19,20]. In the context
of ischemic strokes, MSCs can potentially aid regeneration by secreting key mediators
such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) to
induce angiogenesis and reduce inflammation [18]. Despite this mechanistic underpinning,
continued work must be done to understand the properties of MSCs before consistent
success can be seen at the level of human clinical trials [7].

Given the wide degree of MSC potency, advances must first be made in optimizing
cell tissue origin selection, harvesting, and culturing [7,18]. Regarding tissue origin, data
from clinical trials are still incongruous on whether to utilize bone marrow-derived MSCs
(BM-MSCs) versus adipose tissue-derived stromal cells—both of which have merit based on
clinical trials—or when to even consider less-studied sources such as umbilical cord-derived
MSCs [7]. Moreover, consideration must be given towards determining when it is best to
administer an MSC for the purposes of regeneration. In the case of ischemic stroke, most
preclinical studies have suggested treatment while still in the acute stage, although some
conflicting evidence in clinical studies has pointed towards effective transplantation during
the chronic stage [23]. Investigating these aspects of MSC properties and applicability
can aid our understanding of what is most effective in specific contexts. For stroke, in
particular, finding ways to optimize the angiogenic and immunomodulatory aspects of
a given transplantation would be the most important aspects to consider in terms of
treatment efficacy.

Due to the promising safety profile of mesenchymal stromal cells (MSCs) in blood-
borne diseases, coupled with the cells’ multi-faceted therapeutic mechanisms, such as
angiogenic, neurogenic, and vasculogenic, among other regenerative features, MSC trans-
plantation for stroke has been translated from the lab to the clinic [24,25]. MSCs can
influence the paracrine system to produce factors that promote microglia activation, in-
crease astrocyte survival, and promote the bystander effect [25–27]. The inflammatory
response following a stroke can be reduced by MSC’s immunomodulatory effect, a main
driving factor in functional recovery and patient outcomes [25]. MSC therapy is a fron-
trunner in a clinical setting since, as a vial therapy, it can be feasible, readily accessible,
and safe for patients, as demonstrated by preceding clinical trials [24,25]. While preclinical
models have shown efficacy, this has not carried over into clinical trials, leaving much to be
discovered on MSC administration and viability [26]. Preclinical trials lack understanding
in comorbidities associated with stroke, such as obesity and hypertension, which may
contribute to the lack of efficacy [23,28]. This disconnect may be decreased with priming
effects and standardization for clinical administration and methodology [24,29,30]. An-
other explanation for this disconnect may stem from differences in translating the results of
animal models to human models, such as immunological function and viability. Due to
differences in a model’s biology, bench research results may not always predict the efficacy
of human clinical trials [31,32].

3. Controversies Surrounding MSCs

Despite promising MSC-based therapies, the fundamental biology of MSCs remains
poorly understood. This, in turn, limits the clinical utility of MSCs in brain injury and stroke
treatment. For instance, it is unclear whether MSCs should be classified as stromal cells or
stem cells. Stromal cells form an organ’s supporting architecture but are distinct from the
organ components involved in organ function. Stem cells are totipotent progenitor cells
that can renew themselves and differentiate into multiple lineages [33]. While MSCs exhibit
stem cell attributes, such as self-renewal in culture and multipotency in the mesodermal
cell lineage, and can differentiate into mesodermal cell types and undergo chondrogenesis,
adipogenesis, and osteogenesis; permanent cell lineage repletion in vivo has led some to
argue that MSCs do not meet the necessary criteria for a stem cell and should instead be
classified as stromal cells [34].
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One of the obstacles to defining MSCs as either stem cells or stromal cells is the paucity
of in vivo studies on MSC differentiation [35]. Up to this point, most of the stem cell
properties of MSCs have been observed in in vitro systems and, when produced ex vivo,
constitute a heterogeneous cell population in which only a fraction of the cells displays
self-renewal potential and multipotency. This led the International Society for Cellular
Therapy to release a statement in 2005 describing the term mesenchymal ‘stem cell’ as
“scientifically inaccurate” and “potentially misleading to the lay public” [36]. While this
paper will not take a stance on this decade-long semantic debate, it is clear that MSCs
display limited “stemness.” It is relevant here to discuss the clinical consequences of this
limited stemness on stroke.

3.1. MSC Limited Stemness

The limited stemness of MSCs is one of the key caveats for the clinical application
of MSCs. Since MSCs are not embryonic in origin, they display finite divisions and may
not fully recapitulate the true definition of stem cells. This caveat means that MSCs have
relatively limited stem cell proliferation, migration, and differentiation capacity, which
could, in turn, limit their clinical application [17]. Several laboratories have indicated
stemness-related gene clusters in undifferentiated and de-differentiated MSCs [37,38].
These stemness-related gene clusters are primarily involved in proliferation, differentiation,
and migration [39]. Expression of these genes was significantly decreased once MSCs
differentiated into osteoblasts, chondrocytes, and adipocytes. Serial passaging appears
to decrease the expression of stemness genes, as well as increase senescence [40]. Since
amplification must occur at a large scale to produce sufficient numbers of MSCs for clinical
trials, MSC senescence and modifications in gene expression limit the clinical application
of MSCs for stroke.

There are several ways this issue of limited stemness might be resolved [17]. One way
is to use induced pluripotent stem cell-derived MSCs, which can be passaged 40 times
without showing signs of senescence and appear to have increased regenerative capacity
in preclinical degenerative disease models compared to tissue-derived MSCs [17,41–43].
Another approach is to stimulate the overexpression of sirtuins (SIRT), highly conserved
deacylases that play an important role in aging [17]. SIRT3 overexpression in later-passaged
cells may restore differentiation capacity and reduce senescence [44]. The ectopic expression
of telomerase reverse transcriptase, the introduction of Erb-B2 receptor tyrosine kinase 4,
and the knockdown of macrophage migration inhibitory factor are other potential methods
for decreasing MSC senescence [17]. More research must be performed to determine
whether such approaches can improve the clinical efficacy of MSC therapy for stroke.

3.2. Homogeneous vs. Heterogeneous Cell Population Characterization

The paucity of in vivo studies on MSC differentiation produces ambiguities surround-
ing other aspects of MSC biology as well, such as whether MSCs constitute a homogeneous
or heterogeneous cell population. While in vitro experiments produce a heterogeneous pop-
ulation of MSCs, some papers suggest that MSCs are homogeneous in vivo [45]. Confusion
surrounding whether BM-MSCs are characterized as a homogeneous or heterogeneous cell
population was raised in part to labs using different markers of expanded MSCs to search
for MSCs in vivo. The assumption that markers expressed in vitro systems were present
in vivo led the scientific community to characterize MSCs as heterogeneous when they are
genuinely homogeneous [45]. Another factor that could masquerade MSC heterogeneity
is instability, as MSCs are highly proliferative and multipotent cells that differentiate into
different cell types based on their environment. In the recent literature, MSCs have been
described as a heterogeneous cell population [34]. While MSC samples are highly hetero-
geneous when cultured under different conditions and can be used to treat conditions
ranging from autoimmune disease to bone fractures, clonal analysis dramatically lowers
MSC diversity to just a few clones after multiple passages [46].
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3.3. MSC Cell Replacement vs. Bystander Effects of Secreted Factors

MSCs demonstrate versatility in promoting neurogenesis, which can be utilized as a
treatment for various brain injuries, such as stroke. Cell replacement is one mechanism
that MSCs can use in ameliorating damage caused by a stroke. MSCs have the ability
to differentiate into neurons, which may improve overall neurological function [47,48].
However, one critical issue regarding the differentiation of MSCs is the inconsistency of
their propensity to evolve into neuronal cells. This may be modulated by where MSCs are
derived from and whether differentiation occurs in vivo or in vitro [49]. As a result, studies
have shifted to analyzing other ways MSCs contribute to brain injury recovery. MSCs
have demonstrated chaperoning abilities that enhance the brain’s own endogenous repair
system [50]. The grafted MSCs may create a bio-bridge that connects the neurogenic niche
to the damaged area, facilitating the movement of neuronal stem cells (NSCs) to the target
site [50]. These mechanisms are one way that MSCs are able to demonstrate neurogenic
effects in damaged brain tissue.

The bystander effects of secreted factors from MSCs also have the potential to benefit
patients who have suffered from a stroke. A variety of other findings suggest that MSCs’
principal mechanism in promoting neurogenesis is through these secreted factors [26,47,51–53].
After transplantation, MSCs release various growth factors to regulate inflammation in areas
damaged by stroke [26,51]. Through the bystander effect, the paracrine function of MSCs
may enable these growth factors to ultimately support the brain through the promotion of
neurogenesis and angiogenesis [26]. MSCs are efficient in the production of extracellular
vesicles, which offer another avenue of therapeutic intervention due to their ability to
reduce neuroinflammation and promote neurogenesis (Figure 1) [47,53]. Stroke rats treated
with MSCs and stroke rats that were treated with MSC-derived extracellular vesicles
displayed similar functional recovery levels [54]. These extracellular vesicles are able to
cross the blood-brain barrier due to their small size and can deliver various proteins, lipids,
and nucleic acids to modulate various processes after a stroke, like inhibiting apoptosis [47].
The key behind axonal growth after treatment with MSC-derived extracellular vesicles
involves the transfer of therapeutic miRNA between cells, promoting increased neural
plasticity [55,56]. Another advantage of the MSC secretome includes its safety profile in that
the extracellular vesicles are unable to self-replicate, which mitigates the threat of cancer
from treatment [57,58]. The secretome also releases anti-inflammatory factors, cytokines,
and chemokines, which give it the ability to directly modulate the immune response to a
damaged site. Furthermore, the content packed into the extracellular vesicles responds to
the surrounding microenvironment by communicating with neighboring cells and targeting
specific tissues via the expression of integrin subunits [59]. Extracellular vesicles present
the opportunity to create a cell-free therapy and have the added benefit of being at low risk
for rejection by the immune system [53]. Ultimately, MSCs present many opportunities
to assist in the amelioration of damaged neuronal tissue through its paracrine effects that
promote neurotrophic factors.
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Figure 1. MSC grafts in the ischemic stroke brain. MSCs may migrate and repopulate the stroke
brain, differentiate to neural cells and release trophic and anti-inflammatory factors and extracellular
vesicles, altogether creating a secretome profile of a regenerative brain. While these may not fully
repair the lost tissue, MSCs may be able to regenerate the spared tissue (i.e., penumbra and peri-infarct
area) surrounding the necrotic infarct core and the adjacent penumbra or peri-infarct area.



Cells 2022, 11, 1013 6 of 12

With an understanding of MSCs’ various capabilities to heal or protect neuronal
tissue, its applications to patients with stroke are numerous. Bone marrow stromal cells
may exhibit neuroprotective effects by reducing ischemic boundary zone scarring and
increasing overall proliferating cells, leading to a significant cognitive function recovery in
MCAO rats [60]. MSCs may also target the site of ischemic stroke and mitigate permanent
damage via brain-derived neurotrophic factor (BDNF), which could affect the regulation
of calcineurin, which is a common and problematic issue in stroke pathology [25,60].
Total inhibition of this phosphatase leads to complications like organ intoxication, but
overexpression leads to apoptosis in neuronal tissue [25]. There is a lack of literature that
has studied potential inhibitors of calcineurin that also minimize organ intoxication [61].
BDNF has been shown to reduce calcineurin activity via the regulation of calcium channels
in MCAO [61].

3.4. Route, Dose, and Timing of MSC Administration

A significant factor in MSC success is dependent on the dosage, delivery route, and
optimal timing. Choosing a delivery route for a therapeutic option is incredibly important,
as the placement determines what these stem cells turn into and what other cascades are
triggered. Current research places intraparenchymal delivery as the most effective route of
administration for MSC in stroke patients, which generates the most significant number
of MSCs in the infarct area, leading possibly to the best neurological improvement [62].
On the other hand, a neurosurgical operation may not be well tolerated by all stroke
patients and could lead to severe complications [62]. Furthermore, intracerebral transplants
limit the number of cells that may be transplanted in order to avoid a mass effect of the
brain, whereas systemic approaches do not and provide a greater number of cells [58].
Intra-arterial administration is a practical and minimally invasive strategy, in which more
transplanted cells reach the infarcted area with a lower risk of entrapment when compared
to the intravenous route [63,64]. Likewise, intravenous delivery is an effective and less
invasive route of administration that avoids serious adverse effects associated with more
invasive alternatives; however, fewer cells reach the infarcted region due to entrapment
primarily in the lungs and spleen, necessitating high cell numbers and posing the risk of
pulmonary embolism or thrombosis due to cell accumulation [63,65,66]. Additionally, phase
I/II studies found significant statistical and functional improvements in stroke subjects after
IV infusion of MSCs throughout a 12-month follow-up period [67]. Another administration
route is intranasal delivery, a new way of transplantation with significant convenience and
positive outcomes in animal studies; nonetheless, despite its great potential, further studies
are needed to evaluate its safety and effectiveness [62]. Perhaps systemic routes such as
intra-arterial and intravenous should be considered, as they are less invasive and less likely
to cause adverse effects.

The therapeutic dose range for intravenously transplanted MSCs has been shown to be
around 4 million cells in 250 g rats, which amounts to over 840 million cells in a 75 kg person [68].
The dose of MSCs required to generate substantial functional and histological improvement in
post-ischemic models in animal tests was determined to be 1 × 106 [69]. Similarly, greater
motor recovery and infarcted volume reduction were seen in post-ischemic mice treated
with 1 × 106 vs. 1 × 105 and 5 × 105 cells [69]. A higher dose of 3 × 106 cells was found to
reduce infarct size by 20% and exhibit superior neurological recovery when compared to a
1 × 106 group [62]. Consequently, higher doses may be associated with better outcomes in
stroke subjects. In contrast, a high dose (4 × 106) of MSCs injected intravenously into mice
with 24-h MCAO did not result in a greater reduction of the infarct area when compared to
a lower dose group (1 × 106) [70]. Additionally, 5 × 106 cells were found to be the safest
limit for intra-arterially injected MSCs in rodent stroke models, with higher doses linked
to significant cell-related side effects [63,64]. Systemic administration of high dosages
of MSCs is associated with the risk of microvascular obstruction or embolus formation,
which in turn decreases perfusion to the brain and other organs [62]. High dosages of
BM-MSCs were associated with a better result in stroke patients in phase II/III clinical
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trials, with a tendency toward decreased disability in the high-dose group [71]. An ideal
injection threshold of 310 × 106 cells was identified as a satisfactory result with no or
modest impairment [71]. Furthermore, a meta-analysis considered stem cell therapy to
be more effective with high doses of cells and when the intra-arterial route was used [71].
However, there is some evidence of a strong negative association between cell dosage and
disability in intravenous patients, indicating that combining high doses of cells with an
intra-arterial route is critical for improving neurological outcomes in stroke patients [71].
Additional research is needed to further examine the optimal cell doses and routes of
delivery while taking safety and efficacy into account.

An administration time of both 0–6 h and 2–7 days demonstrated superiority in com-
prehensive neurological functions, suggesting that those times may be the ideal timing for
administration [62]. Furthermore, the 0–6 h group showed a greater significant improve-
ment in sensorimotor outcomes [62]. MSCs can reduce infarct volume days to weeks after
stroke; the reduction is larger when provided early, within the first 8 h following stroke
onset [72]. Therefore, while early administration within 7 days after stroke may be the ideal
time for treatment, a narrower time frame might be more beneficial.

3.5. Therapeutic Efficacy of the MSC Secretome

Even though MSCs’ migration towards the site of injury is hampered by the hur-
dles presented in the preferred delivery methods, functional improvements still occur
independently as a result of the bystander effect and complementary mechanisms that
promote brain repairment and neurological improvement. MSCs exert their therapeutic
efficacy in part by producing secretomes, which exhibit anti-inflammatory, immunomod-
ulatory, anti-apoptotic and angiogenic properties, as well as the ability to cross through
the blood-brain barrier [55]. In vitro, techniques such as molecular priming, hypoxic pre-
conditioning, tissue engineering, and growth medium composition are used to improve
the secretome’s reparative ability [26]. In order to increase the clinical utility of MSCs for
stroke, the heterogeneity of MSC populations must be overcome. One potential solution
to this is to prime MSCs with certain conditions in order to make them express a partic-
ular desired phenotype. Over the past few years, inflammatory cytokines or mediators,
hypoxia, chemical agents, and other molecules have been used to prime MSCs [30]. This
results in an increase in therapeutic efficacy due to increased immunosuppressive activity,
increased secretion of anti-inflammatory factors, improved engraftment, and upregulation
of angiogenic activity [30].

Enhancing MSCs with priming effects may improve their durability and efficacy in
a hostile environment by engineering these cells to express specific signals or activators
to promote lineage differentiation [30]. Priming with pro-inflammatory cytokines aims to
support immunosuppressant functions and increase immunomodulatory factors, but their
preservation depends on the different tissue sources of MSCs [30,73]. Specific therapeutic
inflammatory cytokines may increase regeneration and stimulate an immune response
conducive to brain repair [26,74]. Molecular priming may boost the efficacy of MSC
treatments by providing a cell population with qualities that allow them to respond better
to the ischemia and inflammatory milieu post-stroke [26]. In vivo research on MSC priming
in stroke is limited. Notably, IL-1-alpha-primed MSCs at the time of reperfusion results
in a significant neuroprotective effect in a mouse model, which may be due to IL-1alpha
driving the MSC secretome into a more anti-inflammatory, prototrophic phenotype [75–77].
However, despite its exciting potential, there are concerns that priming may increase the
immunogenicity or tumorigenicity of MSCs; thus, more research must be done in order to
see whether such priming is safe and effective in human trials [30].

In vitro hypoxia preconditioning of MSCs enhances its therapeutic effects via upregu-
lation of the expression of pro-survival genes, secretion of cytokines and trophic factors,
angiogenic mediations, inflammatory mediators, and promotion of multipotency [74,78].
Hypoxic priming attempts to replicate the target cellular conditions and can improve an-
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giogenic capacity under ischemic insult [30,79]. In particular, hypoxic priming using serum
deprivation increases endothelial cell proliferation of the vascular endothelium [26].

MSCs grown in 3D culture may also promote angiogenesis and reduce inflammation,
which may repair damaged tissues in ischemic conditions [30,79]. Overall, 3D MSC cultures
enhance MSCs’ anti-inflammatory properties, augment their tissue regenerative and repar-
ative effects with improved angiogenesis, facilitate the differentiation potentials of multiple
lineages, improve MSC stemness and posttransplant survival, and slow in vitro replicative
senescent processes [80]. The injection of 3D MSCs in MCAO rats exhibited a significant
reduction of the volume of the ischemic injury, improvement in functional recovery, and
improved sensorimotor outcomes, which may be attributed to the technique’s ability to
restore the expression of homing receptors of MSCs and enhance the secretion of factors
mediating the inflammatory and immune response [25]. Modifying MSCs’ secretome to im-
prove their therapeutic potential through a conditioned medium or serum preconditioning,
such as endothelial growth medium, is a viable strategy when a specific environment must
be mimicked or when the molecule targeted to elicit a specific effect is unknown [26].

Extracellular vesicles derived from MSCs (MSC-EV) have been shown to be beneficial
in stroke repair by promoting functional recovery and increased plasticity [26]. This may
be due to the role of MSC-EVs in delivering miRNA to the damaged cell through targeting
or signaling [81]. MSC-EVs in ischemic damage may induce neurogenesis, white matter
remodeling, and angiogenesis [26]. To advance clinically, rigorous efforts are warranted
to achieve strict standardization, quality control production, phenotypic characterization,
and precise signaling or targeting to specific sites of MSC-EVs. Techniques used to enhance
the secretome’s therapeutic potential might prove beneficial as a technique to improve a
stroke patient’s outcome, regardless of MSC migration obstacles, and because it drives the
effect towards a more anti-inflammatory and pro-angiogenic model [25,26]. To this end,
protocols involving the cell secretome from the same source must be standardized across
the field to limit result variability [74,82].

4. Conclusions and Future Directions

MSC may be a novel treatment option for ischemic brain injury, as shown in pre-
clinical models. However, while laboratory data generally support the application of MSCs
in stroke patients, the clinical outcomes are mostly relegated to their safety profile, with
the efficacy of the therapy still elusive. Due in part to the ambiguity surrounding the
definition of MSCs, this has resulted in a negative impact on the field’s development,
generating confusion and counterproductivity. The International Society for Cell & Gene
Therapy Mesenchymal Stromal Cell (ISCT MSC) considers a set of characteristics and
properties as prerequisite criteria to obtain the proper definition of MSCs, including a
plastic adhesion property, the expression of CD73, CD90, and CD105, the lack of expression
of CD11b, CD14, CD19, CD34, CD45, CD79a and HLA-DR, and the in vivo capability
to differentiate into adipocyte, chondrocyte, and osteoblast lineages [83]. The definition
of stem cells must encompass their ability to be unlimited self-renewal cells with the
capability of developing into cells from diverse lineages, present in several locations
throughout the body and classified as embryonic, fetal, and adult stem cells [84]. MSC are
multipotent as well, being present as a distinct but rare population of the tissue where they
are found, such as bone marrow, the umbilical cord, and adipose tissue, with significant
secretory, immunomodulatory, and homing capabilities as a large population [57,83,84].
For the future success of the field, a suitable and accepted definition, characterization,
and complete understanding of the mechanism of action must be specified and supported
across all future MSC studies. Optimizing MSC administration via priming effects and an
enhanced secretome, as well as standardizing clinical applications, may present improved
functional outcomes in ischemic stroke patients (Figure 2).
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