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Abstract

Cancer cells prefer aerobic glycolysis, but little is known about the underlying mechanism.

Recent studies showed that the rate-limiting glycolytic enzymes, pyruvate kinase M2

(PKM2) directly phosphorylates H3 at threonine 11 (H3T11) to regulate gene expression

and cell proliferation, revealing its non-metabolic functions in connecting glycolysis and his-

tone modifications. We have reported that the yeast homolog of PKM2, Pyk1 phosphory-

lates H3T11 to regulate gene expression and oxidative stress resistance. But how glycolysis

regulates H3T11 phosphorylation remains unclear. Here, using a series of glycolytic en-

zyme mutants and commercial available metabolites, we investigated the role of glycolytic

enzymes and metabolites on H3T11 phosphorylation. Mutation of glycolytic genes including

phosphoglucose isomerase (PGI1), enolase (ENO2), triosephosphate isomerase (TPI1), or

folate biosynthesis enzyme (FOL3) significantly reduced H3T11 phosphorylation. Further

study demonstrated that glycolysis regulates H3T11 phosphorylation by fueling the sub-

strate, phosphoenonylpyruvate and the coactivator, FBP to Pyk1. Thus, our results provide

a comprehensive view of how glycolysis modulates H3T11 phosphorylation.

Introduction

Glycolysis is the fundamental metabolism highly conserved in most organisms, which

comprises a series of enzymatic steps that sequentially convert glucose to pyruvate. In the

presence of oxygen, most pyruvate undergoes oxidative phosphorylation to generate ATP in

mitochondria; while in the absence of oxygen, pyruvate is converted to lactate with few ATP

produced [1,2]. However, cancer cells preferentially convert pyruvate to lactate even in the

presence of oxygen, a phenomenon known as “Warburg effect” or aerobic glycolysis [1]. Aero-

bic glycolysis enables cells to accumulate a large amount of glycolytic intermediates, which

serve as building blocks to meet cell rapid growth and division [1–4]. Nevertheless, it remains

poorly understood about why tumor cells prefer accelerated glycolysis and reduced oxidative

phosphorylation.
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Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells

and plays important roles in tumorigenesis [2,5]. All essential glycolytic enzymes can be trans-

located into nucleus where they participate in tumor progression independent of their canoni-

cal metabolic roles [6]. One such non-metabolic function is catalyzing and/or modulating

histone modifications. The typical example is tumor specific pyruvate kinase M2 (PKM2),

which plays important roles in cancer metabolism rewiring [7]. Yang et al. reported that in

human glioblastoma multiforme cells, PKM2 translocates into nucleus upon epidermal growth

factor (EGF) receptor activation, where it phosphorylates histone H3 at threonine 11 (H3T11),

which is required for dissociation of histone deacetylase 3 (HDAC3) from the promoter

regions of CCDN1(encoding cyclin D1) and MYC, leading to their activation, tumor cell prolif-

eration, cell-cycle progression, and brain tumorigenesis [8]. Previously, we have reported that

Pyk1, the yeast homologue of PKM2 also has some non-metabolic functions [9]. Similar to

PKM2, Pyk1 can phosphorylate H3T11 in vivo and in vitro and this protein kinase activity is

regulated by serine metabolic pathway [9]. Specifically, H3T11 phosphorylation is regulated by

enzymes involved in serine metabolism including Ser1, Ser2, Ser33, Shm2, Met6 and Met13.

Moreover, by combining protein purification technique with mass spectrometry, we found

that Pyk1 forms a novel complex, SESAME (serine responsive SAM-containing metabolic

enzyme complex) with other metabolic enzymes, including Sam1, Sam2, Ser33, Shm2 and

Acs2 [9]. Further studies showed that SESAME interacts with Set1 complex, which methylates

H3K4. By supplying the cofactor SAM for Set1 complex, SESAME regulates both H3K4me3

and H3T11 phosphorylation. As a consequence, SESAME regulates gene expression and cell

resistance to oxidative stress [9].

Cellular metabolism regulates histone modifications and many metabolites serve as essen-

tial cofactors for chromatin-modifying enzymes to control the transcription or translation pro-

cesses [2,10,11]. For example, about 5% glucose is used for hexosamine biosynthetic pathways

to produce GlcNAc, which is the donor for histone glycosylation [12]. Through glycolysis, glu-

cose can be converted to acetyl CoA, along with decreased NAD+/NADH, which in turn regu-

late the activity of histone acetyltransferases and histone deacetylases as well as the chromatin

structure [10,12–14]. We have previously shown that glucose is required for SESAME to phos-

phorylate H3T11 [9]; however, the pathways and metabolites critical for H3T11 phosphoryla-

tion remain poorly defined. Here, we analyzed the function of glycolytic metabolic enzymes

and metabolites on H3T11 phosphorylation.

Materials and methods

Cells and growth conditions

All yeast strains used in this study are described in Table 1. All yeast cells were grown in YPD

(2% yeast extract, 1% peptone, 2% glucose) medium unless otherwise indicated. For doxycy-

cline treatment, WT Tet and mutants were grown in YPD to an OD600 of 0.7 and then treated

with 0, 12.5, 25 and 50 μg/ml of doxycycline.

Histone extraction

Histones were extracted from yeast cells as described previously [9,15]. Briefly, cells grown in 5

ml culture was harvested and lysed in 2M NaOH with 8% β-mercaptoethanol. Cell lysate was

centrifuged at 13,000 rpm for 2 min and the pellet was washed three times with TAP extraction

buffer (40 mM HEPES-KOH pH7.5, 10% glycerol, 350 mM NaCl, 0.1% Tween-20). Cell pellets

were resuspended in 1× SDS-sample buffer.
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Western blots analysis

Protein samples were separated by 15% SDS-PAGE and transferred to Immobilon-P PVDF

membrane (Merck Millipore). The blots were probed with antibodies against H3 (Abclonal

Biotechnology) and H3pT11 (Abcam, ab5168) followed by incubation with horseradish perox-

idase-labeled IgG secondary antibodies (Abclonal Biotechnology). The specific proteins were

visualized by using the ECL Chemiluminescence Detection Kit (Amersham Biosciences).

Western blots were quantified with ImageJ software.

Quantitative reverse-transcription PCR (qRT-PCR)

10 ml cultures were grown in YPD to an OD600 of 0.6–0.8 and treated with doxycycline for 0.5

hour. Total RNA was isolated and Real-Time RT-PCR was performed with SYBR green and

gene specific primers as described previously [9]. All transcripts quantities were normalized

against the amount of ACT1 transcript. Primers used were listed in S1 Table.

Analysis of fructose 1, 6-biphosphate (FBP)

50 ml cells were grown in YPD to an OD600 of ~1.0 and treated with 50 μg/μl doxycycline for 3

hours. Cells were harvested and lysed with glass beads. The intracellular FBP concentrations

were determined using FBP analysis kit according to the protocol recommended by the manu-

facturer (Comin Biotechnology Co., Ltd, Suzhou).

Results

Glucose is required for SESAME-mediated H3T11 phosphorylation

Previously, we have used a temperature-sensitive (ts) strain defective in Pyk1 (cdc19-1) when

grown at 37˚C to demonstrated that Pyk1 phosphorylates H3T11 in vivo. Here, we employed

the strains that display different PYK1 expression and activity by expressing PYK1 under the

control of either a strong (TEF1) or a weak (CYC1) constitutive promoter [16] (S1A Fig). We

grew these two strains (TEF1pr-PYK1, CYC1pr-PYK1) in rich media and examined the global

Table 1. List of strains used in this study.

Name Genotype Source

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

sam1Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 sam1Δ::KAN Open Biosystems

sam2Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 sam2Δ::KAN Open Biosystems

ser33Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ser33Δ::KAN Open Biosystems

acs1Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 acs1Δ::KAN Open Biosystems

shm2Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 shm2Δ::KAN Open Biosystems

eno1Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 eno1Δ::KAN Open Biosystems

pdc1Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 pdc1Δ::KAN Open Biosystems

WT Tet

(R1158)

MATa his3-1 leu2-0 met15-0 URA3::CMV-tTA Yeast Tet-promoters Hughes

Collection

TetO7-ENO2 MATa his3-1 leu2-0 met15-0 pENO2::kanR-tet07-TATA

URA3::CMV-tTA

Yeast Tet-promoters Hughes

Collection

TetO7-TPI1 MATa his3-1 leu2-0 met15-0 pTPI1::kanR-tet07-TATA

URA3::CMV-tTA

Yeast Tet-promoters Hughes

Collection

TetO7-PGI1 MATa his3-1 leu2-0 met15-0 pPGI1::kanR-tet07-TATA

URA3::CMV-tTA

Yeast Tet-promoters Hughes

Collection

TetO7-FOL3 MATa his3-1 leu2-0 met15-0 pFOL3::kanR-tet07-TATA

URA3::CMV-tTA

Yeast Tet-promoters Hughes

Collection

https://doi.org/10.1371/journal.pone.0175576.t001
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levels of H3T11 phosphorylation by western blot analysis. As shown in Fig 1A, H3T11 phos-

phorylation was significantly reduced in CYC1pr-PYK1 strain (Fig 1A), which has reduced

PYK1 expression and lower pyruvate kinase activity (S1A Fig) [16], confirming our previous

results that Pyk1 phosphorylates H3T11 in vivo [9]. H3T11 phosphorylation has been shown

to confer cells the resistance to oxidative stress [9] and the expression of genes involved in oxi-

dative energy metabolism (CIT1, COX1) was significantly reduced in H3T11A mutant (S2

Fig). We thus examined the effect of Pyk1 in oxidative stress resistance. In the absence of oxi-

dative stress, TEF1pr-PYK1 strain grew much better than CYC1pr-PYK1 in glucose-containing

medium due to higher pyruvate kinase activity; however, CYC1pr-PYK1 grew similar to

TEF1pr-PYK1 when cells were grown in the presence of oxidative stress (Fig 1B), implying that

lower expression of PYK1 could confer cells the resistance to oxidative stress, which is consis-

tant with published results [16]. As H3T11 phosphorylation acts as a feedback mechanism to

repress PYK1 expression [9], it is possible that H3T11 phosphorylation combats oxidative

stress by suppressing PYK1 expression.

It is noteworthy that TEF1pr-PYK1 and CYC1pr-PYK1 grew differently when glucose or

galactose was used as the sole carbon source (Fig 1B). Hence, we examined the impact of

glucose on H3T11 phosphorylation. First, we treated cells with different concentrations of

glucose and found that glucose significantly stimulated H3T11 phosphorylation (Fig 1C),

indicating that glucose is required for H3T11 phosphorylation. To investigate whether glycoly-

sis is required for H3T11 phosphorylation, we treated cells with glucose analog, 2-Deoxy-D-

glucose, which inhibited the activity of hexokinase to phosphorylate glucose and hence sup-

pressed glycolysis. As shown in Fig 1D, the global level of H3T11 phosphorylation was signifi-

cantly inhibited by 2-Deoxy-D-glucose (Fig 1D, P<0.05), indicating that glycolysis is required

for carbohydrate-induced H3T11 phosphorylation.

To further confirm that glycolysis is required for SESAME activity, we grew SESAME

mutants (sam1Δ, sam2Δ) with different carbon sources (glucose and potassium acetate) and

then examined their effects on global H3T11 phosphorylation. In contrast to glucose as the sole

carbon source, the global levels of H3pT11 were comparable between SESAME mutants and

its parental wild type strain when potassium acetate was used as the carbon source (Fig 1E).

Together, these data indicate that glycolysis is required for SESAME to phosphorylate H3T11.

Effect of phosphoglucose isomerase and fructose 1, 6-biphosphate

(FBP) on H3T11 phosphorylation

Next, we explored the functions of the glycolysis downstream metabolic enzymes and metabo-

lites in Pyk1-catalyzed H3T11 phosphorylation. Fructose 1, 6-biphosphate (FBP) is an impor-

tant cofactor for the pyruvate kinase activity of both PKM2 and Pyk1 and depletion of glucose

immediately reduces the intracellular level of FBP [17–20]. As an intermediate of glycolysis,

FBP has been shown to stimulate the protein kinase activity of PKM2 to phosphorylate H3T11

[21]. To explore the impact of FBP on Pyk1-catalyzed H3T11 phosphorylation, we blocked

FBP biosynthesis via down-regulating the expression of PGI1, which encodes a phosphoglu-

cose isomerase that catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate, a

precursor for FBP (Fig 2A). We employed the promoter-shutoff strain, TetO7-PGI1, in which

the PGI1 promoter was replaced with TetO7, whose transcription can be shutoff by adding

doxycycline [22]. We treated the TetO7-PGI1 mutant with doxycycline to down-regulate PGI1
transcription from the TetO7 promoter (S1B Fig). We also found that down-regulation of

PGI1 expression reduced the intracellular FBP level in TetO7-PGI1 mutant upon doxycycline

treatment (S3 Fig, P<0.05). In addition, treatment of TetO7-PGI1 mutant with doxycycline

reduced the global H3T11 phosphorylation levels; however, doxycycline has no effect on

Effects of glycolysis on H3T11 phosphorylation
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Fig 1. Glucose metabolism regulates H3T11 phosphorylation. (A) Effect of Pyk1 on H3T11 phosphorylation. Left panel:

TEFpr-PYK1 and CYCpr-PYK1 cells were cultured in YPD medium until OD600 of 0.7. Cells were harvested and extracted
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H3T11 phosphorylation in WT Tet cells (Fig 2B and 2C), indicating that Pgi1 is required for

Pyk1-mediated H3T11 phosphorylation.

To directly investigate whether FBP stimulates the protein kinase activity of Pyk1, we

treated cells with different amounts of FBP and examined the global levels of H3T11 phos-

phorylation. FBP significantly stimulated Pyk1-catalyzed H3T11 phosphorylation (Fig 2D and

2E). Thus, like serine and SAICAR (succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5’-

phosphate) [9], FBP not only stimulates the pyruvate kinase activity of Pyk1 but also its protein

kinase activity to phosphorylate H3T11.

Effect of enolase and phosphoenonylpyruvate (PEP) on SESAME-

mediated H3T11 phosphorylation

In glycolysis, the presence of glucose promotes the conversion of the PEP to pyruvate by Pyk1

[17–19] (Fig 3A). Since Pyk1 utilized PEP as the donor to phosphorylate H3, we therefore

examined the effect of blocking PEP synthesis on H3T11 phosphorylation. We down-regulated

the expression of ENO1, ENO2, which encode enolase converting 2-phosphoglycerate to PEP.

The expression of ENO2was down-regulated in TetO7-ENO2mutant upon doxycycline treat-

ment (S1C Fig) [22]. The levels of H3pT11 were reduced upon doxycycline treatment in the

TetO7-ENO2 strain but not in WT Tet cells (Fig 3B and 3C). When its paralog, ENO1was

deleted (S1D Fig), there was no significant change of H3T11 phosphorylation (Fig 3D), imply-

ing that Eno2 plays a major role in PEP biosynthesis. As enolase is required for PEP synthesis,

it is conceivable that Eno2 regulates H3T11 phosphorylation via PEP.

Gruning et al. showed that reduced Pyk1 activity leads to accumulation of PEP, which in

turn inhibits the upper glycolysis enzyme, triosephosphate isomerase (Tpi1) [16]. Tpi1 cata-

lyzes the inter-conversion between glyceraldehyde 3-phosphate and dihydroxyacetone phos-

phate and its inhibition diverts glycolysis towards pentose phosphate pathway (Fig 3E) [16].

We treated TetO7-TPI1 mutant with doxycycline to reduce TPI1 transcription from the Tet

promoter (S1E Fig). The levels of H3pT11 were reduced upon doxycycline treatment in the

TetO7-TPI1 strain but not in WT Tet cells (Fig 3F and 3G), suggesting that Tpi1 is required for

H3T11 phosphorylation. As reduced PYK1 expression confers oxidative stress resistance (Fig

1B), we thus examined the impact of Tpi1 on PYK1 expression. Our data showed that PYK1
expression was increased in TPI1 mutant (Fig 3H), suggesting that Tpi1 could mediate oxida-

tive stress resistance.

Effect of pyruvate decarboxylase and pyruvate on SESAME-mediated

H3T11 phosphorylation

Pyruvate kinase catalyzes the last step of glycolysis, which is also the rate-limiting and irrevers-

ible step. We next investigated whether pyruvate as the product of pyruvate kinase (Fig 4A),

histones were analyzed by western blots with indicated antibodies. Right panel: Quantitation of western blots in left panel.

Shown is the relative intensities of H3pT11/H4 quantified with standard error (SE) (n = 3). *, P<0.05. (B) Lower PYK1

expression confers oxidative stress resistance. Serial diluted TEFpr-PYK1 and CYCpr-PYK1 cells were spotted on YPD, YP

+2% galactose or YPD+4mM H2O2. Shown is the typical example of three independent experiments. (C) Glucose is required for

H3T11 phosphorylation. Left panel: Cells were cultured in YP medium, and 0, 0.1%, 0.2%, 0.5% or 1% glucose were then

supplied to the medium 3 hours before harvest. Right panel: Quantitation of western blots in left panel. Shown is the relative

intensities of H3pT11/H3 quantified with standard error (SE) (n = 3). *, P<0.05. (D) Inhibition of glycolysis by 2-Deoxy-D-

glucose reduced H3T11 phosphorylation. Cells were grown in YPD medium with addition of 0, 1%, 2% or 4% 2-Deoxy-D-

glucose for 3 hours before harvest. Right panel: Quantitation of western blots in left panel. Shown is the relative intensities of

H3pT11/H3 quantified with standard error (SE) (n = 3). *, P<0.05. (E) Glucose was required for SESAME to regulate H3pT11.

WT, acs1Δ, sam1Δ, and sam2Δwere grown in YP + 2% glucose or YP + 0.1M potassium acetate. Histones were extracted and

analyzed by western blots with indicated antibodies. Histone H3 was a loading control.

https://doi.org/10.1371/journal.pone.0175576.g001
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Fig 2. Pgi1 and FBP are required for SESAME-catalyzed H3T11 phosphorylation. (A) Diagram displaying the functions of Pgi1 in

glycolysis. (B) Down-regulated PGI1 leads to reduced H3pT11. Wild type and TetO7-PGI1 mutant was treated with 0, 12.5, 25, and 50 μg/ml

doxycycline for 3 hours. Extracted histones were analyzed by western blots with indicated antibodies. (C) Quantitation of western blots in 2B.

Shown is the relative intensities of H3pT11/H3 quantified with standard error (SE) (n = 3). *, P<0.05. (D) FBP addition increased H3T11

phosphorylation. Cells were grown in YPD medium with addition of 0, 50, 100, 200 mM FBP for 3 hours before harvest. Extracted histones

Effects of glycolysis on H3T11 phosphorylation
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were analyzed by western blots with indicated antibodies. (E) Quantitation of western blots in (D). Shown is the relative intensities of

H3pT11/H3 quantified with standard error (SE) (n = 3). *, P<0.05.

https://doi.org/10.1371/journal.pone.0175576.g002

Fig 3. Eno2 and Tpi1 are required for SESAME-mediated H3T11 phosphorylation. (A) Diagram displaying the functions of Eno1/2 in

glycolysis. (B) Down-regulated ENO2 leads to reduced H3pT11. WT Tet and TetO7-ENO2 mutant were treated with 0, 12.5, and 25 μg/ml

doxycycline for 3 hours. Histones were extracted and analyzed by western blots with indicated antibodies. Histone H3 was a loading control.

(C) Quantitation of western blots in 3B. Shown is the relative intensities of H3pT11/H3 quantified with standard error (SE) (n = 3). *, P<0.05.

(D) Deletion of ENO1 has no effect on H3T11 phosphorylation. Top panel: Analysis of H3T11 phosphorylation in WT and eno1Δ by western

blots. Extracted histones were analyzed by western blots with indicated antibodies. Bottom panel: Quantitation of western blots in top panel.

Shown is the relative intensities of H3pT11/H3 quantified with standard error (SE) (n = 4). P>0.05. (E) Diagram displaying the functions of

Tpi1 in glycolysis. (F) Down-regulated TPI1 leads to reduced H3pT11. WT Tet and TetO7-TPI1 mutant were treated with 0, 12.5, and 25 μg/

ml doxycycline for 3 hours. (G) Quantitation of western blots in 3F. Shown is the relative intensities of H3pT11/H3 quantified with standard

error (SE) (n = 3). *, P<0.05. (H) PYK1 transcription was higher in TetO7-TPI1 mutant than wild type. Wild type and TetO7-TPI1 mutant were

treated with doxycycline and the expression of TPI1 and PYK1 was measured by qRT-PCR. Actin was used as an internal control. Data

represent the mean ± S.E. (n = 3). *, P<0.05.

https://doi.org/10.1371/journal.pone.0175576.g003
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can feedback inhibit the protein kinase activity to phosphorylate H3T11. We treated cells with

different amounts of pyruvate and examined the global levels of H3T11 phosphorylation. As

shown in Fig 4B, pyruvate has no inhibitory effect on H3T11 phosphorylation (Fig 4B), consis-

tent with the result that pyruvate kinase catalyzes the irreversible reaction.

We also examined the impact of in vivo accumulation of pyruvate by deleting genes encod-

ing pyruvate decarboxylase, which encodes pyruvate decarboxylase that converts pyruvate to

acetaldehyde. H3T11 phosphorylation was not significantly affected in either pdc1Δmutant

(Fig 4C) or in pdc5Δmutant (data not shown). Together, these data indicate that pyruvate

decarboxylase and pyruvate do not regulate the activity of SESAME to phosphorylate H3T11.

Effect of folate biosynthesis pathway on SESAME-mediated H3T11

phosphorylation

We have previously reported that histone methyltransferase Set1 stimulates SESAME-cata-

lyzed H3T11 phosphorylation in a SAM-dependent manner and SAM increased global

H3K4me3 and H3T11 phosphorylation in a dose dependent manner [9]. Glycolysis-derived

serine provides an important methyl source for methionine and SAM synthesis. We have

reported that blocking methionine biosynthesis by deletion of MET6 and MET13 specifically

reduced both H3K4me3 and H3pT11 [9] (Fig 5A). In addition to serine, another critical source

for methionine and SAM synthesis is folate and its derivatives tetrahydrofolate (THF) (Fig

5A). Sadhu et al. reported that preventing folate biosynthesis by deleting FOL3 specifically

reduced global H3K4me3 [23]. Since H3K4me3 is directly related to H3T11 phosphorylation,

we thus examined the effect of folate metabolism on H3T11 phosphorylation. We used a

Fig 4. Pyruvate has no effect on SESAME-mediated H3T11 phosphorylation. (A) Diagram displaying the functions of Pdc1 in

glycolysis. (B) Addition of pyruvate did not significantly reduce H3T11 phosphorylation. Left panel: Cells were grown in YPD medium with

addition of 0, 50, 100, 200 mM pyruvate for 3 hours before harvest. Histones were extracted and analyzed by western blots with indicated

antibodies. Histone H3 was a loading control. Right panel: Quantitation of western blots in left panel. Shown is the relative intensities of

H3pT11/H3 quantified with standard error (SE) (n = 3). (C) Deletion of PDC1 did not affect H3T11 phosphorylation. Left panel: Analysis of

H3T11 phosphorylation in WT and pdc1Δmutant by western blots. Right panel: Quantitation of western blots in left panel. Shown is the

relative intensities of H3pT11/H3 quantified with standard error (SE) (n = 3).

https://doi.org/10.1371/journal.pone.0175576.g004
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TetO7-FOL3 mutant and treated it with doxycycline to down-regulate FOL3 transcription

from the Tet promoter (S1F Fig). The levels of H3pT11 were reduced upon doxycycline treat-

ment in the TetO7-FOL3 strain (Fig 5B and 5C), indicating that folate biosynthesis pathway is

required for H3T11 phosphorylation.

Discussion

Glycolysis is required for global histone acetylation and mono-ubiquitination of H2B at K123

[13,24]. Our work showed that glucose and its metabolism regulates histone H3T11 phosphor-

ylation (Fig 6). Combined with our previous study, we have shown that metabolic enzymes

(Hxk1/2, Ser1, Ser2, Ser33, Sam1, Sam2, Pgi1, Tpi1, Eno2, Fol3) and metabolites (FBP, PEP,

SAM) regulate Pyk1-mediated H3T11 phosphorylation, providing an intricate connection

among glycolysis, histone modification and probably gene expression. Since glycolytic en-

zymes and metabolites are highly conserved from yeast to mammalian cells, it is conceivable

that glycolysis regulates PKM2-mediated H3T11 phosphorylation via its metabolic enzymes

and generated metabolites. Hence, our study provides insights into the connection between

glycolysis and histone modifications and most importantly, provides one plausible explanation

of the “Warburg effect”.

Fig 5. Folate metabolism is required for H3T11 phosphorylation. (A) Diagram displaying de novo folate biosynthesis and methionine,

SAM biosynthesis. (B) Down-regulated FOL3 leads to reduced H3pT11. TetO7-FOL3 mutant was treated with 0, 12.5, 25, and 50 μg/ml

doxycycline for 3 hours. Extracted histones were analyzed by western blots with indicated antibodies. (C) Quantitation of western blots in 5B.

Shown is the relative intensities of H3pT11/H3 quantified with standard error (SE) (n = 3). *, P<0.05.

https://doi.org/10.1371/journal.pone.0175576.g005
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Fig 6. Diagram showing regulation of H3T11 phosphorylation by glycolysis. Metabolic enzymes and metabolites

highlighted in red color are required for H3T11 phosphorylation.

https://doi.org/10.1371/journal.pone.0175576.g006
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Gruning et al. have shown that lower Pyk1 activity increases antioxidative capacity [16] and

our data confirmed this conclusion (Fig 1B). We have previously reported that H3T11 phos-

phorylation inhibits PYK1 expression and confers cells the resistance to oxidative stress [9].

Based on this information, we proposed that nucleus Pyk1-catalyzed H3T11 phosphorylation

represses PYK1 expression, which in turn stimulates flux towards pentose phosphate pathway.

As a consequence, redox metabolism is enhanced to prevent the accumulation of reactive oxy-

gen species (ROS) (S4 Fig). Nevertheless, much work has to be done to prove this model.

Glucose metabolism is required for SESAME-mediated H3T11 phosphorylation. Depletion

of glucose or inhibition of glycolysis by 2-Deoxy-D-glucose significantly reduced H3T11

phosphorylation (Fig 1C and 1D). When cells were grown with acetate as the carbon source,

H3T11 phosphorylation was not significantly altered in SESAME mutants, implying that

H3T11 phosphorylation was not regulated by SESAME under these circumstances. SESAME

required glucose-derived metabolites to catalyze enzymatic reactions.

One contribution of glycolysis to H3T11 phosphorylation is providing the substrate, PEP

for Pyk1. Down-regulating the expression of ENO2 reduced the global levels of H3T11 phos-

phorylation (Fig 3C). Although there are two genes encoding enolase (ENO1, ENO2), only

ENO2 is required for H3T11 phosphorylation. The role of Eno2 in regulating H3T11 phos-

phorylation is probably related to their abundance with 20-fold higher Eno2 than Eno1 when

glucose is used as the carbon source [25]. However, adding PEP into YPD rich media failed to

stimulate Pyk1-mediated H3T11 phosphorylation (data not shown). This is probably caused

by the dissociation constant (Km) of Pyk1 to PEP is very low, approximately 0.3 mM [20].

Another contribution of glycolysis to H3T11 phosphorylation is supplying the cofactor FBP

for Pyk1. It is well-known that FBP stimulates Pyk1 to convert PEP to pyruvate [20]. FBP has

been shown to activate both the pyruvate kinase and protein kinase activity of PKM2 [21].

Here, we found that FBP also activates the protein kinase activity of Pyk1 to phosphorylate

H3T11 (Fig 2E). Hence, the stimulatory effect of FBP on pyruvate kinase-catalyzed H3T11

phosphorylation is quite conserved from yeast to tumor cells.

Together, we identified three major contribution of glucose metabolism to H3T11 phos-

phorylation: 1. Glycolysis provides the substrate PEP; 2. Glycolysis supplies cofactor FBP; 3.

Glycolysis promotes the de novo synthesis of serine. On one hand, serine derived from glycoly-

sis contributes to H3T11 phosphorylation by acting as a coactivator for Pyk1; on the other

hand, serine can be fueled to SAM synthesis and facilitate H3K4me3, which then enhanced the

ability of Pyk1 to phosphorylate H3T11 via a cross-talk between Set1 and SESAME [9]. Given

the fact that yeast and cancer cells prefer aerobic glycolysis and PKM2 and H3T11 phosphory-

lation play important role in regulating “Warburg effect” and tumor progression [26,27],

understanding how glycolysis modulates SESAME activity is important in understanding the

Warburg effect and the connection between glycolysis and gene expression.

Supporting information

S1 Fig. Confirmation of gene mutants used in this study. (A) PYK1 was expressed at a

lower level in TEFpr-PYK1 than CYC1pr-PYK1. Actin was used as an internal control. Data

represent the mean ± SE (n = 3). �, P<0.05. (B) The expression of PGI1 was significantly

down-regulated in TetO7-PGI1 mutant by doxycycline. (C) The expression of ENO2 was

significantly down-regulated in TetO7-PGI1 mutant by doxycycline. (D) ENO1 was deleted

in eno1Δ mutant. The genome of WT and eno1Δ mutant were extracted. The deletion of

ENO1 was confirmed by PCR using ENO1 specific primers. ACT1 primers were used as an

internal control. (E) The expression of PGI1 was significantly down-regulated in TetO7-
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PGI1 mutant by doxycycline. (F) The expression of PGI1 was significantly down-regulated

in TetO7-PGI1 mutant by doxycycline. All experiments except S1D Fig were measured by

qRT-PCR. Data represent the mean ± SE of three independent experiments. �, P<0.05;
��, P<0.01; ���, P<0.001.

(EPS)

S2 Fig. The expression of CIT1 and COX1 was reduced in H3T11A compared with wild

type H3 (H3). Actin was used as an internal control. Data represent the mean ± SE (n = 3).
�, P<0.05.

(EPS)

S3 Fig. Down-regulation of PGI1 reduced intracellular FBP concentrations. (A) The

expression of PGI1 was significantly down-regulated in TetO7-PGI1 mutant by doxycycline

treatment. (B) Down-regulated PGI1 leads to reduced intracellular FBP concentrations. Data

represent the mean ± SE (n = 3). �, P<0.05; ���, P<0.001.

(EPS)

S4 Fig. Proposed roles of Pyk1-catalyzed H3T11 phosphorylation in oxidative stress resis-

tance. (A) Around 1.9% Pyk1 is localized in nucleus and this nucleus Pyk1 catalyzed H3T11

phosphorylation [9]. H3T11 phosphorylation in turn repressed PYK1 expression. Reduced

PYK1 confers cells resistance to oxidative stress by stimulating pentose phosphate pathway,

which increased antioxidative metabolism and prevents ROS accumulation. (B) Model

explains oxidative stress resistance in CYC1pr-PYK1 mutant. In CYC1pr-PYK1 mutant, the

protein level of Pyk1 was low, which increased flux towards pentose phosphate pathway to

gain resistance to oxidative stress. (C) Model explains oxidative stress resistance in H3T11A

mutant. In H3T11A mutant, PYK1 expression was up-regulated, which attenuates flux towards

pentose phosphate pathway and reduces resistance to oxidative stress.

(EPS)

S1 Table. Primers used in this study.
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