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Development of high-resolution 
daily gridded temperature datasets 
for the central north region of 
Egypt
Mohamed Salem Nashwan 1,2, Shamsuddin Shahid   2 & Eun-Sung Chung   3

This study developed 0.05° × 0.05° land-only datasets of daily maximum and minimum temperatures 
in the densely populated Central North region of Egypt (CNE) for the period 1981–2017. Existing coarse-
resolution datasets were evaluated to find the best dataset for the study area to use as a base of the 
new datasets. The Climate Prediction Centre (CPC) global temperature dataset was found to be the 
best. The CPC data were interpolated to a spatial resolution of 0.05° latitude/longitude using linear 
interpolation technique considering the flat topography of the study area. The robust kernel density 
distribution mapping method was used to correct the bias using observations, and WorldClim v.2 
temperature climatology was used to adjust the spatial variability in temperature. The validation of CNE 
datasets using probability density function skill score and hot and cold extremes tail skill scores showed 
remarkable improvement in replicating the spatial and temporal variability in observed temperature. 
Because CNE datasets are the best available high-resolution estimate of daily temperatures, they will 
be beneficial for climatic and hydrological studies.

Background & Summary
Regularly gridded meteorological observation data are important for climate analyses1. Although many 
high-resolution gridded meteorological datasets are already available for other regions1–7, Egypt has none. 
This study newly developed gauge-based gridded datasets provide bias-corrected, high-spatial-resolution 
(0.05° × 0.05°) and relatively long-term record (37 years) land-only daily maximum and minimum tempera-
tures. They are available for the Central North region of Egypt (CNE) (latitude: 29.50°–31.55°; longitude: 29.50°–
33.00°), where more than 70% of Egyptians live8, more than 60% of the Egyptian agricultural land is cultivated9, 
and most of the industrial activities are located10. The availability of these data is important for several reasons. 
First, as they are evenly gridded data, they provide the best available high-resolution estimates of daily surface 
maximum and minimum temperatures in a data-sparse region where observation stations are limited. Second, 
these data will be beneficial in validating regional climate models for the better prediction of climate change. 
Third, any climate change impact model usually requires evenly spaced temporally complete meteorological data, 
which can be served using these data. Therefore, it will enable both hydrologists and meteorologists to enhance 
their assessments of daily scale hydrological hazards, such as heat and cold waves. Fourth, they will give bias-free 
monitoring of climate change and variability at a fine resolution using difference indices and help in the com-
parison of the regional rate of change to the global rate. Prior to the data development, the existing gauge-based 
coarse-resolution datasets were evaluated using different statistical indices to find which of them can better 
estimate the observations of stations in the study area. The dataset found to be statistically better in estimating 
the observed temperature was selected as the base of the newly developed data. Figure 1 shows an overview of 
the three-step methodology used to develop the CNE datasets. The selected dataset, Climate Prediction Center 
(CPC) global temperature, was interpolated to generate high-resolution data. Then, the new robust kernel density 
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distribution mapping (KDDM)11 method was used to correct the bias of high-resolution data using daily obser-
vations. Finally, WorldClim v.2 temperature climatology was used to adjust the spatial variability in the maximum 
and minimum temperatures of the newly developed dataset12. The non-stationarity, trend and extreme values 
were taken into consideration when developing the CNE datasets.

The performance of the newly developed CNE datasets was validated in terms of their ability to replicate spatial 
and temporal variability in temperature and its distribution and extremes. The CNE datasets showed a remarkable 
improvement in the replication of the spatial and temporal variability in observed daily maximum and minimum 
temperatures (Tmx and Tmn, respectively); diurnal temperature range (DTR); and monthly means of Tmx, Tmn and 
the mean temperature (Tm is estimated as (Tmx + Tmn)/2). Furthermore, the probability density function (PDF), 
skill score (PDFSS) and hot and cold extreme tail skill scores (tailSS) showed that the CNE is more capable compared 
to other available datasets in reproducing the observed data distribution and extremes. The CNE datasets are freely 
available online in NetCDF format13. It can be argued that the CNE datasets are the best available high-resolution, 
gauged-based estimates of daily near-surface temperatures in such a data-scarce region.

Methods
Data.  In this study, six gridded datasets were used. They are the Climate Prediction Center (CPC) global tem-
perature, the Princeton University Global Meteorological Forcing (PGF) v.1, WorldClim v.2, University of East 
Anglia Climatic Research Unit Time Series (CRU TS) v4.01, University of Delaware (UDel) Air temperature v5.01 
and the Climatologies at High resolution for the Earth’s Land Surface Areas (CHELSA) v1.2. The CPC and PGF 
datasets were used in the predevelopment evaluation process. They are the only available gauge-based, gridded 

Fig. 1  The three-step methodology adopted to generate the high-resolution CNE datasets of maximum and 
minimum temperatures. The first step was the interpolation of raw CPC data to a higher resolution. Then, the 
observation data were used to bias correct the high-resolution CPC using KDDM. Finally, the WorldClim v.2 
temperature climatology was used to adjust the spatial variability in the CNE data.
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daily Tmx and Tmn datasets for the study area. WorldClim v.2 was used to adjust the spatial variability in the new 
data. The CRU, UDel and CHELSA datasets were used, along with the station data, to validate the new data. A 
summary of the six gridded datasets used in the present study is given in Table 1, and a brief description of each 
one is given below.

The CPC dataset has been developed by the American National Oceanic and Atmospheric Administration 
(NOAA) using the optimal interpolation of quality-controlled gauge records of the Global Telecommunication 
System (GTS) network14. The PGF dataset has been developed by assimilating the National Center for 
Atmospheric Research reanalysis datasets with several global observation databases15. The high-resolution, 2.5 
arc minute, WorldClim version 2 has maximum and minimum temperature climatology gridded data. It has been 
developed by thin-plate spline interpolation of weather station data. The interpolation covariates were elevation, 
distance to the coast, and MODIS satellite data (day and night temperate and cloud cover)12. WorldClim has a 
global cross-validation correlation of more than 0.9912. Therefore, it was used to adjust the spatial variability in 
the new data. The CRU gridded data have been developed using the angular distance weighting interpolation 
of monthly observed data obtained from the World Meteorological Organization (WMO), NOAA and other 
national-level observed datasets16. The UDel dataset has been developed using the climatologically aided inter-
polation17 of the Global Historical Climatology Network dataset, the US National Climate Data Center Global 
Summary of the Day (GSOD) dataset, and selected station data from the Legates and Willmott18 archive. The 
CHELSA maximum and minimum temperature climatology and time series are statistical downscaled model 
outputs of the ERA-Interim reanalysis data at a 30 arc second spatial resolution for 1979–201319.

Daily observations of Tmx and Tmn at 12 stations were obtained from the GSOD dataset for the study 
period 1981–2017 (Fig. 2). In addition, observation data from four stations were acquired from the Egyptian 
Meteorological Authority (EMA). The observations at station nos. 4, 24, 25, and 26 were used for the valida-
tion of CNE data, while the remaining observations from 13 stations were used for the development of the 
dataset. Several quality checks were carried out to ensure the homogeneity of the observed data. Furthermore, 
quality-controlled monthly averages of observed Tm at 16 stations were obtained from the CRU TS v4.0120 data-
base for the validation of CNE datasets (Fig. 2).

Data development.  Prior to the CNE dataset development, the performances of the CPC and PGF datasets 
were evaluated to determine which of them is better in estimating the observed daily Tmx and Tmn. For this pur-
pose, the CPC and PGF data were interpolated at each of the 13 station’ locations using inverse distance weighting 
(IDW). The daily assessment was based on five statistical indices, namely, root mean square error (RMSE), the 
percentage of bias (%BIAS), Nash-Sutcliffe efficiency21 (NSE), modified index of agreement22 (md), and coef-
ficient of determination (R2). The RMSE measures the differences between the observed and the gridded time 
series. The %BIAS measures the range of the average tendency of the gridded time series against the observed 
time series. The optimal value of RMSE and %BIAS is zero. The NSE determines the relative magnitude of the 
residual variance in the gridded data compared to the variance in the station data. The md estimates the additive 
and proportional differences in the means and variances of the observed and gridded data. Finally, R2 assesses 
the degree of collinearity between gridded and observed data. The last three indices have an optimal value of one. 
Supplementary Table 1 presents the formula of each index and its value range. The above indices have been widely 
used for the evaluation and validation of gridded data3,5,23,24. They were calculated at each station separately. The 
obtained results are presented as a box plot in Fig. 3. The figure indicates a better performance of CPC compared 
to PGF for most of the indices at all 13 stations. Although it has a large bias, the CPC dataset was chosen as the 
base for the development of the new high-resolution data.

CPC showed random errors and bias when compared with the observations, which may result from insuffi-
cient in situ data coverage and imperfection in data assimilation and interpolation16. Therefore, it was required to 
correct the bias of the CPC data. There are several methodologies available for bias correction in meteorological 
time series25,26. A new robust approach named KDDM, which was developed by McGinnis, et al.11, was used 
in the present study. In core, it is not different from the most widely used probability mapping bias correction 
method27, except that it uses a nonparametric estimate of the underlying PDFs instead of using a fitted parametric 
distribution. KDDM has been used in several studies28,29 and found to be the best approach of daily bias correc-
tion when compared to others11.

The methodology adopted in this study was structured using the following steps (demonstrated in Fig. 1): (1) 
the 0.5° × 0.5° CPC Tmx and Tmn datasets were regridded to a 0.05° × 0.05° spatial resolution using the IDW 
method; (2) the KDDM bias correction was applied to correct the bias in daily temperature data against the 
observed data; and (3) the spatial variability in temperature from the regridded data were corrected using the 
WorldClim v.2 temperature climatology12, which is available at a 2.5 arc minute spatial resolution. The WorldClim 

Dataset Spatiotemporal Resolution Temporal Span Source

CPC 0.5°, daily 1979-present 37

PGF v.1 0.25°, daily 1948–2010 38

WorldClim v.2 2.5 arc minute, monthly climatology 1970–2000 39

CRU TS v4.01 0.5°, monthly 1901–2016 40

UDel v5.01 0.5°, monthly 1901–2017 41

CHELSA v1.2 30 arc second, monthly time series and climatology 1979–2013 42

Table 1.  Summary of the gridded datasets used in developing or validating the CNE datasets.
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monthly means were corrected using station data to consider the global temperature rise in recent years. Further 
details of the bias correction are provided below.

For each 0.05° grid point, a search for the nearby available stations within a threshold distance was conducted. 
The observation data of the stations found within the threshold distance were interpolated to the grid point 
using IDW. The interpolated time series and the corresponding grid time series were normalized separately using 
Z-score. The normalization was performed for each one-month climatological window separately. The Z-score 
was selected for normalization, as it considers both the mean value and the variability in the raw dataset by pre-
serving the range (maximum and minimum values) and introduces the dispersion in data. This approach also 
separates the nonstationary climate change signal from the bias in the shape of the distribution. The KDDM bias 
correction was conducted over these normalized data. The KDDM estimates the kernel density of the distribu-
tion of both the normalized CPC (nCPC) and the normalized interpolated time series data (nObs) based on the 
monthly climatological windows. The kernel density was calculated based on the default Gaussian kernels30, and 
the bandwidth was selected using Silverman’s rule of thumb31. The nonparametric PDFs of both nCPC and nObs 
were numerically integrated to calculate the cumulative density functions (CDFs) by applying the trapezoidal 
rule and fitting a spline to the corresponding quantiles. Later, a transfer function was applied by combining the 
forward CDF of nCPC and the inverse CDF of nObs using Eqs (1) and (2), respectively.

∫ ∑= −
=

P x
n

K x x dx( ) 1 ( )
(1)i

n

h i
1

Fig. 2  A map of the central north region of Egypt. The map shows the boundary of the newly developed data 
(latitude 29.50°–31.55° and longitude 29.50°–33.00°), the locations of the 26 observation stations used in the 
study, and the ground elevation.
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where P(x) is the CDF of time series x n is the number of data points, Kh is the kernel function scaled to an h 
bandwidth, and xbc is the resulting bias-corrected time series.
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Fig. 3  The predevelopment evaluation results of the gauge based daily Tmx and Tmn datasets of CPC and 
PGF. The (a) RMSE, (b) %BIAS, (c) NSE, (d) md and (e) R2 were calculated at each station separately and 
are presented as box plots. The red vertical line in each plot panel represents the optimum value of the 
corresponding index. It can be seen that the CPC dataset is better than the PGF dataset in estimating the daily 
Tmax and Tmin.
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Finally, the bias-corrected 0.05° grid point time series were denormalized to generate the bias-corrected data 
at each grid point.

Data Records
The data records of the daily high-resolution (0.05°), land-only, near-surface maximum and minimum tem-
peratures, in °C, for the CNE for the period January 1981 to December 2017 are freely available online within 
Figshare13 in NetCDF format. The data records spatially cover the land area bounded by latitudes of 29.50° and 
31.55° and longitudes of 29.50° and 33.00°. The records will be updated frequently in the upcoming years when 

Fig. 4  The performances of the CNE datasets compared to the CPC and CRU datasets in replicating daily and 
monthly maximum and minimum temperatures. Box plots of the five statistical indices (a–e) used to show the 
performances of the CNE, CPC, and CRU compared to the observed Tmx, Tmn, DTR, mTmx, and mTmn at 13 
stations. The red vertical line in each plot panel represents the optimal value of the corresponding index.
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more observation data will be available. The spatial coverage of the CNE data may be extended in the future when 
more observation data are available.

Technical Validation
The newly developed CNE datasets were validated at different time scales in four steps. First, the performance 
of CNE with respect to the CPC and CRU datasets was assessed according to their abilities to replicate the daily 
observed temperature at 13 stations that were used during data development. Second, the CNE datasets were val-
idated using independent station data. In the third step, the CNE dataset was validated against the monthly mean 
temperature from the CRU TS v4.01 station data. Finally, the spatial variability in the CNE datasets was validated 
against the high-resolution CHELSA dataset. Overall, the CNE showed remarkable performance.

Validation of the daily and monthly maximum and minimum temperatures.  The performances 
of daily Tmx, Tmn, and DTR of CNE were compared to those of CPC datasets at 13 stations that were used for 
the development of the CNE datasets. In addition, the monthly average maximum and minimum temperatures 
(mTmx and mTmn, respectively) at the same stations were calculated and used to verify the performance of the 
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Fig. 5  The probability distribution function (PDF) of the observed Tmx and Tmn at station 623330 against 
the PDFs of CPC and CNE. The PDFs of observation data of (a) Tmx and (b) Tmn are compared to the PDFs 
of CPC and CNE data. The red vertical lines represent the 95th and 5th quantiles of observed Tmx and Tmn, 
respectively. The improvement in the CNE in replicating nearly the same PDFs of the observations is clearly 
shown compared to the relatively poor performance of CPC, especially for extreme hot and cold temperatures.

Station 
WMO ID

The CNE PDFSS

Percentage of 
improvement 
in the PDFSS The CNE tailSS

Percentage of 
improvement in the tailSS

Tmx Tmn Tmx Tmn
Upper tail 
of Tmx

Lower tail 
of Tmn

Upper tail 
of Tmx

Lower tail 
of Tmn

623180 0.99 0.99 16% 7% 0.95 0.92 55% 23%

623250 1.00 1.00 8% 7% 0.96 0.95 29% 65%

623320 0.99 0.99 14% 14% 0.94 0.86 51% 73%

623330 0.99 0.99 23% 19% 0.96 0.83 70% 74%

623600 0.98 0.99 28% 13% 0.90 0.83 67% 58%

623601 0.99 0.99 15% 6% 0.93 0.86 34% 32%

623660 1.00 1.00 2% 6% 0.98 0.90 4% 59%

623662 0.96 0.96 1% 2% 0.92 0.55 2% 24%

623750 1.00 0.99 3% 4% 0.99 0.95 12% 61%

624400 0.99 0.99 4% 6% 0.99 0.89 26% 61%

624410 0.99 0.99 7% 4% 0.96 0.71 25% 41%

624550 1.00 1.00 3% 2% 0.99 0.87 22% 20%

624620 0.99 0.98 10% 31% 0.94 0.95 12% 88%

Table 2.  The PDFSS and tailSS values of CNE and the percentage of improvement obtained in CNE compared to 
the CPC in terms of those indices for both Tmx and Tmn.
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CNE data compared to that of the CPC and CRU data. At each station, the CNE, CPC, and CRU were interpolated 
to assess their performance with respect to the observations. Five statistical indices were used (RMSE, %BIAS, 
NSE, md, and R2) to evaluate the performance. The performance was assessed at each station separately, and the 
results of each index are presented as box plots in Fig. 4.

The validation results show that the CNE had a median RMSE value of 1.41 (1.31) for Tmx (Tmn), which was 
much better than the CPC values (Fig. 4a). The median %BIAS of CNE was zero for both Tmx and Tmn. The 
median NSEs for CNE were 0.93 and 0.94, and the mds were 0.92 and 0.92 for daily Tmx and Tmn, respectively, 

Fig. 6  The performance of the CNE datasets compared to CPC and CRU in replicating daily and monthly 
maximum and minimum temperate at the independent stations that were not used for the development of CNE 
datasets. Box plots of the five statistical indices (a–e) used to validate the performances of the CNE, CPC, and 
CRU datasets compared to the observed Tmx, Tmn, DTR, mTmx, and mTmn at the 4 independent stations. The 
red vertical line in each plot panel represents the optimal value of the corresponding index.
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which were much higher compared to the CPC values. The medians of R2 of the CNE were found to be very close 
to those of the CPC, however, the minimum whiskers of the box plots of R2 for the CNE were better.

Because the DTR is an important index that can provide a spatial fingerprint of climate change32,33, it should be 
accurately estimated34. The DTR estimated by the CNE was more accurate than that by the CPC when compared 
to observations using the performance indices. The RMSE of CNE had a median of 1.74, with a relatively narrow 
range of RMSE compared to that of the CPC. The DTRs estimated by CPC were heavily overestimated, with a 
median %BIAS of 9.1, while the median %BIAS for CNE was 0.1. The CNE scored median NSE, md and R2 values 
of 0.73, 0.75, and 0.75, respectively, which were better than those of CPC (0.47, 0.58, and 0.67, respectively).

At the monthly scale, the CNE outperformed both the CPC and CRU in replicating mTmx and mTmn. The 
median RMSE of CNE was 0.38 for mTmx and mTmn, while they were approximately 1.7 and 2.1 for mTmx and 
mTmn for both the CRU and CPC, respectively. Similar to daily Tmx and Tmn, the %BIAS of mTmx and mTmn 
of CNE were nearly zero, but CPC and CRU showed a wide range of positive and negative biases, especially for 
mTmn (Fig. 4b). The NSE was almost optimal for CNE (near 1), while the medians were 0.87 and 0.83 for CPC 
and 0.9 and 0.84 for CRU. As shown in Fig. 4d, CPC and CRU showed a large variance in md, ranging between 
0.5 and 0.95, while the CNE showed a median value of md and 0.98 for both mTmx and mTmn. CNE had a higher 
correlation of mTmx and mTmn with the observation data than CPC and CRU.

Next, the accuracy in the distribution of CNE data was assessed using the PDF skill score35. The PDF skill 
score (PDFSS) is a robust score that measures the overlap between the modeled and the observed PDFs by com-
puting the cumulative minimum value of their distributions35, as in Eq. (3). A perfect overlap between the PDFs is 
reflected by a score of one. Finally, the tail skill score (TailSS) was used to measure the accuracy of the CNE data to 
replicate the upper and lower 5% of the observed maximum and minimum temperature PDFs, respectively. TailSS 
is a good indicator of matching the extreme values between the two datasets. It begins by calculating the sum of 
the absolute difference between the upper and lower 5% of the modeled and the observed PDFs. Then, it assigns 
an increasing weight to the sum of the difference as the temperature values go to the far extreme, as formulated in 
Eq. (4). Therefore, the 99th percentile (1st percentile) values were weighted more than the 95th percentile (5th per-
centile). A TailSS value of one indicates a perfect match between the extreme tails. We calculated the TailSS for the 
upper tail of Tmx and the lower tail of Tmn, which represent the extreme hot and cold temperatures, respectively.
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where Zm and Zo are the ratio of the values for a given n number of bins from the modeled and observed PDFs, 
respectively; Wi is the weight assigned for bin numbered i, where the bins are only in the upper or lower tails of 
the PDFs; and Zm

i  and Zo
i are the frequency of a temperature value in a given bin for the modeled and observed 

data, respectively.
An example of the PDFSS and tailSS results obtained is presented in Fig. 5. The figure shows the performances 

of the CNE and CPC daily Tmx and Tmn for station 623330 during 1981–2017 to replicate the distribution and 
the extreme values. The PDF of the CNE was found to match better with the observed one compared to CPC. This 
was also evidenced from the PDFSS values of CNE, which were 0.99 for both Tmx and Tmn compared to 0.76 and 
0.80 for Tmx and Tmn, respectively, for CPC. In the case of the hot and cold extremes, which are presented as the 
≥95 percentile of Tmx and ≤5 percentile of Tmn, the CNE showed a remarkable performance. The upper and the 
lower tailSS for CNE were improved by 70% and 74%, respectively, compared to the CPC. Although it seems from 
Fig. 5 that CPC had a consistent bias in the distribution, this was not the same at other stations. Similar results 
were obtained at other stations. The comparison of the performances of CNE and CPC in terms of PDFSS and 
tailSS are presented in Table 2.

Validation using independent station data.  The independent station data, that were not used for the 
development of CNE, were used to validate the CNE datasets at the daily and monthly time scales. The stations are 
nos. 4, 24, 25 and 26 (refer to Fig. 2). Overall, the performance of the CNE was found better than that of CPC and 

Station 
WMO ID

The CNE PDFSS

Percentage of 
improvement 
in the PDFSS The CNE tailSS

Percentage of 
improvement in the tailSS

Tmx Tmn Tmx Tmn
Upper tail 
of Tmx

Lower tail 
of Tmn

Upper tail 
of Tmx

Lower tail 
of Tmn

623300 0.93 0.96 1% 2% 0.85 0.71 31% 35%

623480 0.95 0.98 10% 4% 0.89 0.80 26% 50%

624380 0.95 0.91 1% 10% 0.83 0.81 17% 60%

NA 0.94 0.95 4% 6% 0.88 0.75 26% 49%

Table 3.  The PDFSS and tailSS values of CNE and the percentage of improvement obtained by CNE compared 
to CPC in terms of the indices for both Tmx and Tmn at the independent stations that were not used for the 
development of CNE datasets.
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CRU in estimating Tmx, Tmn, DTR, mTmx and mTmn. As shown in Fig. 6, the median RMSE value of 1.90 (1.72) 
for Tmx (Tmn) for CNE was better than that for CPC. CNE had a double-edged %BIAS, with a median of −1.45% 
and 0.55% for Tmx and Tmn, respectively. CPC underestimated Tmx and overestimated Tmn. The median NSE 
of CNE was 0.89 for both Tmx and Tmn. Although CPC showed a similar median NSE (approximately 0.85), the 
NSEs of CNE were closer to the optimal value than that of the CPC. As shown in Fig. 6e, CNE was more cor-
related with station data than CPC. In the case of DTR, the CNE datasets showed a significant improvement in 
estimating DTR against CPC, with a median %BIAS of −1.70% and an R2 of 0.59.

Fig. 7  The performances of the CNE datasets compared to the CPC, CRU and UDel datasets in replicating 
monthly mean temperatures. Box plots of the five statistical indices (a–e) used to validate the performances of 
the CNE, CPC, CRU, and UDel datasets compared to the mTm at 16 station locations obtained from CRU TS 
v4.01. The red vertical line in each plot panel represents the optimal value of the corresponding index.
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For the mTmx and mTmn, the performance of CNE datasets was found to exceed those of CPC and CRU 
(Fig. 6). The medians of RMSE of CNE were 1.80 and 1.14 for mTmx and mTmn, respectively, which were better 
than those of CPC (2.04 and 2.00, respectively) and CRU (2.10 and 1.70, respectively). The CNE datasets showed 
the lowest %BIAS and the highest md. The CNE had a higher correlation with the station data than the CPC and 
CRU for both mTmx and mTmn.

The distribution of CNE daily data was also validated against the station data using the PDFSS and upper and 
lower tailSS. The scores and percentage of improvement in terms of each score compared to the CPC dataset are 
presented in Table 3. The CNE had a high PDFSS for both Tmx and Tmn, with an improvement of 10%. The upper 
tailSS of Tmx and lower tailSS of Tmn of CNE were improved by up to 31% and 60%, respectively, compared to 
those of the CPC.

Validation of the monthly mean temperature using CRU TS v4.01 station data.  In this step, the 
monthly mean temperatures (mTm) of CNE datasets were compared with the CPC, CRU and UDel datasets in 
terms of their capability to reproduce monthly temperatures at 16 stations obtained from the CRU TS v4.0126. 
Data from 10 out of 16 stations were not used during the development of CNE data (refer to Fig. 2). As shown in 
Fig. 7, the RMSE of mTm of CNE was much better than those of CPC, CRU and UDel datasets, with a median of 
0.7. The median %BIAS of CNE was 0.7%, while they were 2.15%, −0.7%, and −18.05% for the CPC, CRU, and 
UDel datasets, respectively. The NSE of CNE was found to be better than that of CPC, CRU, and UDel. In terms 
of md, the CNE was also found to outperform the others. It also showed a perfect R2 (near 1) at all stations, while 
the median R2 of CRU was slightly higher than that of CNE.

Validation of the spatial variability.  The spatial variability in the CNE datasets was obtained from the 
WorldClim v.2 after adjusting the WorldClim overall grid monthly means with the station data mean. To validate 
the spatial variability in the CNE datasets, the monthly time series and climatology of each grid point of the CNE 
were compared to the corresponding grid point of CHELSA. The CHELSA is an independent dataset that has 
been developed from ERA-Interim reanalysis data19. Figure 8 presents the spatial distribution of R2 values esti-
mated for the mTmx and mTmn time series of CNE and CHELSA. The correlation between the monthly clima-
tologies of CNE and CHELSA is also presented in the figure. The R2 values were between 0.91 and 1 and between 
0.9 and 1 for mTmx and mTmn, respectively. In addition, they were between 0.97 and 1 and between 0.90 and 1 
for the Tmx and Tmn monthly climatologies, respectively. The high spatial correlation of the CNE with CHELSA 
datasets indicates that the CNE datasets are able to predict the spatial distribution of temperatures well.

Fig. 8  The validation of monthly time series and climatologies of CNE datasets using CHELSA. The spatial 
patterns in the coefficient of determination (R2) between the (a) mTmx and (b) mTmn time series and the 
monthly climatologies of (c) maximum and (d) minimum temperature of the CNE and CHELSA datasets. 
The results show a high spatial correlation and indicate the ability of CNE to predict the spatial distribution of 
temperature.
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Usage Notes
The CNE datasets can be used for many applications at various temporal resolutions. As shown in the valida-
tion process, the CNE datasets can estimate hot and cold temperature extremes more accurately than any other 
datasets in the study region. Furthermore, the high-resolution CNE datasets can be combined with various data-
sets having the same resolution, including Climate Hazards InfraRed Precipitation with Stations (CHIRPS)36, to 
widen the range of applications of the datasets for greater scientific and social benefits.

Code Availability
The code was written using R software, R.3.4, to produce the data. The code is available online within Figshare13.
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