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SUMMARY

With the advent of deep generative models in computational chemistry, in-silico
drug design is undergoing an unprecedented transformation. Although deep
learning approaches have shown potential in generating compoundswith desired
chemical properties, they disregard the cellular environment of target diseases.
Bridging systems biology and drug design, we present a reinforcement learning
method for de novo molecular design from gene expression profiles. We
construct a hybrid Variational Autoencoder that tailors molecules to target-spe-
cific transcriptomic profiles, using an anticancer drug sensitivity predictionmodel
(PaccMann) as reward function. Without incorporating information about anti-
cancer drugs, the molecule generation is biased toward compounds with high
predicted efficacy against cell lines or cancer types. The generation can be further
refined by subsidiary constraints such as toxicity. Our cancer-type-specific candi-
date drugs are similar to cancer drugs in drug-likeness, synthesizability, and sol-
ubility and frequently exhibit the highest structural similarity to compounds
with known efficacy against these cancer types.

INTRODUCTION

Drug discovery

Eroom’s law describes the observation that the productivity of the drug discovery pipeline, as measured by the

number of FDA-approved drugs per billion US dollar invested, has been halved every 9 years since the 1950s

(Scannell et al., 2012). Indeed, only a minimal portion of all synthesized drug candidates obtainmarket approval

(less than 0.01%), with an estimated 10–15 years until market release and costs that range between one (Scannell

et al., 2012) and three billion dollars per drug (DiMasi et al., 2016). This low efficiency has been attributed to the

high dropout rate of candidate molecules in the early stages of the pipeline, highlighting the need for more ac-

curate in silico and in vitromodels that produce more potent candidate drugs. In addition to the initial wet-lab

validations, the discovery pipeline involves a sequential process that builds upon high-throughput screenings,

ADMET-assessments, and a lengthy phase of clinical trials. The costs of the experimental and clinical phase

canbeprohibitive and any solution that helps to reduce thenumberof requiredexperimental assays canprovide

acompetitiveadvantageand reduce time tomarket. Theproblem’s linchpin isonhow to improve theexploration

and navigation through the chemical space that has been estimated to contain�1030–1060 drug-like molecules

with bioactive properties (Polishchuk et al., 2013).
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Related work

Deep learningmethods have recently gained popularity to aid drug discovery (Chen et al., 2018) andmany have

demonstrated the feasibility of in silico design of novel candidate compounds with desired chemical properties

(Popova et al., 2018; Gomez-Bombarelli et al., 2018; You et al., 2018). In all of these models, the generative pro-

cess is controlledby a structurally driven evaluator (or critic) that biases the generationof a chemical to satisfy the

required chemical structural properties. Although very effective in generating compounds with desired chem-

ical properties, these methods disregard system-level information, e.g. about the cellular environment in which

the drug is intended to act. However, the two main causes of the increasing attrition rate in drug design are a

lack in efficacy against the specific disease of interest and off-target cytotoxicity (Wehling, 2009), calling to

bridge systems biology closer with drug discovery. Related methodology has been used for protein-targeting
iScience 24, 102269, April 23, 2021 ª 2021 The Author(s).
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de novo generation (Zhavoronkov et al., 2019; Aumentado-Armstrong, 2018; Grechishnikova, 2021; Chentha-

marakshan et al., 2020; Skalic et al., 2019; Krishnan et al., 2021). These contributions attempt to utilize deep

learning methods for de novo design of compounds to specifically target a protein that has been implicated

in tumor proliferationor treatment response (e.g. gene-knockout study). For example, the studyby Zhavoronkov

et al. (2019) curated and utilized, among others, patent data and several datasets about molecules (unspecific

bioactive compounds, kinase inhibitors, DDR1 kinase inhibitors, molecules targeting non-kinase targets) specif-

ically to develop DDR1 inhibitors. They synthesized and tested six drug candidates in cell assays. Two of them

were found to be active, and one was even successfully validated in animal models. Envisioning a precision or

even personalized medicine perspective, identifying protein targets is challenging, whereas sequencing and

omics data are straightforward to gather.

Very recently, Méndez-Lucio et al. (2020) proposed a method for the de novo design of molecules against

desired targets, represented by the gene expression signatures of knocked-out (suspected) targets.

Notably, 97% of all anticancer candidate drugs fail in clinical trials and never receive FDA approval, ques-

tioning the current approaches of target identification for the discovery of pharmaceuticals (Wong et al.,

2019). Taking ten drug-indication pairs from ongoing clinical trials, Lin et al. (2019) found that the proposed

mechanism of action (MOA) for all of them were incorrect; knocking out the target genes did not ever

hamper cancer fitness. Although the wrong target genes were identified through RNA interference with

siRNA, seemingly silencing essential off-target genes, all drugs retained their anticancer effect through

target-independent mechanisms. The fact that off-target cytotoxicity is a common MOA of anticancer

drugs in clinical trials corroborates the need to to scrutinize current lead compound discovery strategies

and calls to develop novel methodology with unconventional approaches. It is for this reason that we herein

propose a novel framework to generate lead compound candidates solely based on a tumor’s metabolic

signature, as opposed to attempting to target a specific protein or incorporating information about poten-

tial targets directly into the design process. Here, we guide the learning process solely by transcriptomic

profiles of cancer cells, which thus act as metabolic signatures. Transcriptomic data have been successfully

used for de novo drug identification (Verbist et al., 2015; DeWolf et al., 2018) and has been advocated for a

pivotal role in the future of drug discovery (Dopazo, 2014). Related work has addressed the generation of

anticancer candidate drugs by conditionally sampling from an IC50 vector (Joo et al., 2020).

Our contribution

We present a novel framework for molecule generation based on deep generative models and reinforcement

learning that, for the first time, enables the generation of molecules while taking into account the disease

context encoded in the form of gene expression profile (GEP) data (for a graphical illustration see Figure 1A).

Our framework is depicted in Figure 1B and consists of a conditional molecule generator (embodied by two

separate Variational Autoencoders) and a critic module that evaluates the efficacy of proposed compounds

on the target profile (see Figure 1D). The trainingprocedure is split into two stages. In the first stage, themodels

are trained independently; one VAE is trained on gene expression data (in the following called profile VAE or

just PVAE) from TCGA (Weinstein et al., 2013), and another VAE (in the following called SMILES VAE or just

SVAE) is trained on bioactive small molecules from ChEMBL (Bento et al., 2013) (see Figure 1C). As a critic,

we use PaccMann, a multimodal drug sensitivity prediction model developed and validated in our previous

work (Manica et al., 2019; Cadow et al., 2020). In the second stage, the encoder of the profile VAE is combined

with the decoder of themolecule VAE and exposed to a joint retraining that is optimized using a policy gradient

regime with a reward coming from the critic module. The goal of the optimization is to tune the generative

model such that it generates (novel) compounds that havemaximal efficacy against a given biomolecular profile

that is characteristic for a cancer site, a patient subgroup, or even an individual. By efficacy, we refer to predict

cellular IC50 (i.e. the micromolar concentration necessary to inhibit 50% of the cells) as opposed to e.g. enzy-

matic IC50. This efficacy is a joint property of a drug-cell-pair, as treatment response to a compound heavily

varies depending on the tumor’s genomic and transcriptomic makeup (Geeleher et al., 2016). In this work,

we focus on profile-specific compound generation and optimize the generator with IC50 as critic, but we would

like to note that our framework can be extended tomore complex reward functions and include a case study on

the concurrent optimization of (predicted) drug efficacy and toxicity.

RESULTS

Pretraining profile VAE and SMILES VAE

In the first phase of training, the two components depicted in Figure 1C were trained independently. The

profile VAE consisted of a set of stacked dense layers and was trained as a denoizing VAE to enhance
2 iScience 24, 102269, April 23, 2021
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Figure 1. The proposed framework for anticancer compound design against specific cancer profiles

(A) Conceptually, the model performs a guided walk through the chemical space in order to find effective compounds.

Starting from an unbiased molecule generator (trained only on a dataset of bioactive compounds without any information

about cancer), compounds are sampled and screened in silico against the transcriptomic profiles of interest. The outcome

of the screening guides the generator toward sampling from manifolds with more effective compounds.

(B–D) (B) The training process depicted in more detail. The conditional compound generator (called ‘‘agent’’) is

embodied through two initially separate VAEs. The compound generation starts with a biomolecular profile of interest

e.g. a transcriptomic profile. Through a pretrained omics VAE, the profile is encoded into the latent space of gene

expression profiles. The latent representation of the profile is decoded through the molecular decoder of a separately

pretrained molecule VAE to produce a candidate compound (see C). This generative process can optionally be ‘‘primed’’

through encoding a known, effective compound or a functional group with the molecular encoder. The proposed

compound is then evaluated by a critic. Our critic is represented by a multimodal drug sensitivity prediction model that

ingests the compound and the target profile of interest (see D). The IC50 efficacy, as predicted by the critic, is interpreted

as reward and is subject to maximization during the RL-based optimization. Over the course of training, the generator will

thus learn to produce candidate compounds with higher and higher efficacy. <START> is the start and <END> is the end

token.
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generalization abilities. The purpose of the PVAE was to find a lower dimensional representation of the cell

profiles that maintains structural similarity and later allows a fusion with the latent representation of mole-

cules. The encoder of the PVAE learned to meaningfully embed gene expression profiles (bulk RNA-Seq

from TCGA (Weinstein et al., 2013)) into a latent space, such that the decoder could reconstruct the profiles,

but also generate novel, seemingly realistic gene expression profiles (GEP). In alignment with the reported

consensus between transcriptomic data in TCGA and cancer cell line databases (Ghandi et al., 2019), we

found the distributions of GEPs in GDSC (Yang et al., 2012) and TCGA to be sufficiently similar to justify

our decision to perform the PVAE pretraining on�10k TCGA samples, whereas the reinforcement learning

(RL) optimization was performed on GDSC cell lines (compare Figure S2 in supplementary material S2).

The SMILES VAE was pretrained for 10 epochs on �1.4 million structures from ChEMBL (Bento et al., 2013)

(for details see transparent methods). Both encoder and decoder consisted of stack-augmented gated-

recurrent units as used in Popova et al. (2018). The purpose of the SVAE was to learn the syntax of SMILES

and general semantics about bioactive compounds. The novelty and diversity of the generated molecules

were validated by sampling 10,000 molecules through decoding random points from the latent space.

About 96.2% of the 10,000 generated molecules were valid molecular structures (surpassing the results

of Popova et al. (2018) who used the same stack-augmented GRUs and reported 95% SMILES validity).

Moreover, 99.72% of the valid molecules were unique across the 10,000 generations, and the novelty

was 1, i.e. none of the generated compounds was present in the training dataset. Comparing the Tanimoto

similarity (Tanimoto, 1958) of the ECFP molecular fingerprints (Rogers and Hahn, 2010) of 1,000 generated

molecules with the training and test data from ChEMBL, we found that the vast majority had a Tanimoto

similarity (t), between 0.2 and 0.6 (on average 0.41G 0.1 for training and 0.38G 0.08 for testing molecules),

suggesting that our model learned to propose novel molecular structures from the chemical space. In addi-

tion, an interactive visualization of the chemical space with Faerun (Probst and Reymond, 2018) shows the
iScience 24, 102269, April 23, 2021 3
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TMAP (Probst and Reymond, 2020) (i.e., an algorithm to represent high-dimensional data as minimum

spanning trees) of ChEMBL and generated compounds through the TMAP algorithm. The generated mol-

ecules mix well with the training molecules into the chemical space. For detailed results of both the PVAE

and the SVAE, see the supplementary material S3.
Omic-specific compound generation (RL training)

Here, we present the results of our molecule generator conditioned on gene expression profiles of cancer

subtypes.

As a proof of concept, we show results for cancer in four different sites: breast (carcinoma), lung (carci-

noma), prostate (carcinoma), and autonomic ganglia (neuroblastoma). The conditional generator was

initialized as the SVAE, i.e. sampling from the unbiased generator yielded random molecules from the

chemical space as learned from the ChEMBL data. For the evaluation, all generated compounds with a pre-

dicted IC50 value below 1 mM (i.e. pIC50 > 6) were considered to be effective. Moreover, within each cancer

type (or site), 80% of the cell lines (breast: 50, lung: 169, prostate: 7, autonomic ganglia: 56) were considered

as training cell lines and used to optimize the parameters of the conditional generator. We observed that

over time the generator learned to produce more molecules with high predicted efficacy according to the

critic. To test both the generalization abilities and whether the generator actually utilized the omics-profile

for the generation, we used the remaining 20% of cell lines to verify whether conditioning the generator on

unseen cell lines of the same site also leads to compounds with low IC50. As presented in Figure 2 (left col-

umn), our model learned to produce compounds with lower IC50 values, for unseen cell lines from the given

cancer site. In other words, the IC50 distribution of candidate compounds proposed by the generative

model were successfully shifted toward higher efficacy (lower IC50). The baseline model corresponds to

the pretrained SVAE from which n = 500 molecules were randomly sampled. In all four cases, a significant

portion (between 16% and 57%) of molecules generated from the optimized model were assigned an IC50

value below 1mM, whereas only 2%–5% of the candidates generated by the baseline model (i.e. the SVAE)

were classified as effective. Moreover, in all cases the generator maintained an almost equal SMILES val-

idity (84%–93%) compared with the baseline, much higher than what Méndez-Lucio et al. (2020) reported

based on gene expression (8%–9%). The second column of Figure 2 shows generated molecules that are

predicted to be effective against unseen cell lines from the respective cancer site. As opposed to the

personalized regime in the second column, the third column of Figure 2 showcases a precision medicine

regime. Here, novel molecules were designed specifically for each cancer site, i.e. a single, characteristic

GEP. In all cases, the model generated compounds that exhibited high efficacy against the average cellular

profile of the target site while maintaining efficacy against the majority of individual cell lines for that site.

We have thus formulated a novel problem, namely how to drive a molecular generative model to produce

molecules with low predicted efficacy against an omics profile of interest. To the best of our knowledge,

this problem has not been tackled before, exacerbating a comparison to other works. In the most similar

work, Méndez-Lucio et al. (2020) proposed a model that produces hit-like molecules to induce a desired

gene expression profile.

Investigation of nearest neighbors

For a more quantitative assessment, the last column of Figure 2 compares the four cancer-type-specific

candidate compounds with one of their top-3 neighbors using the Tanimoto similarity score, t, from several

hundreds of existing anticancer compounds. It is well known that the Tanimoto similarity across com-

pounds is highly correlated with their induced sensitivity patterns on cancer cell lines (Shivakumar and

Krauthammer, 2009). The candidate compound proposed against breast cancer (Figure 2 second row, third

column) resembles a collection of fused sugarlike moieties and has doxorubicin, a commonly used chemo-

therapeutical against breast cancer (Lao et al., 2013), as one of the top-3 nearest neighbors. The generated

compound against lung cancer (Figure 2, third row, third column) presents similarities to embelin, an ex-

isting anticancer compound from the GDSC database. Comparing the two structures, it is evident that

the generated compound and embelin share a long carbon chain and a single six-membered fully carbonic

ring. Embelin was tested against 965 cell lines fromGDSC/CCLE fromwhich the highest reported efficacy is

against a lung cell line (NT2-D1). Embelin is also known to be the only known non-peptide inhibitor of XIAP

(Poojari, 2014), a protein that plays an important role in lung cancer development (Cheng et al., 2010). The

closest neighbor of the prostate-specific generated compound (Figure 2 fourth row, third column) is vor-

apaxar. Its efficacy is highest against a prostate cancer cell line (DU_145) according to GDSC/CCLE. Vor-

apaxar is an antagonist of a protease-activated receptor (PAR-1) that is known to be overexpressed in
4 iScience 24, 102269, April 23, 2021



Figure 2. Sample results for profile-driven model optimization and anticancer compound generation

Each row illustrates the results of training the RL pipeline on cell lines from a specific cancer type: autonomic ganglia, breast, lung, and prostate cancer. The

first column compares the distributions of pIC50 predictions given by the critic model for a set of n = 500 drug candidates generated with RL optimization

and a set of 9,000 molecules without RL optimization. As demonstrated by the density plots, the RL optimization process leads to candidate compounds with

a higher mean pIC50 for the target cancer, highlighting the successful optimization of the generativemodel toward the design of more effective compounds.

The second column presents candidate compounds with a high predicted efficacy against a particular cell line that was not seen during training. The third

column showcases generated compounds that were optimized to be effective against all cell line profiles of the given cancer type in each row. In the fourth

column, we present an existing anticancer compound (approved against at least one type of cancer) that was in the top-3 neighborhood of the generated

compound in the third column. The existing and generated compounds are compared in terms of Tanimoto structural similarity between RDKit fingerprints

as well as three chemical scores crucial in drug design, namely druglikeness (QED, 0 worst, 1 best), synthetic complexity (SCS or SCScore, 1 best, 5 worst), and

solubility (ESOL, given in M/L). The crossed carbon double bond in some molecule means that the E-Z configuration is undefined.
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various types of cancer, including prostate (Zhang et al., 2009). Lastly, the third closest neighbor of the

generated compound against neuroblastoma (Figure 2 first row, third column) is fulvestrant, an antago-

nist/modulator of ERa that has recently been proposed as a novel anticancer agent for neuroblastoma

(Gorska et al., 2016). The predicted pIC50 activity profile of fulvestrant and our candidate drug are highly

correlated across all cell lines (r = 0.88), indicating that they may exhibit similar pharmacological proper-

ties. Similar observations are made for the lung and prostate cancer candidates and their neighbors em-

belin and vorapaxar (r = 0.55 and r = 0.69).
iScience 24, 102269, April 23, 2021 5
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To summarize, for all four investigated cancer types, the proposed compounds showed the highest struc-

tural similarity to anticancer drugs that are, for each specific cancer type, either (1) already FDA approved

(breast), (2) known inhibitors of relevant targets (lung, prostate), or (3) have been advocated for (neuroblas-

toma). This result is remarkable, especially as the generator was never exposed to any anticancer com-

pounds. Indeed, only the critic had seen two out of the four compounds during training, highlighting

that the generator has learned some structural characteristics that make a compound efficacious against

a particular cancer type, according to our critique.

In the above comparisons, the search space was restricted to compounds with known anticancer proper-

ties. To investigate whether the proposed compounds generally had a higher similarity to drugs associ-

ated with cancer, we carried out a comparison with compounds from a broader pool of chemicals, namely

ChEMBL (Bento et al., 2013), a database of >1.5 million bioactive molecules with drug-like properties. The

nearest neighbor (t = 0.54) of our breast cancer compound in the ChEMBL database is CHEMBL1093122,

a conjugate of plumbagin and phenyl-2-amino-1-thioglucoside that inhibits the synthesis of mycothiol

(Gammon et al., 2010). Plumbagin itself and many of its derivatives are widely studied anti-breast cancer

compounds (Zhang et al., 2016; Kawiak et al., 2017; Dandawate et al., 2014). For our lung cancer com-

pound, the nearest neighbor (t = 0.48) is polyoxyethylene dioleate, a surfactant that has been patented

for the treatment of eight types of cancer, including three types of lung cancer (small lung cell cancer,

lung adenocarcinoma, and metastatic lung cancer, Girsh (2007)). It is also utilized in targeted drug delivery

systems for drug-resistant lung cancer (Kaur et al., 2016). The nearest neighbor (t = 0.31) of the prostate

cancer compound is Clinolamide (or Linolexamide), which is included in a patent of diagnostic and/or

therapeutically active compounds for several types of cancer, including prostate cancer (Klaveness

et al., 2004). The nearest neighbor (t = 0.35) of the proposed neuroblastoma compound is NSC-

715466. NSC-715466 has been evaluated for anticancer effects in a recent release of the NCI-60 database

(Shoemaker, 2006) and inhibits cancer cell growth by 65% G 15% across all tested cell lines, with a below-

average inhibition for cancer in the central nervous system (57% G 9%). Regarding its efficacy, it only falls

in the 51st percentile of all 53,217 compounds tested in NCI-60, which presumably prevented further in-

vestigations. The four discussed ChEMBL compounds as well as the analysis of NSC-715466 can be

found in Figure S4 in supplementary material S4.

It is promising to observe that the molecules with the highest Tanimoto similarity to our compounds are

associated with cancer (some even to the specific types of cancer our compounds were optimized for)

even when using a larger database of bioactive compounds. However, it is worth keeping in mind that a

high Tanimoto score to a known cancer drug is not necessary for anticancer drug efficacy. Oftentimes, can-

cer drugs used for the same cancer type or even drugs sharing the same mechanism of action exhibit low

Tanimoto similarity, e.g. TKIs used for NSCLC such as crizotinib and erlotinib, t = 0.11. Across all anticancer

compounds in GDSC and CCLE databases, we note that the average Tanimoto similarity (t = 0.149G 0.05)

is not much lower than the average similarity of two compounds of a given site (t = 0.154 G 0.06). For the

following results and discussion, the anticancer compounds from GDSC/CCLE were associated with the

site where they had the highest average IC50 efficacy.

To better understand whether the generated drugs mimic the space of cancer-specific anticancer drugs,

Figure 3 shows visualizations of real and generated cancer drugs for one specific cancer type, using kernel

PCA based on Tanimoto similarity (Schölkopf et al., 1998). In addition to the class belongings, the plots also

depict the QED score (Bickerton et al., 2012), a quantitative estimate of drug-likeness (0 worst, 1 best), and

SCScore (Coley et al., 2018), an estimated score of synthetic complexity (1 best, 5 worst). The fact that the

generatedmolecules are well intermingled with the real drugs suggests that the generator proposes diver-

sified structures that mimic some properties of anticancer compounds. It is also curious to see that several

real drugs have low QED and/or high synthetic complexity scores (the same holds true for the generated

molecules). Moreover, we provide interactive TMAP visualizations of the site-specific generated com-

pounds (links in the availability section).
Chemical properties of generated molecules

In this work, the conditional generator is trained using PaccMann as sole critic. However, besides inhibitory

efficacy, there is a myriad of properties of a candidate drug that crucially influence its potential for

becoming an anticancer compound.
6 iScience 24, 102269, April 23, 2021



Figure 3. Visualization of generated molecules and real anticancer drugs

A kernel PCA of real and generated molecules based on Tanimoto similarity. The size of the points denotes the QED score, whereas the coloring represents

the synthetic complexity score (SCScore). Overall, both generated and existing molecules are heterogeneously distributed in the 2D projection and do not

form clear clusters.
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Some of these can be approximated in silico, e.g. water solubility (ESOL, Delaney (2004)), drug-likeness

(QED, Bickerton et al. (2012)), and synthesizability (SCScore, Coley et al. (2018)). Figure 4 gives an overview

of the distribution of QED, ESOL, and SCScore for sets of (1) known anticancer compounds (blue), (2) mol-

ecules from ChEMBL (orange), (3) compounds generated by the SVAE (red), and (4) compounds proposed

by the conditional generator (green). Despite the fact that none of these properties were explicitly opti-

mized, comparing the distributions reveals a good agreement overall. Interestingly, anticancer drugs

exhibit, compared with the ChEMBL compounds, much less drug-like properties (lower QED) on average

and seem to bemore synthesizable (lower SCScore). This tendency of anticancer drugs toward synthetically

less complex structures is likely to result from the high attrition rate in clinical trials and the corresponding

cost reduction policies. It is also encouraging to see, on average, that the unbiased generator (SVAE) gen-

erates molecules with more desired properties compared with the data used for training (ChEMBL com-

pounds have lower QED and higher SCScore). Moreover, the cancer drugs have, on average, a significantly

lower QED than the other three sets in Figure 4 (0.45G 0.2 with >10% of GDSC/CCLE drugs even having a

QED <0.2, whereas it is 0.55 for the other three sets). Indeed the QED scores of the other three sets were so

similar that we failed to reject the null hypothesis that the QED scores of these three sets are from different

distributions (Kruskal-Wallis test, a = 0.05). Regarding synthetic complexity, both the unbiased and the

biased generator fail to produce molecules with SCScores as low as the anticancer drugs (MWU, p <

0.01), but they produce structures that are estimated to be less complex than the ChEMBL molecules

(MWU, p < 0.01). Overall, we observe that the biased generator producesmolecules with less desired prop-

erties than the unbiased generator (SVAE). This is to be expected because the unbiased generator was pre-

trained to mimic the data from ChEMBL, whereas no explicit optimization of chemical scores was per-

formed during the RL optimization. For one generated compound, we exemplarily show a possible

synthesis route that was assigned a high confidence score by the retrosynthesis model (Schwaller et al.,

2020) and consists of four reactions and ten commercially available reactants (see Figure S6 in supplemen-

tary material S6 appendix (S8)).

Savjani et al. (2012) reported that 40% of novel chemicals cause practical problems due to insolubility. Wa-

ter solubility remains challenging to approximate in silico (Sorkun et al., 2019) and thus we treat the good

agreement in the ESOL scores (see Figure 4 middle panel) with caution.

Finally, we would like to point out that utilizing an IC50 drug sensitivity prediction model as sole critic limits

the performance of the framework, as the expressive power of the conditional generator is inherently ‘‘up-

per bounded’’ by the predictive power of the critic. Crucially, due to a lack of available data, the critic was

only trained on the cancer candidate compounds in GDSC (Yang et al., 2012) but not on compounds

without any inhibitory efficacy against cell lines. Notably, however, GDSC contains many samples with

IC50 in millimolar scale, leading the critic to cover vast ranges of irrelevant molecules with 3 < pIC50 <

6. We additionally verified the generalization capabilities of the critic by comparing the predicted efficacy
iScience 24, 102269, April 23, 2021 7



Figure 4. Comparison of chemical scores for real drugs in the GDSC and CCLE databases versus our generated compounds

We compared three chemical scores for druglikeness as assessed by QED score (0 worst, 1 best), for solubility as assessed via ESOL, given in log(M/L) (most

drugs have a solubility between �8 and �2), and for synthetic accessibility as assessed by SAS (1 best, 10 worst). These three scores are computed for the

panel of known anticancer drugs, bioactive molecules from ChEMBL, and molecules generated before (red) and after (green) RL optimization.
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of cancer drugs (most of them were seen during training) and a ‘‘negative’’ set of molecules from ChEMBL

across all 965 cell lines from GDSC. The results can be found in Figure S5 in supplementary material S5 and

show that although 15.2% of the virtual drug screenings with anticancer compounds were positive (IC50<1m

mol), only 7.7% of all the ChEMBLmolecules showed potential anticancer effects. Moreover, the generated

anticancer compounds were found to have a significantly higher Tanimoto similarity to anticancer drugs

than to either ChEMBL molecules (p < 0.01, one-sided MWU) or molecules generated without the RL opti-

mization, i.e. from the SVAE (p < 0.01, one-sided MWU). These two results are encouraging and suggest

that PaccMann can seemingly drive the molecule generation away from ordinary bioactive compounds

such as in ChEMBL, more toward mimicking the properties of anticancer drugs.
Toxicity: Case study on multi-objective optimization

In the previous sections, the RL optimization of the molecular generation was guided using the predicted

IC50 on a given cell profile as sole reward. To investigate whether PaccMannRL is able to generate desired

molecules in a multi-objective optimization setting, we performed RL optimization using an adjusted

reward function that incorporates (1) low IC50 against a given omic profile (as in all other experiments),

(2) low environmental toxicity, and (3) low adverse drug reactions, a measure of high-level phenotypic

side-effect observations (for details see supplementary material S1.4). Similarly to IC50, toxicity and

adverse drug reactions were also evaluated with predictive neural networks. The toxicity model was pre-

trained on Tox21 (Huang et al., 2016) (�8k molecules measured across 12 toxicity endpoints) and the

adverse reaction model was pretrained on SIDER (�1.5k marketed drugs with 27 classes of reported

adverse drug reactions). We note that the toxicity predictor achieved an ROC-AUC of 0.877 on Tox21 (sur-

passing the previous state-of-the-art) and an ROC-AUC of 0.835 on SIDER (Markert et al., 2020). For details

on these predictive models see Markert et al. (2020).

Figure 5 displays a collection of molecules that were generated against the NCI-H520 cell line (a human

lung squamous cancer cell line) during an RL optimization that was restricted to lung cancer cell lines

(similar to Figure 2, third row). Notably, the NCI-H520 cell line was in the test set for the RL optimization.

The adjusted reward function (Equation 5) used low IC50 as primary and low toxicity scores as secondary

objective. All displayed molecules fulfilled the multi-objective, i.e., they were predicted to be active on

NCI-H520 (IC50<1mM) while not being predicted toxic in any of the 12 Tox21 toxicity assays. Furthermore,

we computed Tanimoto similarities of the molecules shown in Figure 5 with approved cancer drugs, ac-

cording to the National Cancer Institute. For molecules 1 and 2 we obtained Tanimoto coefficients

>0.45 for several drugs that are FDA approved for the use against lung cancer, such as vinorelbine, vincris-

tine, vinblastine, irinotecan, topotecan, and alectinib (Wishart et al., 2018). Notably, across all investigated

FDA-approved cancer drugs, molecule 1 (which was generated against NCI-H520, an NSCLC cell line) ex-

hibited the highest Tanimoto similarity with vinorelbine, a targeted drug for NSCLC.
8 iScience 24, 102269, April 23, 2021



Figure 5. Case study on multi-objective optimization including toxicity

Molecules generated against the NCI-H520 cell-line with a multi-objective reward function based on a combination of low

IC50 and low toxicity in Tox21 and SIDER tasks. For all fourteen molecules depicted, all Tox21 assay predictions are

negative. Molecules 1 and 2 are further discussed in the text.
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DISCUSSION

Summary

In this work wepresented PaccMannRL, a novel framework for molecular generation that enables us to condition

on the transcriptomic profile of the target cell or cancer site. By using RL optimizationwe demonstrated that our

proposed generative model is able to produce candidate compounds with high predicted efficacy (low IC50)

against a given target profile, even if this profile was never seen during training. Notably, this was achieved

despite the fact that the generator was never exposed to anticancer drugs explicitly but only pretrained on

bioactive compounds from ChEMBL (the only component that was trained on drugs with known anticancer ef-

fects is the critic). Moreover, an analysis of the generated compounds for four different cancer types revealed

that the predicted compounds share many structural similarities with known anticancer compounds for the

same cancer types that the generation was optimized for. In a case study, we briefly investigated the ability

of PaccMannRL to generatemolecules that fulfill multiple objectives (specifically high activity against a lung can-

cer cell line and low toxicity) and found many candidates with desired predicted properties.

Interpretation and future work

Although our results are a modest step toward disease-specific molecular generation, a lot of further optimiza-

tion is needed. For instance, subsidiary properties of a candidate drug that determine its potential for becoming

a successful anticancer compound (e.g., water solubility, drug-likeness, synthesizability or off-target cytotoxicity)

are not directly optimized. However, despite not explicitly incorporating them into the reward function, we find

that the produced molecules exhibit desired properties in terms of drug-likeness, water solubility, and ease of

synthesis.Onepossible future endeavor is to incorporate information in the reward function not only about drug

efficacy but also about other drug-relevant chemical properties; one such example was shown in the concurrent

optimization ofmolecules with a low IC50 and low toxicity. An additional investigation toward that endmight be

a substructure search for toxicophoreswithin the generatedmolecules. This could help towinnow the promising

molecules from those that exhibit low IC50due to cytotoxicity caused by a toxicophore. Another observationwe

made is that the stability of the conditional generation can diminish over RL training time and result in overly

simplistic molecules, especially if the learning rate is set too high. However, after pretraining of the SVAE

(and before starting the RL training), the generated molecules were found to be reasonably similar to the

training molecules (bioactive compounds fromChEMBL). We, therefore, conceive that for more targeted appli-

cations, an improved chemical space could be obtained by fine-tuning the SVAE on, e.g., anticancer drugs or

even bioactive molecules with a shared mechanism of action, like JAK inhibitors. If the set of possible target
iScience 24, 102269, April 23, 2021 9
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molecules is small, SMILES augmentation can further be used to improve the quality of molecular generators

(Arús-Pous et al., 2019). We also emphasize that the chemical space covered by the SVAE encompasses 86

distinct SMILES tokens, significantly more than in most related work and more than in landmark publications

that produced de novo molecules with high efficacy in vitro and in vivo (Zhavoronkov et al., 2019).

The resulting multimodal objectives may be difficult to optimize due to possibly counteracting/interfering gra-

dients. A possible approach to circumvent this challenge is potentially to use explicit compensation techniques

(Yu et al., 2020) or defining gradient-free global objectives (Häse et al., 2018). Another challenge that needs to

be overcome to improve the reliability and accuracy of the critic is the expected distributional differences be-

tween the data used for training (cancer cell lines) and the targeted data (human data from clinical trials). A

possible approach that can be explored is the exploitation of transfer learning techniques, as suggested in Shar-

ifi-Noghabi et al. (2020). Oftentimes, medical chemists do not start the drug design from scratch but from the

scaffold of an approved drug. The goal of the scaffold hopping is to find a drug with similar effects (e.g.

increased efficacy or reduced side effects). Although our framework enables users to incorporate prior knowl-

edge into the design process by priming the latent code, we have not yet explored the full potential of this idea

here. As the decoded molecule is not guaranteed to maintain similarity to the primer, the recently proposed

‘‘deep generative scaffold decorator’’ could be integrated into our framework to facilitate a more systematic

exploration and the possibility of adding fragments to established drug scaffolds (Arús-Pous et al., 2020). An

alternative future endeavor is to explore graph-based, instead of sequential, representations of molecules to

directly generate a molecular graph from the context set using a conditional structure generation framework

(Yang et al., 2019). For future work, one may conceive a generic framework where the molecule generation

can be conditioned on possibly multimodal context information such as a (multi)omics profiles, a target protein,

a primed drug, a drug scaffold, or a combination thereof. The resulting latent spaces, consisting of semantically

distinct modalities, could then be jointly explored bymachine learning techniques designed to operate on sets

instead of fixed-length vectors, such as permutation-invariant operations (Zaheer et al., 2017).

Conclusion

Due to growing evidence of our insufficient understanding of the mechanisms of action of drug candidates

even in clinical trials (Lin et al., 2019), the design of generative approaches that can, as shown here, bypass

the need for a detailed characterization of drug targets and cytotoxicity mechanisms may be a novel, valu-

able approach within generative chemistry.

Limitations of the study

Without IC50 assays on the investigated cell lines, the in vitro efficacy of the proposed molecules remains

unclear. Even in case of positive cell line drug sensitivity assays, these results may not translate to animal

models due to numerous reasons (e.g., adverse reactions or drug delivery). Therefore, the potential for

the presented molecules to become anticancer drugs cannot be conclusively assessed in this study.

Furthermore, the quality of the molecular generator is inherently limited by the predictive power of the

in silico IC50 evaluator and critically depends on how well this predictor generalizes across the chemical

space. In addition, the proposed molecules are represented by SMILES sequences that are generated

auto-regressively by using a stochastic sampling process, the common practice in SMILES generation.

When the seed is not fixed, a point in the latent space does not necessarily map to a unique molecule.

Resource availability

Lead contact

Jannis Born, jab@zurich.ibm.com.

Materials availability

This study did not generate any new materials.

Data and code availability

Code: the source code is publicly available on: https://github.com/PaccMann/. For a detailed example see:

https://github.com/PaccMann/paccmann_rl. To assess the critic, please see Manica et al. (2019).

Data: this study did not generate any new data and exclusively used publicly available databases. The tran-

scriptomic data used to pretrain the Profile VAE and the molecular data used to train the SMILES VAE are
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processed variants of TCGA (Weinstein et al., 2013) and CheMBL (Bento et al., 2013) and available via:

https://ibm.box.com/v/paccmann-pytoda-data. The GDSC (Yang et al., 2012) cell profiles as well as the

pretrained models can be found under the same link.

The interactive TMAP visualizations of the molecules generated by the (unbiased) SVAE can be found on

https://paccmann.github.io/rl/unbiased.html. The TMAPs of the cancer-site-specific candidate com-

pounds are accessible on https://paccmann.github.io/.

METHODS

All methods can be found in the accompanying transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102269.
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Figure S1: Architectural details of the conditional molecular generator; related to Figure 1.
A) A biomolecular profile VAE (PVAE) was pretrained on RNA-Seq data from TCGA to encode a transcriptomic
profile Xc into a latent code Zc, before attempting to decode Xc from it. B) Similarily, a sequential compound
generator VAE (SVAE) was trained to encode and decode SMILES representations Xs of molecules. C) PVAE and
SVAE are combined to obtain a conditional molecule generator. As shown in the graphical model, the combination is
achieved by using a permutation-invariant operation (e.g. addition) to fuse the latent spaces of omics profiles and
molecules to a joint, multimodal representation. D) Molecules are generated directly as SMILES sequences and are
assembled in a sequential process, one token at a time. A full cycle of this process includes a state (st, where s0 = Xc,
i.e. a TCGA RNA-Seq transcriptomic profile), a reward (Rt) and a generated candidate compound (Ct).

Conditional generator.
Our conditional generator is a molecule generator that produces a molecular structure represented

as its SMILES sequences (Weininger, 1988). SMILES sequences are preferable over (functional)
fingerprint-based representations of molecules (e.g. ECFP (Rogers and Hahn, 2010)) since they
have shown to be superior in both predictive (Jastrzebski et al., 2016; Manica et al., 2019) and
generative models for molecules (Bjerrum and Sattarov, 2018). In our use case, the generative
process is conditioned on a target biomolecular profile, e.g. from a patient or a disease. Inspired
by Gomez-Bombarelli et al. (2018), we concluded that variational autoencoders (VAE) are the ideal
generative model for our task since by design they bring about a structurally ordered latent space
that simplifies the combination of different information sources. Our conditional generator combines



two VAEs that are trained independently prior to being fused together: 1) a denoising VAE for cancer
profile encoding/generation (called PVAE, Figure S1A) and 2) a sequential VAE (SVAE) for SMILES
sequence generation (Figure S1B). The mathematical formulation of VAEs can be found in Kingma
and Welling (2014); Sohn et al. (2015). PVAE is pretrained on gene expression profiles (GEP) to
learn a consistent latent representation for biomolecular signatures. SVAE is pretrained on bioactive
drug-like molecules to learn the syntax of valid SMILES and general molecular semantics. Generative
models of SMILES sequences necessitate the ability to count Models that process SMILES sequences
greatly benefit from the ability to count the ring opening and closing symbols in a molecule, as a single
mistake in the sequential generation of a SMILES renders the entire string invalid. To circumvent
that standard recurrent and convolutional networks lack the proficiency to count, we utilize a stack
memory (Hopcroft and Ullman, 1969), in our case implemented through stack-augmented GRUs as
proposed by Joulin and Mikolov (2015) (for equations and other details of the SVAE and the stack
see subsubsection S1.3. Thereafter, the encoder of the PVAE is fused with the decoder of the SVAE
via their latent space (Figure S1C). The combination of the two models enables to learn a latent
space that links biomolecular profiles and chemical structures providing an effective way to sample
novel compounds given a specific GEP. In the RL optimization phase, the weights of the fused model
(which were pretrained independently) are fine-tuned using a reward from the critic.

Critic (C).
The critic is a multimodal drug sensitivity prediction model that evaluates the efficacy of any given

candidate compound against a biomolecular profile of interest, e.g. gene expression of a cancer cell
line. The critic outputs a non-negative reward that depends on the candidate compound predicted
IC50 for the target profile, such that low IC50 values associated with higher compound efficacy receive
higher rewards than high IC50 values. The reward is then used in a RL framework to update the
conditional generator. Following the most recent advances for multimodal drug sensitivity prediction
we herein utilize PaccMann as a critic (Manica et al., 2019).

The RL framework.
The conditional generator is retrained in combination with the critic in a RL-based optimization

process to tailor molecules towards the given GEP. First, the GEP is encoded into a latent space, Zc

(see Figure S1C). This embedding is then added to the latent encoding of a primer compound or
substructure (Zp). The advantage of using a primer is that it enables injection of prior knowledge
into the model by starting the generative process from an existing and proven effective compound or
functional group – instead of designing a compound from scratch. However, this priming is optional
and we do not only sample closely around existing compounds but we instead sample a larger fraction
of the chemical space. As can be seen in the graphical model in Figure S1C the molecule generation
is conditioned on a context Z, where in this work Z = {Zc, Zp}. Zc and Zp reflect embeddings
learned from semantically different data modalities (gene expression and molecules). To combine
these (latent) representations, we use summation because it is a permutation invariant operation
and has been proposed to combine a variable set of unstructured latent encodings (Zaheer et al.,
2017). Alternatives include mixup functions such as weighted sums or dimension-wise sampling from
a categorical (Bernoulli) distribution (Beckham et al., 2019). Our additive latent representation is
similar in concept to the conditional VAE with additive Gaussian encoding space (Wang et al., 2017).
Intuitively, this fusion presumably warps the latent space from encoding structural similarity (of
molecules or GEP) into functional similarity so as to aggregate molecules with similar predicted
efficacy for a given cell line (Gomez-Bombarelli et al., 2018). Note that using a primer compound or
substructure is optional and if no priming compound is used, simply the latent space representation
of the <START> token is added to the latent encoding of the target GEP.



Next, the conditional generator decodes the latent encoding, Zc + Zp, and generates a molecular
structure that, in combination with the GEP, is fed to the critic to produce a certain reward for the
generated compound, as illustrated in Figure S1C. Following the notation of Popova et al. (2018), the
conditional generator, G, acts as the agent and PaccMann (the multimodal IC50 prediction model,
C) represents the critic. The weights of C are fixed. We aim to optimize Θ, the parameters of G, to
produce candidate compounds, CT , that target a specific GEP, Xc. In contrast to Popova et al. (2018),
we define the set of states S as all possible SMILES strings (with length ≤ T ) paired with the target
GEP. The set of possible actions a that G can take is a set A, which is a vocabulary of all characters
and symbols of the canonical SMILES language. As depicted in Figure S1D, molecules are generated
by G by sampling an action at at each step(0 < t < T ) from p(at|st−1), where st−1 = (Ct−1, Xc) and
C0 is simply the <START> token. Terminal states S∗ ⊂ S are reached when either t = T or when the
terminal action aT = <END> has been sampled. G is trained to learn a policy, Π(Θ), by maximizing:

Π(Θ) =
∑

sT∈S∗

PΘ(sT )R(sT ) (1)

where PΘ(sT ) :=
∏

t=0:T p(at|st−1) and the state sT = (CT , Xc) is a tuple of the candidate compound
CT and the cell profile Xc and the reward R(sT ) = f(C(CT , Xc)) is the output of the critic C scaled
by a reward function f . In our experiments, all intermediate rewards R(st) are set to 0, since Ct

(the intermediate SMILES string) will in almost all cases not resemble a valid molecule. The sum
is approximated using policy gradients, specifically the REINFORCE algorithm (Williams, 1992)
and the reward function f for determining the reward from the predicted log micromolar IC50 is
computed by

R(ST ) = f(C(CT , Xc)) = exp

(
−C(CT , Xc)

α

)
(2)

. CT is the proposed compound, Xc the omic profile and α ∈ R+ is a hyperparameter that determines
how much the generator is rewarded for designing effective versus ineffective compounds see Figure S2).
Smaller α leads to a greedier generator. For all simulations, we set α = 5.

f exp αx x

Figure S2: Reward function of conditional generator; related to Figure 2. Reward function to map the
predicted IC50 of the critic to a reward being fed to the conditional generator. Note that the predictions are given in a
log micromolar scale (and not as pIC50), so that a value of 0 corresponds to 1µmol, a commonly considered efficacy
threshold. In all experiments and this plot, α was set to 5.



S1.2 Data.

PVAE. For the PVAE, we employed a training dataset of 11,592 (standardized) RNA-Seq GEPs
from healthy and cancerous human tissue from the TCGA database and validated it on 1,289 samples
from the same database (Weinstein et al., 2013). Since the dataset was too small to train on the full
cohort of 20,000 genes and most genes are correlated to a subset of landmark genes, the number of
genes was reduced to the same 2,128 genes as used in Manica et al. (2019), following the network
propagation procedure described in Oskooei et al. (2019).
SVAE. For pretraining the SVAE, a dataset containing SMILES of 1,576,904 compounds was
compiled from the ChEMBL database (Gaulton et al., 2016). 10% of the samples were held out for
performance validation, the rest was used for training. Starting from the entire ChEMBL database,
no specific handling was applied to parent molecules, salts, pepttides or chelators but SMILES that
could not be parsed by RDKit were cut off. No sequence length or molecular weight cutoff was needed
since our implementation uses an efficient representation of varying lenghts’ inputs in PyTorch.

For RL optimization of G, we used GEPs publicly available from GDSC (Yang et al., 2012) and
CCLE (Barretina et al., 2012) databases. Since the RNA-Seq of these cancer cell line databases were
passed through the PVAE (pretrained on human samples from TCGA (Weinstein et al., 2013)), we
compared the standardized gene expression distributions for the selected genes across these databases
and found good agreement (compare Figure S4 in Supplementary Material S2), in alignment with
the reported consensus between transcriptomic data in CCLE and TCGA (Ghandi et al., 2019). To
train the critic (C), IC50 drug sensitivity data from GDSC and CCLE was utilized.

S1.3 Implementation and training details

All models were implemented in PyTorch 1.0 and trained on a cluster equipped with POWER8 processors
and a NVIDIA Tesla P100.

PVAE. The model consisted of four dense layers of [1024, 512, 256 and 200] units with ReLU
activation function and dropout of p = 0.2 in both, the encoder and the decoder. The dimensionality
of the latent space (n) was 128. We minimized the variational loss, consisting of the reconstruction
loss and KL divergence, using Adam optimizer (β1 = 0.9, β2 = 0.999, ε = 1e−8) and a decreasing
learning rate starting at 0.001 (?). To further regularize the PVAE, denoising methods were employed
by 1) applying a dropout of 0.1 on the input genes and 2) adding noise to gene expression values
(ε ∼ N (0, 0.1)). The model was trained with a batch size of 64 for a maximum of 2000 epochs.

SVAE. The model was trained on molecules provided in SMILES notation, the longest molecules
had 1423 tokens. Both encoder and decoder consisted of two layers of bidirectional GRU (hidden
size of 128, dropout of 0.1 at the first layer), each complemented with 50 parallel memory stacks
with the depth of 50. The latent space of SVAE had the same dimensionality as the PVAE (128) to
enable the addition of encodings. Similar optimization parameters as PVAE were used. This model
further utilized teacher forcing (Williams and Zipser, 1989), i.e., the model’s output is conditioned
on the previous ground truth sample as opposed to its generated output. Whilst this significantly
simplifies learning, it may drive the generator to predominantly rely on the decoder (thus neglecting
the latent encoding). This so called posterior collapse was resolved by applying a token dropout rate
of 0.1 during teacher forcing as suggested by Bowman et al. (2016). In addition to token dropout, KL
cost-annealing (Bowman et al., 2016) was employed during training, The model was trained with a
batch size of 128 for a maximum (early stopping) of ∼ 110,000 steps (i.e., exactly 10 epochs) During

ssec:rnaseqcomparison


training, KL cost-annealing as described in (Bowman et al., 2016) was explored in order to trade-off
reconstruction and KL loss.

SVAE – Details on StackGRU architecture. To enable neural networks to count, Joulin
and Mikolov (2015) introduced stack-augmented RNN. Stack-RNNs complement RNNs with a
differentiable push-down stack operated through learnable controllers, opt at step t, that involve
three operations: PUSH, POP and NO-OP (see Figure S3).

opt = s(Wopht), (3)

where ht is the hidden state, Wop is a 3×H matrix (H being the dimension of hidden state) and s is
the softmax function. At each time step the controller probabilities are determined from Equation 3
and the stack memory is updated using the learned controller via a multiplicative gating mechanism:


St[0] = opt[PUSH]s(Wsoht) + opt[POP]St−1[1]+

opt[NO-OP]St−1[0]

ht = s(WiXt +WRht−1 +WsiSt−1)

(4)

where St is the stack, Wso is a 1×H matrix and Wsi is a H ×N matrix (N being the stack height).
Wi is the input matrix applied to the sequence and WR is the recurrent matrix. It should be noted
that for the sake of brevity, we only show the update equation for the topmost element of the stack
in Equation 4.

StackGRU

C N

StackGRU

μ

σ

Z

Z StackGRU StackGRU StackGRU
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C N <END>
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WiW Wo

Operation

S St - 1 t
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Figure S3: Stack-GRU architecture employed in the SMILES VAE; related to Figure 1. (A) The StackGRU
architecture adopted in the SVAE. The stack-augmented GRU (StackGRU) architecture complements a regular GRU
with a stack that allows one out of three possible operations at each time-step: PUSH, POP and NO-OP. The operation
vector is determined through a softmax from the hidden state of each time step.
(B) and (C) are encoder and decoder of the SVAE architecture. (B) encodes the SMILES sequences into multivariate
Gaussians with parameters µ and σ. (C) The decoder StackGRU units reconstruct the SMILES sequence from a latent
representation (Zp) sampled from the multivariate Gaussian.

Critic. The critic was trained using the parameters reported in Manica et al. (2019) and replicating
the best performing architecture based on multiscale convolutional encoders.



RL training. In order to maximize Equation 1, we employed Adam optimizer (β1 = 0.9, β2 = 0.999,
ε = 1e−4, weight decay 1e−4) and a decreasing learning rate starting at 1e−5. The gradients were
clipped to 2 to prevent G from destroying its chemical knowledge about SMILES syntax obtained
through pretraining on ChEMBL. The reward function hyperparameter α was set to 5.

S1.4 Additional critics for toxicity prediction

For the case study presented in ??, we utilized the output of two additional predictive neural networks
to compute the reward for the generative model. For these experiments, the reward function was
computed as:

R(ST ) = w1 · f(CIC50(CT , Xc)) + w2 · CTox21(CT ) + w3 · CSIDER(CT ) (5)

We note that the first summand is identical to the reward function used in the remaining experiments
(compare Equation 2). Let ΘTox21 be the neural network that predicts the toxicity of the 12 Tox21
assays. Then CTox21(CT ) = 1 iff the output of ΘTox21 is < 0.5 for all 12 Tox21 assays. Otherwise
the reward is 0 (as ΘTox21 predicted that CT is toxic in at least one assay with a probability > 0.5).
Similarly, if ΘSIDER is the network that predicts 27 types of adverse drug reactions, then the reward
CSIDER(CT ) = 1 − ȳ, i.e., the inverted mean of the adverse reaction types. Finally, ~w holds the
weights to compute the reward as the weighted sum of the three individual components. We set
w1 = 1, w2 = 0.2 and w3 = 0.1. ΘTox21 and ΘSIDER are parametrized using a multiscale convolutional
attention (MCA) neural network, a simplification of the architecture developed in Manica et al.
(2019) which is detailed in Markert et al. (2020).

S2 Gene expression in human samples and cancer cell lines

Comparing the standardized gene expression values of GDSC (Yang et al., 2012) and CCLE (Barretina
et al., 2012) with the one from human samples from TCGA (Weinstein et al., 2013) reveals a similarity
(Figure S4). This justifies our choice of utilizing the encoder of the PVAE for cell line data during
the RL regime, although it was initially pretrained on human samples from TCGA. By pretraining
on TCGA, it was possible to leverage more data (∼10k samples compared to <1k in GDSC) which
enabled to learn more generic encodings of GEP data.
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Figure S4: Distribution of RNA-Seq data across databases; related to Figure 1. Distribution of standardized
gene expression values across the cancer cell line databases CCLE and GDSC as well as the human sample database
TCGA.

S3 Results for gene expression profile VAE and SMILES VAE

Profile VAE (PVAE) The pretraining results of the PVAE are presented in Figure S5A, B
and C. As shown in Figure S5B, the reconstructed gene expression profiles (GEP), shown in blue,
as well as the generated GEPs (green) accurately mimic the distribution of the original GEPs
(red). Furthermore, the sampled GEPs follow the same lognormal distribution as the original data.
Figure S5C shows that the generated GEPs exhibit a higher similarity to the testing than to the
training sample. Overall, these results suggest that the PVAE learns to embed GEPs meaningfully
into a latent space that allows both reconstruction and generation of new realistic GEPs of human
cells.

SMILES VAE (SVAE) Figure S5D, E and F give a quantitative analysis of the SVAE results
following pretraining for 10 epochs with ∼1.4 million structures from ChEMBL. The kernel density
estimate (KDE) of the dimensions of the latent space (Figure S5E) validates that the SVAE fulfills
the variational constraint as imposed by the Kullback-Leibler divergence in its loss function. We
then utilized Tanimoto similarity (Tanimoto, 1958) to compare the ECFP (Rogers and Hahn, 2010)
of a subset of 1000 generated molecules with the training and test data from ChEMBL. Figure S5F
presents the distributions of the highest Tanimoto similarity between each generated compound and
all compounds in training and test dataset respectively. Only a negligible fraction of the generated
molecules existed in either of the datasets, whereas the vast majority had a Tanimoto similarity
(τ) between 0.2 and 0.6 suggesting that our model learned to propose novel molecular structures
from the chemical space of about 1030 to 1060 molecules (Polishchuk et al., 2013). A snapshot of the
interactive Faerun visualization (Probst and Reymond, 2018) of the TMAP Probst and Reymond
(2020) of real and generated molecules is shown in Figure S7.

Figure S6A, showcases a panel of 12 generated molecules for qualitative assessment of the molecular
structures. The generated molecules generally share drug-like structural features. To inspect the
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Figure S5: Results of pretrained PVAE and SVAE model; related to Figure 2. PVAE: (A) Development of
validation error over the course of training. Reconstruction loss (MSE) and KL divergence are shown separately for
comparison. (B) Distribution of gene expression values in real, reconstructed and generated samples. (C) Sampled (i.e.
generated) data from the latent space of PVAE compared against training and test datasets from TCGA. SVAE: (D)
Development of validation error over the course of training. Cross-entropy between target and generated SMILES is
shown separately from the KL divergence (log scale for visual clarity). One epoch corresponds to ∼11 000 training
steps. (E) Kernel density estimates of all 128 latent dimensions before decoding the test samples. As enforced by the
variational constraint, the latent variables follow Gaussian distributions. (F) The Tanimoto similarity between the
Morgan fingerprints (ECFP) of the generated molecules and the structures from ChEMBL train and test datasets is
used to verify that the generated compounds are sufficiently different from the training data.

smoothness of the latent space of molecules, we encoded a reference molecule shown at the top of
Figure S6B into the latent space and decoded four points in the vicinity of the reference molecule
leading to the generation of structurally similar yet different compounds.
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Figure S6: Qualitative inspection of generated molecules; related to Figure 2. (A) A sample of 12 molecular
structures produced with the SVAE. (B) The molecule depicted at the top was encoded into the latent space. The four
molecules below show different decodings from the latent space in the vicinity of the starting molecule.

Figure S7: Snapshot of the interactive TMAP visualization; related to Figure 3. Generated molecules
(green) and ChEMBL compounds (red) are shown through the TMAP algorithm which visualizes the chemical
space by aggregating molecules with similar fingerprints (ECFP). The similarity in fingerprints is proportional to
the distance of the repsective nodes on the spanning tree. To explore the visualization interactively, please visit
https://paccmann.github.io/rl/unbiased.

https://paccmann.github.io/rl/unbiased


S4 Nearest neighbors in ChEMBL

To further validate the four site-specific compounds as proposed by our model, Figure S8 depicts
the respective nearest neighbors (measured by Tanimoto similarity) in the ChEMBL database of
bioactive compounds.
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Figure S8: Nearest neighbors of our site-specific compounds in the ChEMBL database; related to Figure
2. A) For all four site-specific generated compounds, we performed a similarity search across all molecules in the
ChEMBL database. The nearest neighbors are depicted together with relevant drug-like properties. B) NSC-715466
was tested in the NCI-60 database (Shoemaker, 2006), where it showed the strongest cell growth inhibition effect
against leukemia cell lines. The GIPRCNT is a metric to measure cytotoxicity, where 100% refers to unchanged cell
proliferation (identical to the control cells), 0% to complete stopping of cell proliferation and -100% to a full inhibition
of all cells. C) NSC-715466 showed only moderate anticancer effects as reported in the NCI-60 database.

S5 Validation of critic (PaccMann) on ChEMBL data

Our critic, PaccMann, is an anticancer drug sensitivity prediction model that has been trained only
on anticancer compounds from GDSC. Since IC50 cell screening data for compounds with knowingly
no anticancer effects are notoriously unavailable, PaccMann lacks a negative training set which would
help extending its generalization across the space of known anticancer compounds. One could thus
suspect that PaccMann is generally a flawed evaluator of compounds falling outside the space of
anticancer drugs and that it would be biased towards predicting high efficacy for compounds without
anticancer effects.



For that reason, Figure S9 shows the predicted efficacy of all anticancer compounds from GDSC
(both training and testing data) as well as the predicted efficacy of a representative set of 1000
molecules from ChEMBL. The predicted logarithmic IC50 across all cancer drugs was 2.2 ± 2.2
whereas it was only 3.2± 1.6 for ChEMBL molecules.
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Figure S9: Comparison of the predicted IC50 of GDSC drugs and bioactive, drug-like compounds from
ChEMBL; related to Figure 2. The density plot of IC50 values as predicted by PaccMann from 210 cancer drugs
from GDSC (blue) and 1000 molecules from ChEMBL (orange) across all 965 cell lines from the GDSC panel shows
that only a small portion (7.7%) of ChEMBL compounds are predicted as effective against a given cell line, whereas
this holds for a significantly larger fraction of GDSC compounds.

S6 Possible synthesis routes for generated molecules

In order to assess the complexity of a potential synthesis of compound proposed by our model
Figure S10 shows a predicted synthesis route for a compound gen rated against nervous system
cancer.

While the model proposes a panel of possible synthesis routes, the one depicted in Figure S10
decomposes the synthesis into four reactions and a total of ten commercially available reactants.
The simplicity of the proposed route as well as the high confidence scores (> 0.8) associated to each
reaction seem to be promising indicators towards a possible synthesis. Details of the synthesis route
are depicted at the end of document.
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Figure S10: A retrosynthesis route for a generated molecule; related to Figure 4. A possible synthesis route,
predicted by a molecular retrosynthesis model (Schwaller et al., 2020) is shown for a compound proposed against
nervous system cancer (top middle). The predicted synthesis consists of four sequential reactions with a total 10
commercially available reactants (green).
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