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Dengue is a public health problem with around 390 million cases annually and is caused by four distinct 
serotypes. Infection by one of the serotypes provides lifelong immunity to that serotype but have a higher 
chance of attracting the more dangerous forms of dengue in subsequent infections. Therefore, a perfect strategy 
against dengue is required. Dengue vaccine with 42-80% efficacy level has been licensed for the use in reducing 
disease transmission. However, this may increase the likelihood of obtaining the dangerous forms of dengue. In 
this paper, we have developed single and two-serotype dengue mathematical models to investigate the effects 
of vaccination on dengue transmission dynamics. The model is validated against dengue data from Kupang city, 
Indonesia. We investigate the effects of vaccination on seronegative and seropositive individuals and perform 
a global sensitivity analysis to determine the most influential parameters of the model. A sensitivity analysis 
suggests that the vaccination rate, the transmission probability and the biting rate have greater effects on the 
reduction of the proportion of dengue cases. Interestingly, with vaccine implementation, the mosquito-related 
parameters do not have significant impact on the reduction in the proportion of dengue cases. If the vaccination 
is implemented on seronegative individuals only, it may increase the likelihood of obtaining the severe dengue. 
To reduce the proportion of severe dengue cases, it is better to vaccinate seropositive individuals. In the context 
of Kupang City where the majority of individuals have been infected by at least one dengue serotype, the 
implementation of vaccination strategy is possible. However, understanding the serotype-specific differences 
is required to optimise the delivery of the intervention.

1. Introduction

Dengue is a public health problem and threatens two thirds of the 
world’s population with around 390 million cases annually [1]. Nealon 
et al. [2] reported that the number of dengue cases is under-reported 
which may increase the possibility disease burden. Shepard et al. [3] 
estimated that around 58,40 million symptomatic cases with 13.586 
fatal cases and the total annual cost of dengue was around US$ 8.9 
billion.

Dengue is caused by four distinct serotypes where infections by one 
of the serotypes provide long-life immunity to the serotype they are 
infected with. Dengue is transmitted via a bite of Aedes mosquitoes 
particularly Aedes aegeypti which are mostly the main vector in most 
countries including Indonesia. When an infected mosquito bites hu-

mans, they have a chance to attract dengue. The infected human can 
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then recover from dengue and have cross immunity for around six 
months [4]. After that, they are re-susceptible to the other dengue 
serotypes. The process repeats and the previously infected human may 
be re-infected by the other strain. The secondary infections may result in
more dangerous forms of dengue, known as Dengue Hemorrhagic Fever 
(DHF) and Dengue Shock Syndrome (DSS) with the fatality rate of 20% 
without a proper treatment [5]. This is due to the effects of antibody-

dependent enhancement (ADE). This means that strategies should be 
effective against all dengue serotypes.

A dengue vaccine with efficacy of around 54-77% has been approved 
for the use in reducing dengue transmission [6]. The vaccine effective-

ness depends strongly on the age group and the transmission level [7]. 
Ferguson et al. [7] found that the vaccination benefits the entire pop-

ulation (seronegative and seropositive) in areas with high transmission 
levels. In areas with low and moderate transmission levels, an increase 
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in the number of secondary infections may happen. Aguiar et al. [6] 
found that the use of dengue vaccine may increase the disease burden. 
Furthermore, Zheng et al. [8] performed cost-benefit analysis of the use 
of dengue vaccine and found that the routine vaccination would reduce 
the yearly illness cost by around 22-23% in Latin American and Asian 
countries.

A number of mathematical model have been formulated to investi-

gate disease transmission dynamics [9] including the effects of dengue 
vaccine on its transmission dynamics. Aguiar et al. developed an age-

structured mathematical model to assess the impact of vaccine on 
dengue transmission dynamics when it is implemented on different age 
group [6]. They found that the vaccine is effective if we vaccinate the 
seropositive individuals. The results are similar to that found by Ndii 
et al. [10] and Ferguson et al. [7]. Agusto et al. [11] developed a 
mathematical model and used the optimal control theory to analyse the 
optimal strategies for reducing the dengue transmission. They found 
that the use of insecticide and vaccine can reduce the same number 
of infections regardless of the weights on the costs. A dengue model 
with vaccination has been formulated and analysed by Rodrigues et al. 
[12]. They analysed the optimal control strategies to dengue and found 
that the reduction in the number of dengue cases depends on the type 
of vaccine and vaccination coverage. Aldila et al. [13] developed a age-

structure dengue model and analysed several control parameters such as 
the treatment and the drop-out rates for children and adults. They found 
that the implementation of the treatment before the occurrence of the 
outbreak is more effective if the budget is limited. Shim [14] formulated 
and a mathematical model and analysed optimal dengue vaccination to 
reduce dengue transmission and focused on the vaccination on seroposi-

tive individuals. The results showed that at the early phase of epidemics, 
optimal dengue vaccination rates for seropositive individuals are high-

est. This implies that intense effort at the early phase of an epidemic is 
required. Pongsupum et al. formulated a mathematical model of dengue 
with vertical transmission and used an optimal control approach to ex-

amine the effects of vaccination, insecticides, and isolation. It was found 
that, although the administration of isolation and insecticides resulted 
a faster decline of the infected human population, a greater expense in 
the initial effort is required. On the other hand, the required vaccination 
effort is significantly less [15].

In this paper, we formulate single and two serotype dengue math-

ematical models model with vaccination and use the optimal control 
approach to determine the optimal vaccination strategy against dengue. 
We validate the model against 2016 dengue data in Kupang city, In-

donesia. We perform a global sensitivity analysis to determine the most 
influential parameters of the model. Unlike the aforementioned work, 
in this paper, we consider seasonality using sinusoidal function. Sea-

sonal forcing is included because the Kupang city has a strong dry and 
rainy seasons where the more mosquitoes exists in rainy season.

The remainder of the paper is organised as follows. Section 2

presents the single serotype dengue model with vaccination. This con-

sists of model formulation, data and parameter estimation, sensitivity 
analysis, and optimal control analysis. Section 3 presents a two serotype 
dengue model, consisting of sensitivity analysis and optimal control 
analysis. Finally, the discussion and conclusions are presented.

2. Single serotype dengue mathematical model with vaccination

2.1. Model formulation

We present a mathematical model of dengue with vaccine. We adapt 
a single dengue model by Ndii et al. [16] for the case of vaccination. 
In the model, human population is divided into susceptible (𝑆𝐻 ), ex-

posed (𝐸𝐻 ), infected (𝐼𝐻 ) and recovered (𝑅𝐻 ). We set the vaccine as a 
control and once the vaccine is implemented, the individuals move to 
recovered compartment. We take into account waning immunity. That 
is, the recovered individuals may loss immunity and become susceptible 

again. The mosquito population is divided into aquatic (𝐴𝑁 ), suscepti-

ble (𝑆𝑁 ), exposed (𝐸𝑁 ), and infected (𝐼𝑁 ). The model is governed by 
the following system of differential equation

𝑑𝑆𝐻

𝑑𝑡
= −𝑏𝑁𝑇𝑁𝐿𝐼𝑁𝑆𝐻 − 𝜇𝐻𝑆𝐻 − 𝑢𝑆𝐻 + 𝜇𝐻 + 𝜃𝑢𝑅𝐻, (1)

𝑑𝐸𝐻

𝑑𝑡
= 𝑏𝑁𝑇𝑁𝐿𝐼𝑁𝑆𝐻 − 𝛾𝐻𝐸𝐻 − 𝜇𝐻𝐸𝐻, (2)

𝑑𝐼𝐻

𝑑𝑡
= 𝛾𝐻𝐸𝐻 − 𝜎𝐼𝐻 − 𝜇𝐻𝐼𝐻 , (3)

𝑑𝑅𝐻

𝑑𝑡
= 𝜎𝐼𝐻 + 𝑢𝑆𝐻 − 𝜃𝑢𝑅𝐻 − 𝜇𝐻𝑅𝐻, (4)

𝑑𝐴𝑁

𝑑𝑡
= 𝜌𝑁

𝐹𝑁

2
(1 − (𝐴𝑁 )) −

(
𝜏𝑁 + 𝜇𝑁𝐴

)
𝐴𝑁, (5)

𝑑𝑆𝑁

𝑑𝑡
= 𝜏𝑁

𝐴𝑁

2
−
(
𝑏𝑁𝑇𝑁𝐼𝐻 + 𝜇𝑁 (𝑡)

)
𝑆𝑁, (6)

𝑑𝐸𝑁

𝑑𝑡
= 𝑏𝑁𝑇𝑁𝐼𝐻𝑆𝑁 −

(
𝛾𝑁 + 𝜇𝑁 (𝑡)

)
𝐸𝑁, (7)

𝑑𝐼𝑁

𝑑𝑡
= 𝛾𝑁𝐸𝑁 − 𝜇𝑁 (𝑡)𝐼𝑁 , (8)

where

𝜇𝑁 (𝑡) = 𝜇𝑁0

(
1 − 𝜂 cos

(
2𝜋(𝑡+𝜔)

365

))
.

The susceptible individuals are exposed after being bitten by infected 
mosquitoes at a rate 𝑏𝑁𝑇𝑁 , where 𝑏𝑁 is the biting rate and 𝑇𝑁 is the 
probability of successful transmission. The exposed individuals become 
infectious at a rate of 𝛾𝐻 and then recovered at a rate of 𝜎. The suscepti-

ble individuals are vaccinated at rate 𝑢. The parameter 𝜃 represents the 
waning immunity process. The mosquito population is produced after 
the male and female mosquitoes mate and produce offspring at a rate 
𝜌𝑁 and its growth is limited by carrying capacity, K, which is governed 
by

𝜌𝑁
𝐹𝑁𝑀𝑁

𝐹𝑁 +𝑀𝑁

(
1 −

𝐴𝑁

𝐾

)
. (9)

We assume that the ratio of male and female mosquitoes is 1:1, and 
hence the 𝑀𝑁 = 𝐹𝑁 , and be normalised the equation by 𝐾 we obtain

𝜌𝑁
𝐹𝑁

2
(1 −𝐴𝑁 ).

Susceptible mosquitoes become exposed to dengue after bitting in-

fected human at a rate 𝑏𝑁𝑇𝑁 and then become infectious at a rate 𝛾𝑁 . 
The infected mosquitoes remain infectious for the rest of their life.

2.2. Data and parameter estimation

In this part, we estimate the parameter values using 2016 weekly 
data of dengue cases in Kupang city, East Nusa Tenggara, Indonesia. 
The data has been obtained from The Health Office of Kupang City, East 
Nusa Tenggara Province. We use the model before the implementation 
of vaccination. We parameterise the model using ‘lsqnonlin’ function in 
MATLAB. There are four parameters to be estimated: 𝑇𝑁 , 𝛾𝐻 , 𝜂, 𝜔. The 
other parameters are obtained from the literature and are given in Ta-

ble 1. The human death rate is taken to be 1/66.5 [17]. The vaccine 
efficacy is set to be 0.5 for the seronegative individuals and 0.77 for 
seropositive individuals [6, 18]. The period of cross immunity is taken 
to be 6 months [4, 14]. The rate of antibody-dependent enhancement is 
set to be 1.1 [19]. The average mosquito death rate and the reproduc-

tion rate are set to be 1/14 and 1.25, respectively [20, 16]. In addition, 
the biting rate and the aquatic mosquito death rate are 0.63 and 1/14 
respectively. Detail of the parameter values and units are given in Ta-

ble 1. As the model is formulated in the proportion, we divided the 
number of infection with 402286, which is the total population in Ku-

pang city in 2016.
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Table 1. Parameter descriptions, values and sources for the mathematical models.

Symbol Description Value Unit Source

𝑇𝑁 Transmission probability 0.22095 N/A Fitted

𝑏𝑁 Biting rate 0.63 day-1 [32]

𝜔 Phase 47.772 day Fitted

𝜇𝑁0 Average adult mosquito death rate 1/14 day-1 [20]

𝜏𝑁 Maturation rate 1∕10 day-1 [20]

𝜎 Recovery rate 1/5 day-1 [33]

𝜂 Seasonality amplitude 0.551253 N/A Fitted

𝜌𝑁 Reproductive rate 1.25 day-1 [16]

𝜇𝑁𝐴 Aquatic death rate 1∕14 day-1 [20]

𝛾𝑁 Progression from exposed to infectious class (mosquitoes) 1/10 day-1 [34]

𝛾𝐻 Progression from exposed to infectious class (human) 0.199999 day-1 Fitted

𝐿 Ratio of carrying capacity in comparison to total human population 3 N/A [34]

1∕𝛼 Cross immune period 182.5 day [14, 4]

𝜖1 Vaccine efficacy for seronegative individuals 0.5 N/A [6, 18]

𝜖2 Vaccine efficacy for seropositive individuals 0.77 N/A [6, 18]

𝜁 The rate of antibody-dependent enhancement 1.1 N/A [19]

𝜇𝐻 Human death rate 1/(66.5) year-1 [17]

𝑢1 Control/vaccination rate on seronegative individuals [0 1] day-1 Simulated

𝑢2 Control/vaccination rate on seropositive individuals [0 1] day-1 Simulated

Fig. 1. Plot of the model’s simulation and the observed dengue cases in Kupang 
City, East Nusa Tenggara, Indonesia.

We minimise the sum of squared error which is given by

𝑆𝑆𝐸 =
𝑚∑
𝑛=1

(
𝑦𝑛 − 𝑓𝑛(𝑥)

)2
(10)

where 𝑦𝑛 is the total proportion of human dengue cases up to week 52 
and 𝑓𝑛(𝑥) is the total proportion of human dengue up to week 𝑛 from 
model’s simulation.

The fitted values are 𝑇𝑁 = 0.22095 (CI: 0.21875, 0.22315), 𝜂 =
0.551253 (CI: 0.42683, 0.67567), 𝜔 = 47.772 (CI: 45.45158, 50.09330), 
𝛾𝐻 = 0.199999 (CI: 0.01069, 0.38930) with the residual norm of 
2.092210406871739 ×10−8 and the plot of simulated and observed values 
is given in Fig. 1. It shows that the model fits well with the data. We 
also estimate using Multistart in Matlab and found the similar results 
and hence it found the global optimum.

2.3. Sensitivity analysis

In this part, we perform a global sensitivity analysis to determine 
the important parameters of the model. We use the combination of Latin 
Hypercube Sampling (LHS) in conjunction with Partial Rank Correlation 
Coefficient (PRCC) to assess the influential parameters of the model.

Fig. 2. PRCC values when measured against the increasing proportion of the 
dengue infections.

Latin Hypercube Sampling is a stratified sampling without replace-

ment technique that divides the parameter ranges into 𝑁 equal proba-

bility intervals and samples are randomly drawn from each interval [21, 
22]. PRCC measures the nonlinear but monotonic relationship between 
inputs and outputs [21, 22]. In our analysis, the inputs are the param-

eters and the model’s outcomes are the cumulative number of infected 
individuals for single serotype dengue model, and primary, secondary 
and overall infections for two serotype dengue model.

The outcome of interest is the increasing number of infected indi-

viduals which is

𝐶𝑝(𝑡) =

𝑇

∫
0

(𝛾𝐻𝐸𝐻 )𝑑𝑡, (11)

where 𝑇 is the final time of interest. Fig. 2 shows that the trans-

mission probability (𝑇𝑁 ), the biting rate (𝑏𝑁 ), and the vaccination rate 
(𝑢) are the most influential parameters. The first two have positive rela-

tionship and the last one has negative relationship. This indicates that 
when the values of 𝑇𝑁 and 𝑏𝑁 increase, the total proportion of dengue 
infection also increases. On the other hand, if the vaccination rate (𝑢)
increases, the total proportion of infection decreases. This indicates that 
increasing the vaccination rate and reducing the transmission probabil-

ity and the biting rate can minimise the proportion of dengue infections. 
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Furthermore, these three parameters strongly influential since the early 
period of epidemics and remain influential and govern the disease trans-

mission dynamics until the end period. The remain parameters (𝜔, 𝜇𝑁0, 
𝜎) have negative relationships although their influence is not as strong 
as the other three parameters. For example, if the average death rate of 
mosquitoes is high (short mosquito lifespan), the proportion of dengue 
infections has declined.

2.4. Optimal vaccination strategy in the presence of single serotype dengue

The aim of this study is to study the optimal vaccination strategy. 
Let the 𝑊1, 𝑊2 and 𝑊3 are the weight constant that represent the cost 
of treatment of exposed and infected individuals, and vaccination, re-

spectively. We aim to minimise the proportion of infected individuals 
and cost of vaccination. We define an objective the objective functional 
to be minimised as

𝐽 (𝑢) =

𝑡𝑓

∫
0

(
𝑊1𝐸𝐻 (𝑡) +𝑊2𝐼𝐻 (𝑡) +𝑊3𝑆𝐻 (𝑡)𝑢2(𝑡)

)
𝑑𝑡 (12)

subjected to the Model (1)–(8).

We use the quadratic terms in the control variables to represent the 
nonlinear cost in the implementation of the control. It is generally be-

lieved that there is no linear relationship between effects of intervention 
and the cost of intervention [23, 11] and hence the quadratic costs have 
been commonly used [11, 13, 23, 24, 25, 26]. This approach is rather 
conventional in the optimal control problems of the epidemiological 
modelling and this simplifies the mathematical analysis [23, 26]. The 
use of linear term in the cost function leads to bang-bang control [23, 
27, 28]. The other work that used other terms in the control variables 
can be found in [29, 30], which can be considered for the future inves-

tigation. Explanations of the optimal control approach in the biological 
problems can be found in [28]. The Hamiltonian function is given by

𝐻 =𝑊1𝐸𝐻 (𝑡) +𝑊2𝐼𝐻 (𝑡) +𝑊3𝑆𝐻 (𝑡)𝑢2

+ 𝜆𝑆𝐻

(
−𝑏𝑁𝑇𝑁𝐿𝐼𝑁𝑆𝐻 − 𝜇𝐻𝑆𝐻 − 𝑢𝑆𝐻 + 𝜇𝐻 + 𝜃𝑢𝑅𝐻

)
+ 𝜆𝐸𝐻

(
𝑏𝑁𝑇𝑁𝐿𝐼𝑁𝑆𝐻 − 𝛾𝐻𝐸𝐻 − 𝜇𝐻𝐸𝐻

)
+ 𝜆𝐼𝐻

(
𝛾𝐻𝐸𝐻 − 𝜎𝐼𝐻 − 𝜇𝐻𝐼𝐻

)
+ 𝜆𝑅𝐻

(
𝜎𝐼𝐻 + 𝑢𝑆𝐻 − 𝜃𝑢𝑅𝐻 − 𝜇𝐻𝑅𝐻

)
+ 𝜆𝐴𝑁

(
𝜌𝑁

𝐹𝑁

2
(1 − (𝐴𝑁 )) −

(
𝜏𝑁 + 𝜇𝑁𝐴

)
𝐴𝑁

)

+ 𝜆𝑆𝑁

(
𝜏𝑁

𝐴𝑁

2
−
(
𝑏𝑁𝑇𝑁𝐼𝐻 + 𝜇𝑁 (𝑡)

)
𝑆𝑁

)
+ 𝜆𝐸𝑁

(
𝑏𝑁𝑇𝑁𝐼𝐻𝑆𝑁 −

(
𝛾𝑁 + 𝜇𝑁 (𝑡)

)
𝐸𝑁

)
+ 𝜆𝐼𝑁

(
𝛾𝑁𝐸𝑁 − 𝜇𝑁 (𝑡)𝐼𝑁

)
,

(13)

where 𝜆𝑆𝐻
, 𝜆𝐸𝐻

, 𝜆𝐼𝐻 , 𝜆𝑅𝐻
, 𝜆𝐴𝑁

, 𝜆𝑆𝑁
, 𝜆𝐸𝑁

, 𝜆𝐼𝑁 are the associated ad-

joints for the states 𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑅𝐻 , 𝐴𝑁 , 𝑆𝑁 , 𝐸𝑁 , 𝐼𝑁 , respectively.

In the hamiltonian function, 𝐻 , each adjoint function multiplies the 
right-hand side of the differential equation of its corresponding state 
function. The first term in 𝐻 is from the integrand of the objective 
functional.

Theorem 2.1. There exist optimal controls, 𝑢∗ and state solutions of the 
corresponding system that maximise 𝐽 (𝑢) over the set 𝑈 . Then there exist 
adjoint variables 𝜆𝑙 satisfying

𝑑𝜆𝑙

𝑑𝑡
= − 𝜕𝐻

𝜕𝑙

where 𝑙 = 𝑆𝐻, 𝐸𝐻, 𝐼𝐻 , 𝑅𝐻, 𝐴𝑁, 𝑆𝑁, 𝐸𝑁, 𝐼𝑁 and with transversality condi-

tion 𝜆𝑖(𝑡𝑓 ) = 0 The optimality conditions are given as

𝜕𝐻

𝜕𝑢
= 0.

Furthermore, the control 𝑢∗ is given as

𝑢∗(𝑡) = min
{
1,max

[
0, 1

2
𝜃𝑅𝐻 (𝜆𝑅𝐻

− 𝜆𝑆𝐻
) −𝑆𝐻 (𝜆𝑅𝐻

− 𝜆𝑆𝐻
)

𝑊3𝑆𝐻

]}
(14)

Proof 2.1. The differential equations of the adjoint variables are ob-

tained by the differentiation of the Hamiltonian function, 𝑑𝜆𝑖

𝑑𝑡
= − 𝜕𝐻

𝜕𝑖
. 

Thus, the adjoint system is given by

𝑑𝜆𝑆𝐻

𝑑𝑡
= −𝑊3𝑢

2 − 𝜆𝐸𝐻
𝑏𝑁𝑇𝑁𝐿𝐼𝑁 − 𝜆𝑅𝐻

𝑢− 𝜆𝑆𝐻
(−𝐿𝑏𝑁𝑇𝑁𝐼𝑁 − 𝑢− 𝜇𝐻 ),

𝑑𝜆𝐸𝐻

𝑑𝑡
= −𝑊1 − 𝜆𝐸𝐻

(−𝛾𝐻 − 𝜇𝐻 ) − 𝜆𝐼𝐻
𝛾𝐻 ,

𝑑𝜆𝐼𝐻

𝑑𝑡
= −𝑊2 − 𝜆𝐸𝑁

𝑏𝑁𝑇𝑁𝑆𝑁 − 𝜆𝑅𝐻
𝜎 + 𝜆𝑆𝑁

𝑏𝑁𝑇𝑁𝑆𝑁 − 𝜆𝐼𝐻
(−𝜎 − 𝜇𝐻 ),

𝑑𝜆𝑅𝐻

𝑑𝑡
= −𝜆𝑅𝐻

(−𝜃𝑢− 𝜇𝐻 ) − 𝜆𝑆𝐻
𝜃𝑢

𝑑𝜆𝐴𝑁

𝑑𝑡
= −𝜆𝐴𝑁

(−1
2
𝜌𝑁𝐹𝑁 − 𝜏𝑁 − 𝜇𝑁𝐴) −

1
2
𝜆𝑆𝑁

𝜏𝑁 ,

𝑑𝜆𝑆𝑁

𝑑𝑡
= −𝜆𝐸𝑁

𝑏𝑁𝑇𝑁𝐼𝐻 − 𝜆𝑆𝑁
(−𝑏𝑁𝑇𝑁𝐼𝐻 − 𝜇𝑁 (𝑡)),

𝑑𝜆𝐸𝑁

𝑑𝑡
= −𝜆𝐸𝑁

(−𝛾𝑁 − 𝜇𝑁 (𝑡)) − 𝜆𝐼𝑁
𝛾𝑁 ,

𝑑𝜆𝐼𝑁

𝑑𝑡
= −𝜆𝐸𝐻

𝐿𝑏𝑁𝑆𝐻𝑇𝑁 + 𝜆𝑆𝐻
𝐿𝑏𝑁𝑆𝐻𝑇𝑁 + 𝜆𝐼𝑁

𝜇𝑁 (𝑡)),

where 𝜇𝑁 (𝑡) = 𝜇𝑁0

(
1 − 𝜂 cos

(
2𝜋(𝑡+𝜔)

365

))
.

Furthermore, differentiating the Hamiltonian function with respect to 
the control variables 𝑢 to obtain

𝜕𝐻

𝜕𝑢
= 2𝑊3𝑢𝑆𝐻 + 𝜆𝑅𝐻

(−𝜃𝑅𝐻 +𝑆𝐻 ) + 𝜆𝑆𝐻
(𝜃𝑅𝐻 − 𝑆𝐻 ) = 0.

Solving for 𝑢∗, we obtain

𝑢∗ = 1
2
𝜃𝑅𝐻 (𝜆𝑅𝐻

− 𝜆𝑆𝐻
) −𝑆𝐻 (𝜆𝑅𝐻

− 𝜆𝑆𝐻
)

𝑊3𝑆𝐻

.

Using the bounds of the control, we obtain the characterisation given 
in Equation (14).

2.5. Numerical simulations

The optimality system is solved numerically using forward-backward 
sweep numerical method [28, 31, 24]. First, the initial guess of the opti-

mal control is determined. Next, the state variables are solved forward 
in time which is then substituted into the adjoint equations. Further-

more, the adjoint equations are solved backward in time using ode45 
in MATLAB. The state and adjoint values are used to update the con-

trols. This process is repeated until the state, adjoint and control values 
converge.

In the numerical simulations, we use the following initial conditions 
𝑆𝐻 (0) = 0.999955255713597, 𝐸𝐻 (0) = 0, 𝐼𝐻 (0) = 0.000044744286403, 
𝑅𝐻 (0) = 0, 𝐴𝑁 (0) = 0.791111869731644, 𝑆𝑁 (0) = 1.031725009589116, 
𝐸𝑁 (0) = 0, 𝐼𝑁 (0) = 0. The set of initial condition is found by running 
the model to stable state before dengue is introduced into the popula-

tion. In the model, the mosquito population is normalised to carrying 
capacity of the aquatic mosquitoes. The initial condition for suscepti-

ble mosquitoes is greater than one which means that the population is 
higher than carrying capacity of aquatic mosquitoes. Furthermore, we 
start the simulation from January where the mosquito population is at 
high level. The other parameter values are taken from the literature. 
Zeng et al. found that the treatment cost for hospitalised case is US$ 
380 and the vaccine delivery cost is US$ 2.27 [8]. We also simulate 
the case where the vaccine cost is expensive by assuming the vaccine 
cost of US$ 20. Hence, in the simulation, we use 𝑊1 = 𝑊2 = 380 and 
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Fig. 3. Numerical simulations with and without control. The cost of vaccination 
(𝑊3) are 2.27 and 20 as given in legend, 𝑊1 =𝑊2 = 380.

Fig. 4. Control profiles (𝑢) with different cost of vaccination 𝑊3 = 2.27and20.

𝑊3 = 2.27 and20. The numerical solution and the control profile are 
given in Figs. 3 and 4.

Fig. 3 shows that the proportion of infected individuals has been re-

duced with the implementation of vaccination strategy where higher 
reduction can be obtained if the cost of vaccination is cheaper. Further-

more, higher control (vaccination) rate can be obtained if the cost of 
vaccination is cheaper. Furthermore, it shows that a higher control rate 
should be given in the early period before it has been reduced at the 
end of the period (see Fig. 4).

3. Two serotype dengue model with vaccination

3.1. Mathematical formulation

In this section, we present the two-serotype dengue model with 
vaccination by extending the single serotype dengue model. We also 
include seasonality on the mosquito death rate. We consider the vacci-

nation on seronegative and seropositive individuals. The human popu-

lation is divided into the fully susceptible (𝑆𝐻 ), seronegative vaccinated 

(𝑉𝐻 ), primary exposed (𝐸𝑘
𝐻
), primary infected (𝐼𝑘

𝐻
), temporary recov-

ered (𝑅𝑘
𝐻
), susceptible to the other strain that has not been previously 

infected with (𝑆𝑘
𝐻
), seropositive vaccinated (𝑉 𝑘

𝐻
), secondary exposed 

(𝑋𝑘
𝐻
), secondary infected (𝑌 𝑘

𝐻
), and fully recovered (𝑍) individuals. The 

mosquito population is divided into the aquatic (𝐴𝑁 ), susceptible (𝑆𝑁 ), 
the exposed (𝐸𝑘

𝑁
), and the infected (𝐼𝑘

𝑁
) mosquitoes. The superscripts 

𝑘 = 1, 2 is to denote the dengue serotype. The model is governed by the 
following system of differential equations.

The vaccinated seronegative individuals move the vaccinated com-

partment (𝑉𝐻 ) at a rate 𝑢1 and they become infected after being bit-

ten by infected mosquitoes and the vaccine lose its efficacy at a rate 
𝑏𝑁𝑇𝑁𝐿(1 − 𝜖1). We also consider the effects of antibody-dependent 
enhancement (ADE). When the susceptible mosquitoes bite secondary 
infected individuals, the rate of transmission is higher with the rate 𝜁 . 
The vaccination is implemented to seropositive individuals (𝑅𝑘

𝐻
and 

𝑆𝑘
𝐻

).

The model is governed by the following system of differential equa-

tions.

𝑑𝑆𝐻

𝑑𝑡
= 𝜇ℎ −𝐿𝑏𝑁𝑇𝑁𝑆𝐻

2∑
𝑘=1

𝐼𝑘
𝑁
− 𝑢1𝑆𝐻 − 𝜇𝐻𝑆𝐻, (15)

𝑑𝑉𝐻

𝑑𝑡
= 𝑢1𝑆𝐻 −𝐿(1 − 𝜖1)𝑏𝑁𝑇𝑁𝑉𝐻

2∑
𝑘=1

𝐼𝑘
𝑁
− 𝜇𝐻𝑉𝐻, (16)

𝑑𝐸𝑘
𝐻

𝑑𝑡
=𝐿𝑏𝑁𝑇𝑁𝑆𝐻𝐼𝑘

𝑁
− 𝛾𝐻𝐸𝑘

𝐻
− 𝜇𝐻𝐸𝑘

𝐻
, (17)

𝑑𝐼𝑘
𝐻

𝑑𝑡
= 𝛾𝐻𝐸𝑘

𝐻
− (𝜎 + 𝜇𝐻 )𝐼𝑘

𝐻
, (18)

𝑑𝑅𝑘
𝐻

𝑑𝑡
= 𝜎𝐼𝑘

𝐻
− (𝛼 + 𝑢2 + 𝜇𝐻 )𝑅𝑘

𝐻
, (19)

𝑑𝑆𝑘
𝐻

𝑑𝑡
= 𝛼𝑅𝑘

𝐻
−𝐿𝑏𝑁𝑇𝑁𝐼

𝑗

𝑁
𝑆𝑘
𝐻
− (𝑢2 + 𝜇𝐻 )𝑆𝑘

𝐻
, 𝑗 ≠ 𝑘, (20)

𝑑𝑉 𝑘
𝐻

𝑑𝑡
= 𝑢2(𝑆𝑘

𝐻
+𝑅𝑘

𝐻
) −𝐿𝑏𝑁𝑇𝑁 (1 − 𝜖2)𝛽ℎ𝐼

𝑗

𝑁
𝑉 𝑘
𝐻
− 𝜇ℎ𝑉

𝑘
𝐻
, 𝑗 ≠ 𝑘, (21)

𝑑𝑋𝑘
𝐻

𝑑𝑡
=𝐿𝑏𝑁𝑇𝑁𝐼𝑘

𝑁
((1 − 𝜖1)𝑉𝐻 + (1 − 𝜖2)𝑉

𝑗

𝐻
+ 𝑆

𝑗

𝐻
) (22)

− 𝛾𝐻𝑋𝑘
𝐻
− 𝜇𝐻𝑋𝑘

𝐻
, 𝑗 ≠ 𝑘,

𝑑𝑌 𝑘
𝐻

𝑑𝑡
= 𝛾𝐻𝑋𝑘

𝐻
− (𝜎 + 𝜇𝐻 )𝑌 𝑘

𝐻
, (23)

𝑑𝑍

𝑑𝑡
= 𝜎

2∑
𝑘=1

𝑌 𝑘
𝐻
− 𝜇𝐻𝑍, (24)

𝑑𝐴𝑁

𝑑𝑡
= 𝜌𝑁

𝐹𝑁

2
(1 − (𝐴𝑁 )) −

(
𝜏𝑁 + 𝜇𝑁𝐴

)
𝐴𝑁, (25)

𝑑𝑆𝑁

𝑑𝑡
=

𝜏𝑁𝐴𝑁

2
− 𝑏𝑁𝑇𝑁

2∑
𝑘=1

𝐼𝑘
𝐻
𝑆𝑁 − 𝜁𝑏𝑁𝑇𝑁

2∑
𝑘=1

𝑋𝑘
𝐻
𝑆𝑁 − 𝜇𝑁 (𝑡)𝑆𝑁, (26)

𝑑𝐸𝑘
𝑁

𝑑𝑡
= 𝑏𝑁𝑇𝑁𝐼𝑘

𝐻
𝑆𝑁 + 𝜁𝑏𝑁𝑇𝑁𝑋𝑘

𝐻
𝑆𝑘
𝐻
− (𝛾𝑁 + 𝜇𝑁 (𝑡))𝐸𝑘

𝑁
, (27)

𝑑𝐼𝑘
𝑁

𝑑𝑡
= 𝛾𝑁𝐸𝑘

𝑁
− 𝜇𝑁 (𝑡)𝐼𝑘

𝑁
, (28)

where 𝜇𝑁 (𝑡) = 𝜇𝑁0

(
1 − 𝜂 cos

(
2𝜋(𝑡+𝜔)
365

))
.

3.2. Sensitivity analysis

Here we perform a global sensitivity analysis to determine the most 
influential parameters of the model. We measure against the increasing 
proportion of primary and secondary infections. The increasing propor-

tion of the primary and secondary infection are
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Fig. 5. PRCC values measured against increasing number of total infection.

Fig. 6. PRCC values measured against increasing number of total infection.

𝐶𝑝(𝑡) =

𝑇

∫
0

(
𝛾𝐻

2∑
𝑘=1

𝐸𝑘
𝐻

)
𝑑𝑡,

𝐶𝑠(𝑡) =

𝑇

∫
0

(
𝛾𝐻

2∑
𝑘=1

𝑋𝑘
𝐻

)
𝑑𝑡,

where 𝐶𝑝(𝑡) and 𝐶𝑠(𝑡) are the total proportion of primary and secondary 
infections, respectively, and 𝑇 is the end time of interest. The total 
proportion of dengue infections are the sum of 𝐶𝑝(𝑡) and 𝐶𝑠(𝑡).

Figs. 5 and 6 show the PRCC values when measured against the 
total proportion of infected individuals. We found that the transmis-

sion probability (𝑇𝑁 ), the biting rate (𝑏𝑁 ), and the vaccination rate on 
seronegative individuals (𝑢1) and the average death rate (𝜇𝑁0) are the 
most influential parameters (see Fig. 5). The first two have positive re-

lationship and the latter have negative relationship. This means that 
increasing the vaccination rate on seronegative individuals is required 
to reduce the proportion of overall dengue infections. Furthermore, the 
transmission probability and the biting rate needs to be reduced to min-

imise the proportion of overall dengue cases. For the other parameters 
(see Fig. 6), the phase shift strongly fluctuates in the early period of epi-

demics and between positive and negative relationships. The degree of 
seasonality (𝜂) has positive relationship with the increasing proportion 

of overall infections. On the other hand, the reproduction rate (𝜌𝑁 ) has 
negative relationship.

3.3. Optimal vaccination strategy in the presence of two dengue serotypes

In this section, we present the optimal control problem for two 
serotype dengue model. We aim to minimise the proportion of infected 
individuals and minimise the cost of vaccination. We define the objec-

tive functional to be minimised as

𝐽 (𝑢1, 𝑢2) =

𝑡𝑓

∫
0

(𝑊1

2∑
𝑘=1

(𝐸𝑘
𝐻
(𝑡)) +𝑊2

2∑
𝑘=1

(𝐼𝑘
𝐻
(𝑡)) +𝑊3

2∑
𝑘=1

(𝑋𝑘
𝐻
(𝑡))

+𝑊4

2∑
𝑘=1

(𝑌 𝑘
𝐻
(𝑡)) +𝑊5𝑆𝐻 (𝑡)𝑢21(𝑡)

+𝑊6

2∑
𝑘=1

(𝑅𝑘
𝐻
(𝑡) +𝑆𝑘

𝐻
(𝑡))𝑢22(𝑡))𝑑𝑡,

(29)

where the control effect is modelled by quadratic terms in 𝑢1 and 𝑢2. 
We model the control efforts by quadratic terms in order to incorpo-

rate the nonlinear cost in the implementation of controls as explained 
in the previous section. The objective is to minimize the proportion 
of primary and secondary infections and the cost of implementing the 
vaccine on seronegative and seropositive individuals by using possible 
minimal control variables 𝑢𝑖 for 𝑖 = 1, 2. In the objective function, 𝑊1, 
𝑊2 represent the weight constants of the exposed and infected primary 
infections, respectively, 𝑊3 and 𝑊4 represent the weight constants of 
the exposed and infected secondary infections, 𝑊5 and 𝑊6 represent 
the cost of implementing vaccine on seronegative and seropositive in-

dividuals, respectively. The first four sums in the objective function are 
the cost due to primary and secondary infections, respectively. The re-

maining terms are the cost due to implementing vaccine on primary and 
secondary infections.

Let 𝑙 = 𝑆𝐻 , 𝑉𝐻 , 𝐸𝑘
𝐻

, 𝐼𝑘
𝐻

, 𝑅𝑘
𝐻

, 𝑆𝑘
𝐻

, 𝑉 𝑘
𝐻

, 𝑋𝑘
𝐻

, 𝑌 𝑘
𝐻

, 𝑍, 𝐴𝑁 , 𝑆𝑁 , 𝐸𝑘
𝑁

, 𝐼𝑘
𝑁

where 𝑘 = 1, 2. The Hamiltonian function is the following

𝐻 =𝑊1

2∑
𝑘=1

(𝐸𝑘
𝐻
(𝑡)) +𝑊2

2∑
𝑘=1

(𝐼𝑘
𝐻
(𝑡)) +𝑊3

2∑
𝑘=1

(𝑋𝑘
𝐻
(𝑡))

+𝑊4

2∑
𝑘=1

(𝑌 𝑘
𝐻
(𝑡)) +𝑊5𝑆𝐻 (𝑡)𝑢21

+𝑊6

2∑
𝑘=1

(𝑆𝑘
𝐻
(𝑡) +𝑅𝑘

𝐻
(𝑡))𝑢22 +

∑
𝜆𝑙

𝑑𝑙

𝑑𝑡
.

(30)

Theorem 3.1. There exist optimal controls, 𝑢∗1 and 𝑢∗2 and state solutions of 
the corresponding system that maximise 𝐽 (𝑢1, 𝑢2) over the set 𝑈 . Then there 
exist adjoint variables 𝜆𝑙 satisfying

𝑑𝜆𝑙

𝑑𝑡
= − 𝜕𝐻

𝜕𝑙

with transversality condition 𝜆𝑙(𝑡𝑓 ) = 0 The optimality conditions are given 
as

𝜕𝐻

𝜕𝑢𝑗
= 0, 𝑗 = 1,2.

Furthermore, the controls 𝑢∗1 and 𝑢∗2 is given as

𝑢∗1(𝑡) = min
{
1,max

[
0, 1

2
(𝜆𝑆𝐻

− 𝜆𝑉𝐻
)

𝑊5

]}
𝑢∗2(𝑡) = min

{
1,max

[
0, 𝑢2

]} (31)

where 𝑢2 =
𝑅1
𝐻
(𝜆

𝑅1
𝐻

−𝜆
𝑉 1
𝐻

)+𝑅2
𝐻
(𝜆

𝑅2
𝐻

−𝜆𝑉2 )+𝑆
1
𝐻
(𝜆

𝑆1
𝐻

−𝜆
𝑉 1
𝐻

)+𝑆2
𝐻
(𝜆

𝑆2
𝐻

−𝜆
𝑉 2
𝐻

)

2𝑊6
∑2

𝑘=1(𝑆
𝑘
𝐻
(𝑡)+𝑅𝑘

𝐻
(𝑡))

6
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Proof 3.1. The differential equations of the adjoint variables are ob-

tained by the differentiation of the Hamiltonian function, 𝑑𝜆𝑙
𝑑𝑡

= − 𝜕𝐻

𝜕𝑙
. 

Thus, the adjoint system is given by

𝑑𝜆𝑆𝐻

𝑑𝑡
= −𝑊5𝑢

2
1 − 𝜆𝑆𝐻

(
−𝑏𝑁𝑇𝑁𝐿(𝐼1

𝑁
+ 𝐼2

𝑁
) − 𝜇𝐻 − 𝑢1

)
−𝜆𝑉𝐻 𝑢1 − 𝜆

𝐸1
𝐻

𝑏𝑁𝑇𝑁𝐿𝐼1
𝑁
− 𝜆

𝐸2
𝐻

𝑏𝑁𝑇𝑁𝐿𝐼2
𝑁
,

𝑑𝜆𝑉𝐻

𝑑𝑡
= −𝜆𝑉𝐻

(
−(1 − 𝜖1)𝑏𝑁𝑇𝑁𝐿(𝐼1

𝑁
+ 𝐼2

𝑁
) − 𝜇𝐻

)
−𝜆

𝑋1
𝐻

𝑏𝑁𝑇𝑁𝐿(1 − 𝜖1)𝐼1𝑁 − 𝜆
𝑋2
𝐻

(1 − 𝜖1)𝑏𝑁𝑇𝑁𝐼2
𝑁
,

𝑑𝜆
𝐸1
𝐻

𝑑𝑡
= −𝑊1 − 𝜆

𝐼1
𝐻

𝛾𝐻 − 𝜆
𝐸1
𝐻

(−𝛾𝐻 − 𝜇𝐻 ),

𝑑𝜆
𝐸2
𝐻

𝑑𝑡
= −𝑊1 − 𝜆

𝐼2
𝐻

𝛾𝐻 − 𝜆
𝐸2
𝐻

(−𝛾𝐻 − 𝜇𝐻 ),

𝑑𝜆
𝐼1
𝐻

𝑑𝑡
= −𝑊2 − 𝜆

𝐸1
𝑁

𝑏𝑁𝑇𝑁𝑆𝑁 + 𝜆𝑆𝑁
𝑏𝑁𝑇𝑁𝑆𝑁 − 𝜆

𝑅1
𝐻

𝜎 − 𝜆
𝐼1
𝐻

(−𝜎 − 𝜇𝐻 ),

𝑑𝜆
𝐼2
𝐻

𝑑𝑡
= −𝑊2 − 𝜆

𝐸2
𝑁

𝑏𝑁𝑇𝑁𝑆𝑁 + 𝜆𝑆𝑁
𝑏𝑁𝑇𝑁𝑆𝑁 − 𝜆

𝑅2
𝐻

𝜎 − 𝜆
𝐼2
𝐻

(−𝜎 − 𝜇𝐻 ),

𝑑𝜆
𝑅1
𝐻

𝑑𝑡
= −𝑊6𝑢

2
2 − 𝜆

𝑉 1
𝐻

𝑢2 − 𝜆
𝑆1
𝐻

𝛼 − 𝜆
𝑅1
𝐻

(−𝛼 − 𝑢2 − 𝜇𝐻 ),

𝑑𝜆
𝑅2
𝐻

𝑑𝑡
= −𝑊6𝑢

2
2 − 𝜆

𝑉 2
𝐻

𝑢2 − 𝜆
𝑆2
𝐻

𝛼 − 𝜆
𝑅2
𝐻

(−𝛼 − 𝑢2 − 𝜇𝐻 ),

𝑑𝜆
𝑆1
𝐻

𝑑𝑡
= −𝑊6𝑢

2
2 − 𝜆

𝑋2
𝐻

𝑏𝑁𝑇𝑁𝐿𝐼2
𝑁
− 𝜆

𝑉 1
𝐻

𝑢2 − 𝜆
𝑆1
𝐻

(−𝐿𝑇𝑁𝐼2
𝑁
𝑏𝑁 − 𝑢2 − 𝜇𝐻 ),

𝑑𝜆
𝑆2
𝐻

𝑑𝑡
= −𝑊6𝑢

2
2 − 𝜆

𝑋1
𝐻

𝑏𝑁𝑇𝑁𝐿𝐼1
𝑁
− 𝜆

𝑉 2
𝐻

𝑢2 − 𝜆
𝑆2
𝐻

(−𝐿𝑇𝑁𝐼1
𝑁
𝑏𝑁 − 𝑢2 − 𝜇𝐻 ),

𝑑𝜆
𝑉 1
𝐻

𝑑𝑡
= −𝜆

𝑋2
𝐻

𝑏𝑁𝑇𝑁𝐿𝐼2
𝑁
(1 − 𝜖2) − 𝜆

𝑉 1
𝐻

(−𝑏𝑁𝑇𝑁𝐿𝐼2
𝑁
(1 − 𝜖2) − 𝜇𝐻 )

𝑑𝜆
𝑉 2
𝐻

𝑑𝑡
= −𝜆

𝑋1
𝐻

𝑏𝑁𝑇𝑁𝐿𝐼1
𝑁
(1 − 𝜖2) − 𝜆𝑉𝐻 2(−𝑏𝑁𝑇𝑁𝐿𝐼1

𝑁
(1 − 𝜖2) − 𝜇𝐻 ),

𝑑𝜆
𝑋1
𝐻

𝑑𝑡
= −𝑊3 − 𝜆

𝑌 1
𝐻

𝛾𝐻 − 𝜆
𝑋1
𝐻

(−𝛾𝐻 − 𝜇𝐻 ),

𝑑𝜆
𝑋2
𝐻

𝑑𝑡
= −𝑊3 − 𝜆

𝑌 2
𝐻

𝛾𝐻 − 𝜆
𝑋2
𝐻

(−𝛾𝐻 − 𝜇𝐻 ),

𝑑𝜆
𝑌 1
𝐻

𝑑𝑡
= −𝑊4 − 𝜆

𝐸1
𝑁

𝜁𝑏𝑁𝑇𝑁𝑆𝑁 + 𝜆𝑆𝑁
𝜁𝑏𝑁𝑇𝑁𝑆𝑁 − 𝜆𝑍𝜎 − 𝜆

𝑌 1
𝐻

(−𝜎 − 𝜇𝐻 ),

𝑑𝜆
𝑌 2
𝐻

𝑑𝑡
= −𝑊4 − 𝜆

𝐸2
𝑁

𝜁𝑏𝑁𝑇𝑁𝑆𝑁 + 𝜆𝑆𝑁
𝜁𝑏𝑁𝑇𝑁𝑆𝑁 − 𝜆𝑍𝜎 − 𝜆

𝑌 2
𝐻

(−𝜎 − 𝜇𝐻 ),

𝑑𝜆𝑍

𝑑𝑡
= 𝜆𝑍𝜇ℎ,

𝑑𝜆𝐴𝑁

𝑑𝑡
= −1

2
𝜆𝑆𝑁

𝜏𝑁−𝜆𝐴𝑁
(−1

2
𝜌𝑁 (𝑆𝑁 +𝐸1

𝑁
+𝐸2

𝑁
+ 𝐼1

𝑁
+ 𝐼2

𝑁
)−𝜏𝑁−𝜇𝑁𝐴),

𝑑𝜆𝑆𝑁

𝑑𝑡
= −𝜆

𝐸2
𝑁

(𝑏𝑁𝑇𝑁𝑌 2
𝐻
𝜁 + 𝑏𝑁𝑇𝑁𝐼2

𝐻
) − 𝜆

𝐸1
𝑁

(𝑏𝑁𝑇𝑁𝜁𝑌 1
𝐻
+ 𝐼1

𝐻
𝑇𝑁𝑏𝑁 )

−𝜆𝑆𝑁
(−𝑏𝑁𝑇𝑁 (𝐼1

𝐻
+ 𝐼2

𝐻
) − 𝜁𝑏𝑁𝑇𝑁 (𝑌 1

𝐻
+ 𝑌 2

𝐻
) − 𝜇𝑁 )

−1
2
𝜆𝐴𝑁

𝜌𝑁 (1 −𝐴𝑁 ),

𝑑𝜆
𝐸1
𝑁

𝑑𝑡
= −𝜆

𝐼1
𝑁

𝛾𝑁 − 𝜆
𝐸1
𝑁

(−𝛾𝑁 − 𝜇𝑁 ) − 1
2
𝜆𝐴𝑁

𝜌𝑁 (1 −𝐴𝑁 ),

𝑑𝜆
𝐸2
𝑁

𝑑𝑡
= −𝜆

𝐼2
𝑁

𝛾𝑁 − 𝜆
𝐸2
𝑁

(−𝛾𝑁 − 𝜇𝑁 ) − 1
2
𝜆𝐴𝑁

𝜌𝑁 (1 −𝐴𝑁 ),

𝑑𝜆
𝐼1
𝑁

𝑑𝑡
= −1

2
𝜆𝐴𝑁

𝜌𝑁 (1 −𝐴𝑁 ) − 𝜆
𝑋1
𝐻

𝑏𝑁𝑇𝑁𝐿(𝑆2
𝐻

+(1 − 𝜖2)𝑉 2
𝐻
+ (1 − 𝜖1)𝑉𝐻 )

+𝜆
𝑉 2
𝐻

𝑏𝑁𝑇𝑁𝐿(1 − 𝜖2)𝑉 2
𝐻
+ 𝜆

𝑆2
𝐻

𝑏𝑁𝑇𝑁𝐿𝑆2
𝐻
− 𝜆

𝐸1
𝐻

𝑏𝑁𝑇𝑁𝐿𝑆𝐻

+𝜆𝑉𝐻 (1 − 𝜖1)𝑏𝑁𝑇𝑁𝐿𝑉𝐻 + 𝜆𝑆𝐻
𝑏𝑁𝑇𝑁𝐿𝑆𝐻,

𝑑𝜆
𝐼2
𝑁

𝑑𝑡
= −1

2
𝜆𝐴𝑁

𝜌𝑁 (1 −𝐴𝑁 ) − 𝜆
𝑋2
𝐻

𝑏𝑁𝑇𝑁𝐿(𝑆1
𝐻
+ (1 − 𝜖2)𝑉 1

𝐻
+ (1 − 𝜖1)𝑉𝐻 )

Fig. 7. Numerical simulations with and without control when only seropositive 
individuals are vaccinated. The cost of vaccination (𝑊6) are 2.27 and 20 as 
given in legend, 𝑊1 =𝑊2 = 380. The initial conditions are given in the text.

+𝜆
𝑉 1
𝐻

𝑏𝑁𝑇𝑁𝐿(1 − 𝜖2)𝑉 1
𝐻
+ 𝜆

𝑆1
𝐻

𝐿𝑇𝑁𝑏𝑁𝑆1
𝐻
− 𝜆

𝐸2
𝐻

𝑏𝑁𝑇𝑁𝐿𝑆𝐻

+𝜆𝑉𝐻 (1 − 𝜖1)𝑏𝑁𝑇𝑁𝐿𝑉𝐻 + 𝜆𝑆𝐻
𝑏𝑁𝑇𝑁𝐿𝑆𝐻.

Furthermore, differentiating the Hamiltonian function with respect to 
the control variables (𝑢1, 𝑢2) to obtain

𝜕𝐻

𝜕𝑢1
= −𝑆𝐻𝜆𝑆𝐻

+ 𝑆𝐻𝜆𝑉𝐻
+ 2𝑊5𝑆𝐻𝑢1 = 0,

𝜕𝐻

𝜕𝑢2
= 2𝑊6𝑢2

2∑
𝑘=1

(𝑆𝑘
𝐻
(𝑡) +𝑅𝑘

𝐻
(𝑡)) + 𝜆

𝑉 2
𝐻

(𝑅2
𝐻
+𝑆2

𝐻
) + 𝜆

𝑉 1
𝐻

(𝑅1
𝐻
+𝑆1

𝐻
)

− 𝜆
𝑆2
𝐻

𝑆2
𝐻
− 𝜆

𝑆1
𝐻

𝑆1
𝐻
− 𝜆

𝑅2
𝐻

𝑅2
𝐻
− 𝜆

𝑅1
𝐻

𝑅1
𝐻
= 0

Solving for 𝑢∗1 and 𝑢∗2 , we obtain

𝑢∗1 =
1
2
(𝜆𝑆𝐻

− 𝜆𝑉𝐻
)

𝑊5
,

𝑢∗2 =
𝑅1
𝐻
(𝜆

𝑅1
𝐻

−𝜆
𝑉 1
𝐻

) +𝑅2
𝐻
(𝜆

𝑅2
𝐻

−𝜆
𝑉 2
𝐻

) +𝑆1
𝐻
(𝜆

𝑆1
𝐻

−𝜆
𝑉 1
𝐻

) + 𝑆2
𝐻
(𝜆

𝑆2
𝐻

−𝜆
𝑉 2
𝐻

)

2𝑊6
∑2

𝑘=1(𝑆
𝑘
𝐻
(𝑡) +𝑅𝑘

𝐻
(𝑡))

,

using the bounds of the control, we obtain the characterisation given in 
Equation (31).

3.4. Numerical simulations

In this section we present a numerical simulation of the model. In 
our numerical simulation, we assume that around 83% of the popula-

tion has at least one dengue serotype as found in Indonesia [35]. The 
initial conditions are 𝑆𝐻 (0) = 0.15, 𝐸1

𝐻
(0) = 𝐸2

𝐻
(0) = 0, 𝐼1

𝐻
(0) = 𝐼2

𝐻
(0) =

0.01, 𝑅1
𝐻
(0) = 𝑅2

𝐻
(0) = 0.415, 𝐴𝑁 (0) = 0.791111869731644, 𝑆𝑁 (0) =

1.031725009589116 and the other mosquito populations are zero. For 
control, we use cost values are follows. 𝑊1 =𝑊2 = 216.5, 𝑊3 =𝑊4 = 433, 
𝑊5 =𝑊6 = 2.27. The values are direct and indirect cost of hospitalised 
and ambulatory dengue cases, vaccine delivery and cost to obtain 
vaccine dose in Indonesia [36]. The direct cost represents the cost as-

sociated with resource utilization. Indirect cost has associated with the 
opportunity cost of time required to obtained vaccine dose and social 
perspective about the disease [36, 37, 38].

Figs. 7 presents the proportion of dengue cases with and without 
control/vaccination when we only vaccinate seropositive individuals. It 
shows that the proportion of dengue cases decreases with implemen-

tation of vaccination and higher decreases has been obtained if the 
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Fig. 8. Control profiles with different cost of vaccination 𝑊6 = 2.27 and20 when 
only seropositive individuals are vaccinated.

Fig. 9. Primary infections where half of the populations are seropositive and the 
other half are seronegative. It presents three scenarios of implementation: vac-

cine on seropositive individuals only, seronegative individuals only, and both 
seropositive and seronegative individuals.

vaccination cost is cheaper. When the vaccination cost is cheaper, the 
vaccination rate is higher (see Fig. 8).

Figs. 9 and 10 presents the case where the half of the population are 
seronegative and the other half are seropositive, and the vaccination 
is implemented on seronegative only, seropositive only, and both types 
of individuals. Figs. 9 shows that higher reduction in the proportion of 
primary dengue infections can be obtained if we vaccinate seronegative 
individuals only or both types of individuals. The result shows similar 
reduction in the proportion of primary dengue infections when we vac-

cinate seronegative individuals only or both types of individuals. This 
implies that it is sufficient to vaccinate seronegative individuals only to 
obtain higher reduction in the proportion of primary infections.

Fig. 10 shows higher reduction in the proportion of secondary in-

fections if we vaccinate seropositive individuals only. Interestingly if 
we vaccinate the seronegative individuals only, or both types of indi-

viduals the proportion of secondary infections is higher compared to 
without vaccination. Although the proportion of secondary infections 
is high when we vaccinate seronegative individuals only or both types 

Fig. 10. Secondary infections where half of the populations are seropositive 
and the other half are seronegative. It presents three scenarios of implemen-

tation: vaccine on seropositive individuals only, seronegative individuals only, 
and both seropositive and seronegative individuals.

Fig. 11. Overall dengue infections where half of the populations are seropositive 
and the other half are seronegative. It presents three scenarios of implementa-

tion: vaccine on seropositive individuals only, seronegative individuals only, 
and both seropositive and seronegative individuals.

of individuals, a higher reduction in the proportion of overall dengue 
cases has been obtained (see Fig. 11). Furthermore, the control profile 
(see Fig. 12) shows higher control rate on seronegative individuals.

4. Discussion and conclusions

In this paper, we develop a dengue mathematical model with vacci-

nation: single and two serotype dengue model. An optimal control ap-

proach is used to assess the optimal vaccination strategy against dengue. 
We parameterise the model against 2016 dengue data in Kupang city, 
East Nusa Tenggara, Indonesia. We investigate the effects of vaccina-

tion on seronegative, seropositive individuals only and both types of 
individuals. In optimal control approach, we use quadratic terms in the 
control variables to capture the nonlinear cost in the implementation of 
controls. This approach is rather conventional and has been frequently 
used in the epidemiological modelling including dengue modelling [11, 
13, 26, 15, 23, 39, 40, 12]. Rawson et al. implemented optimal control 
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Fig. 12. Control profiles for vaccinations on seronegative (𝑢1) and seropositive 
(𝑢2) individuals, when we vaccinate both types (seronegative and seropositive) 
of individuals.

approach to investigate the effects of vector control and vaccination on 
dengue transmission dynamics. They used quadratic terms in the con-

trol variables as to represent the nonlinear cost [23], which has been 
also used in the other work for the similar reason to investigate the 
dengue transmission dynamics in the presence of controls [11, 13, 26, 
15, 23, 39, 40, 12].

Sensitivity analysis of the single serotype model shows that the 
transmission probability (𝑇𝑁 ), the biting rate (𝑏𝑁 ), and the vaccination 
rate (𝑢) are the most influential parameters. It shows that the mosquito’s 
related parameters do not have much impact on the reduction of dengue 
cases when the vaccination is implemented. This is interesting since in 
the absence of vaccination, the mosquito-related parameters are also 
the influential parameters [41]. This may imply that implementing vac-

cination may be sufficient in reducing the proportion of dengue cases. 
However, further work needs to be conducted to understand the vac-

cine delivery. For the two-serotype dengue model, the results are similar 
where the transmission probability (𝑇𝑁 ), the biting rate (𝑏𝑁 ), and the 
vaccination rate on seronegative individuals (𝑢1) and the average death 
rate (𝜇𝑁0) are the influential parameters. This implies that controlling 
these parameters are sufficient to reduce the proportion of overall trans-

mission. Furthermore, these parameters are influential since the early 
period of epidemics and remain influential until the end of period.

With the implementation of vaccination, a reduction in the propor-

tion of dengue cases can be obtained. Furthermore, if the vaccination 
is implemented in seronegative individuals only, it results in higher 
proportion of dengue secondary infections. Our results showed that an 
increase in the secondary infections can be obtained if we vaccinate 
seronegative individuals only. To reduce the risk of obtaining the more 
dangerous forms of dengue, it is better to vaccinate seropositive in-

dividuals. Aquiar et al. [6] also found that if we vaccinate seropositive 
individuals, a higher reduction in the hospitalized case can be obtained. 
In the case of Indonesia, in particular Kupang, where the majority of in-

dividuals (around 83% [35]) have been exposed to at least one dengue 
strain, the vaccination program can be implemented and it has pos-

sibility to reduce the proportion of dengue cases. In addition, when 
the meantime of human turnover rate is faster, the outbreak would 
happen starting from around year 58. If the constant vaccination is im-

plemented in the first five years, the time at which outbreaks occurs 
has shifted around 20 years (results not shown here). This phenomena 
cannot be seen in the model without seasonality. Further exploration 
of this is required, which is the subject of future work. Future research 
also considers the reinfection with the same serotype which may hap-

pen as found by Anggriani et al. [42] or combination of vaccination 
and Wolbachia intervention [43]. This may complicate the dynamics of 
dengue transmission under vaccination strategy. In addition, in this pa-

per, we use quadratic terms in the control variables, which is common 
in optimal control of epidemiological models. The use of other terms in 
control variables should be considered for future investigation, which 
can provide additional insights on dengue transmission dynamics in the 
presence of controls.
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