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Abstract

Background: Expression quantitative trait loci (eQTL) analysis is a powerful method to detect correlations between
gene expression and genomic variants and is widely used to interpret the biological mechanism underlying
identified genome wide association studies (GWAS) risk loci. Numerous eQTL studies have been performed on
different cell types and tissues of which the majority has been based on microarray technology.

Methods: We present here an eQTL analysis based on cap analysis gene expression sequencing (CAGEseq) data
created from human postmortem frontal lobe tissue combined with genotypes obtained through genotyping
arrays, exome sequencing, and CAGEseq. Using CAGEseq as an expression profiling technique combined with these
different genotyping techniques allows measurement of the molecular effect of variants on individual transcription
start sites and increases the resolution of eQTL analysis by also including the non-annotated parts of the genome.

Results: We identified 2410 eQTLs and show that non-coding transcripts are more likely to contain an eQTL than
coding transcripts, in particular antisense transcripts. We provide evidence for how previously identified GWAS loci
for schizophrenia (NRGN), Parkinson's disease, and Alzheimer's disease (PARK16 and MAPT loci) could increase the
risk for disease at a molecular level. Furthermore, we demonstrate that CAGEseq improves eQTL analysis because
variants obtained from CAGEseq are highly enriched for having a functional effect and thus are an efficient method
towards the identification of causal variants.

Conclusion: Our data contain both coding and non-coding transcripts and has the added value that we have
identified eQTLs for variants directly adjacent to TSS. Future eQTL studies would benefit from combining CAGEseq
with RNA sequencing for a more complete interpretation of the transcriptome and increased understanding of
eQTL signals.
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Background

Genome wide association studies (GWAS) for neuro-
logical and neuropsychiatric conditions have successfully
identified DNA loci associated with the risk of develop-
ing disease [1]. These loci provide attractive starting
points to improve our understanding of the molecular
processes underlying disease, in particular given that
Mendelian and sporadic forms often share common risk
factors. In Parkinson’s disease (PD), for example, rare
mutations in the genes SNCA and LRRK?2 cause familial
PD [2, 3], while common genetic variation in or near
these genes is associated with a risk for the common
non-familial forms of the disease [4]. While mutations
identified for Mendelian disorders generally occur in
protein-coding genes, the large majority of GWAS risk
loci are located in non-coding or poorly annotated re-
gions, making the interpretation of their role in disease
etiology challenging [5]. In order to identify the causal
variant(s) underlying GWAS peaks, it is therefore essen-
tial to generate more targeted data to identify the bio-
logical consequences of genomic variants.

Recently, collaborative efforts such as ENCODE and
FANTOMS5 have provided evidence that a large propor-
tion of the non-coding genome is transcribed, harbors
elements that regulate gene expression, and has a bio-
logical function [6, 7]. It is thus plausible that a large
proportion of the GWAS loci detect the effect of risk
variants within non-coding regulatory DNA elements,
which can be located at a considerable distance from
protein-coding and non-coding genes. The identification
of these regulatory variants and their associated genes
and transcripts may be helpful in understanding GWAS
findings and to establish the exact relationships between
variation, genes, and disease. An additional difficulty in
the interpretation of GWAS results is that associated
risk loci often span a considerable genomic region,
containing a large number of variants distributed over
multiple genes, transcripts, and regulatory elements.
Correlation of transcript expression levels with genomic
variants or quantitative trait loci (eQTL) analysis is a
powerful tool to explore the possible biological conse-
quences of candidate GWAS variants in the associated
region and it can help to limit the number of variants to
be considered as possibly causal.

Most eQTL studies have focused on easily obtainable
cell types, such as lymphoblast cell lines or fibroblasts,
but it has been shown that a considerable proportion of
eQTLs are cell-specific, tissue-specific, and even brain
region-specific [8—10]. This is supported by data gener-
ated from the FANTOMS5 project, showing that the
transcriptome of the human brain is complex and that
many transcripts that are unique to the brain exist [6].
In addition, the FANTOMS5 project provides clear evi-
dence that enhancer elements often function in a cell-
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specific or tissue type-specific manner [11]. It is there-
fore essential to generate eQTL data on the appropriate
tissue and cell types for neurological and neuropsychi-
atric disease [8, 10]. Laser capture microscopy to isolate
pure populations of a single cell type from human brain
postmortem tissues is currently not feasible as it is not
possible to isolate complete neurons with their complex
structure of axons and dendrites. Isolating postmortem
brain tissue samples cannot reliably determine the ex-
pression patterns of the cell types present in the sample,
but it has the advantage of capturing the complex inter-
play of expression patterns between the different cell
types present in different brain regions.

Although several eQTL studies on human postmortem
brain tissues have been performed, the majority of them
are based on microarrays, which are often limited to
existing gene annotations of protein-coding transcripts
and a small number of non-coding genes [9, 12—14].
These arrays do not capture the very large diversity of
RNAs that are known to be present in the human brain
and in large part will not capture diverse transcription
start sites at a single gene. These include messenger RNAs
(mRNAs) emerging from brain-specific alternative pro-
moters and brain-specific non-coding RNAs [6, 7, 15].
Thus, it is necessary to use complementary experimental
methods that are not biased by existing annotation and
that can probe for these features.

The frontal lobe performs a multitude of functions
related to planning behavioral responses to external and
internal stimuli and is involved in speech, emotions, and
problem-solving (see ref [16] for an overview). In
addition, the frontal cortex has been associated with im-
portant neurological and neuropsychiatric diseases, such
as frontotemporal dementia, autism, and schizophrenia.
To create a detailed characterization of the frontal cor-
tex transcriptome, we generated gene expression data
using cap analysis gene expression (CAGE) combined
with next generation sequencing (CAGEseq) on RNA
isolated from postmortem samples of the frontal cortex
of 128 individuals with no clinical signs of neurological
disorders. CAGE was first introduced in 2003 [17], later
improved for identification of non-polyadenylated RNAs
[18] and a protocol for next generation sequencing be-
came available in 2012 [19]. CAGE captures all 5’ ends
of capped RNA transcripts and subsequent sequencing
results in short (usually 20 or 27 bp) reads representing
mainly transcription start sites (TSS).

Matching genotype data were generated using a com-
bination of whole-genome genotyping arrays, exome se-
quencing, and variant calling from our CAGEseq data.
CAGEseq provides high resolution strand-specific profil-
ing of TSS in a quantitative and annotation independent
manner and allows for the identification of coding, non-
coding, and novel transcript, as well as overlapping
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genes transcribed from opposite strands. In addition,
genomic variants identified with CAGEseq are located in
the immediate vicinity of TSSs and sequences of core
promoters and are therefore likely to have a functional
effect.

Our data allowed us to build a detailed transcriptional
map of the frontal lobe and to identify a multitude of
new transcripts and TSSs. We subsequently used these
data to perform eQTL analysis and identified 168,588
CAGE-cluster—genotype pairs altering the transcription
of 2410 unique CAGE-clusters. In those TSSs influenced
by a cis-eQTL we show enrichment in non-coding RNAs
compared to protein-coding genes. By cross-referring
published GWAS loci for neurological and neuropsychi-
atric diseases, we identified several GWAS loci that are
associated with altered expression of genes. Our findings
may help to elucidate some of the molecular mecha-
nisms underlying the associated risk factors for these
disorders.

Methods

Collection and RNA isolation of postmortem brain tissue
Frozen human frontal lobe material was collected from
128 neurologically normal individuals. Sample collection
consisted of 90 males and 39 females with a mean age of
death of 51 years (range, 2—95 years) and a mean post-
mortem interval (PMI) of 11 h (range, 1-28 h). Total
RNA was extracted from the frontal lobe of each indi-
vidual using Life Technologies TRIzol. RNA quality was
measured using the Agilent 2100 Bioanalyzer and 2200
TapeStation. On average samples had an RNA integrity
number (RIN) of 7.7 (range, 5.4-9.1). The use of human
brain samples was approved by the NIH Office for Hu-
man Subjects Research. A complete list of the included
samples is available in Additional file 1: Table S1.

Genotype data

Single nucleotide polymorphism (SNPs) and indels, col-
lectively described as variants, were generated using
three different platforms.

SNP arrays

Genome-wide tagging SNPs were genotyped using Illu-
mina Infinjum HumanHapmap550 or Human610 Bead-
Chip for all individuals. Genotypes were filtered using
PLINK (version 1.07) [20] with the following quality
control cut off values: individuals were excluded when
the call rate was lower than 95 % and SNPs with a minor
allele frequency (MAF) below 5 %; a missing rate per
SNP above 5 %; or with a Hardy-Weinberg equilibrium
(HWE) test p value of < le-6 were removed. Genotype
data were used to estimate cryptic relatedness between
individuals. No individuals were found to be closely re-
lated at a pihat threshold of 0.05. Multidimensional
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scaling (MDS) plot including HapMap (Phase 2 re-
lease 23) [21] populations revealed one individual
with African ancestry, which was removed for subse-
quent analysis. See Additional file 2: Figure S1 for the
MDS plot including HapMap populations.

Imputation was performed with MaCH [22] and Mini-
Mac [23] based on the European reference haplotype
from the 1000 Genomes Phasel v2.20101123 data [24].
Prior to imputation, genotyped SNPs were filtered to re-
move variants where the call rate was less than 95 %, the
minor allele frequency was less than 1 %, and the HWE
p value was of <le-6. Post imputation, any variant where
the imputation quality score was less than 0.3 (r* from
MiniMac) was excluded from analysis.

Exome-sequencing variants

[llumina Truseq version 2 exome-sequencing of 102 in-
dividuals was already performed for another study in
parallel by the North American Brain Expression Con-
sortium (NABEC). Exome enrichment libraries were pre-
pared according to the standard Illumina exome capture
protocol. Paired-end sequence reads were aligned using
Burrows-Wheeler Aligner (BWA) [25] against the hu-
man reference genome (hgl9). The Picard toolset was
used for format conversion, sorting, indexing, and dupli-
cate read identification of the aligned reads. The Gen-
ome Analysis Toolkit (GATK) [26, 27] was used to
recalibrate base scores, perform local re-alignments
around indels, and to call and filter variants based on
the GATK version 3 best practices. Variants with a miss-
ing rate above 5 %, a MAF below 5 %, or with a HWE
test p value <le-6 were removed.

CAGEseq variants

In order to obtain variation information in the vicinity
of TSSs, variants were called from our CAGEseq data
using SAMtools (version 0.1.18) [28] and VARSCAN
(version 2.3.6) [29]. Only variants with a minimal cover-
age of 20x, a minimal average quality of 20, a minimum
variant allele CAGEseq read frequency of 0.25, and a
minimum frequency to call homozygote of 0.73 were
selected. Variants were annotated and filtered based on
the presence in dbSNP138 database using ANNOVAR
[30] and filtered in PLINK using a missing rate above 5 %,
a MAF below 5 %, or with a HWE test p value <le-6 were
removed. When CAGEseq variants were identified as
eQTL, expression of both alleles was confirmed by visual
inspection to prevent allele specific expression.

Merged dataset

Variants from the three aforementioned datasets were
merged. For those variants present in more than one
dataset, genotypes were assigned based on the following
ranking: BeadChip SNPs > exome sequencing variants >
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CAGEseq-derived variants > imputed variants. Con-
cordance between variants called in different plat-
forms was generally high (>90 % see Additional file 2:
Table S2). In total 5,729,884 variants were left for
analysis. Exome-sequencing, BeadChip, and CAGEseq
variants datasets were confirmed to represent the
same individual based on overlapping variants. All
variants were annotated using ANNOVAR [30] to
identify genetic characteristics.

Gene expression data analysis

Library preparation

Libraries were constructed using a published CAGEseq
protocol adapted for next generation sequencing [19].
Briefly, complementary DNA (cDNA) was synthesized
from total RNA using 15 nucleotides long random
primers. This process was carried out in the presence of
trehalose and sorbitol to extend cDNA synthesis through
GC-rich regions in 5" untranslated regions (UTR). The
5" ends of messenger RNA within RNA-DNA hybrids
were selected by the cap-trapper method [18] and li-
gated to a linker so that an EcoP15I recognition site was
placed adjacent to the start of the cDNA, corresponding
to the 5’ end of the original messenger RNA. This linker
was used to prime second-strand cDNA synthesis. Sub-
sequent EcoP15I digestion released the 27-base pairs
(bp) CAGEseq tags. After ligation of a second linker,
CAGEseq tags were PCR-amplified, purified, and strand-
specific sequenced on the Illumina HiSeq 2000 for 50 bp
single end reads.

Sequencing data preprocessing and quality control
CAGEseq data were processed using a previously described
analysis pipeline [15]. Briefly, Illumina reads were demulti-
plexed and trimmed using FASTX toolkit (hannonlab.csh
l.edu/fastx_toolkit/). Then CAGEseq reads were filtered for
artifacts using TagDust (version 1.12) [31] and mapped to
the human genome (hgl9) using BWA (version 0.5.9) for
short reads (aln and samse commands) [25]. Gender was
confirmed based on X-inactive specific transcript (XIST)
expression and thereafter reads mapping to chromosomes
X, Y, and M were removed to minimize gender and
normalization biases.

Mapped CAGEseq reads were grouped into CAGE-
clusters using a series of Python scripts designed at the
RIKEN Omics Science Center [32]. In brief, single base
pair promoters were produced by determining all posi-
tions in the genome to which the 5' end of at least one
CAGEseq read was mapped, excluding reads with a
mapping quality lower than 20, which results in the
exclusion of multimapping reads. Single base pair
promoters within 20 bp of each other were merged
into one CAGE-cluster and raw counts were normal-
ized dividing the number of CAGEseq reads observed
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at a given CAGE-cluster by the total number of mapped
tags in the library and multiplied by 1 million (tags per
million, tpm).

MDS plot of the logged normalized expression values
at these clusters was inspected for the identification of
outliers. This analysis led us to the removal of eight
samples, of which six had a low amount of CAGEseq se-
quence reads (<1 million) and two had a low 5'UTR
mapping rate (<25 %) indicating low quality libraries
(see Additional file 2: Figure S2 and S3 for the MDS
plots before and after removal, respectively). After re-
moving these sample outliers, only CAGE-clusters with
expression of at least 5 tpm in at least one sample and a
signal detectable in at least 10 % of the samples were in-
cluded in subsequent analyses. The final dataset con-
tained a total of 27,476 CAGE-clusters.

Annotation and visualization

Annotation of the identified CAGE-clusters was per-
formed using GENCODE version 17 using the following
mapping categories: TSS, exon, intron, pseudogene (all
sense or antisense), and intergenic [33]. In addition, we
classified the CAGE-clusters in terms of GENCODE
transcript classes (coding, non-coding, retained intron,
intergenic) and biotypes (protein-coding, processed tran-
script, intergenic, nonsense mediated decay, retained in-
tron, lincRNA, antisense). CAGE-clusters were named
using the gene symbols they mapped to and a number
indicating their rank based on expression level in the
corresponding gene. For visualization of the CAGEseq
data, we used the ZENBU omics data integration and
interactive visualization system [34].

Expression quantitative trait loci analysis

eQTL analysis was performed using Matrix eQTL (version
2.1.0) [35]. Standard linear regression was performed for
each variant against every identified CAGE-cluster using
log-transformed CAGE-cluster expression values assum-
ing an additive affect.

To prevent confounding effects, we included in the
model four known covariates (age, gender, RIN value,
and PMI) and additionally the first six principal compo-
nents resulting from principal component analysis
(PCA) performed on the expression data with the four
known covariates regressed out (see Additional file 2:
Figure S4). Significance threshold was set as false discov-
ery rate (FDR) <1 % (results are reported in Additional
file 2: Tables S3 and S6), calculated using Benjamini—
Hochberg procedure implemented in Matrix eQTL (as-
sumes all SNP-gene pairs tested are independent). Each
CAGE-cluster was tested for association with every vari-
ant in cis — defined as a range of 1 Mb upstream or
downstream of the identified CAGE-cluster—or in trans
effect—defined as more than 1 Mb upstream or
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downstream of the identified CAGE-cluster or on other
chromosomes. Results were separated into three lists: one
containing all cis variants; a cis eQTL sentinel list contain-
ing the highest associated variant per CAGE-cluster (in
case of multiple variants with the same p value, the closest
to the CAGE-cluster was chosen); and one with all trans
variants. For all sentinel cis eQTL variants, RegulomeDB
scores were obtained to assess whether variants might
affect transcription factors binding [36].

External datasets

Annotation of intergenic CAGE-clusters

Validation of intergenic CAGE-clusters was performed
by intersection with other public datasets. The following
datasets were used: (1) RefSeq genes (downloaded from
UCSC genome browser, last updated 2014-08-19), to
identify genes absent from GENCODE v17; (2) FAN-
TOMS5 phase I permissive TSSs, to verify whether the
intergenic peaks were consistent between CAGEseq ex-
periments (downloaded from ZENBU); (3) Repetitive
Elements (downloaded from UCSC genome browser,
updated 2009-04-24), since expression can arise from re-
peats [37]; (4) a recently published CAGEseq expression
derived enhancer dataset [11]; and (5) frontal cortex
H3K4me3 ChIP-Seq data [38]. ChIP-Seq peak calling
was performed on each sample using MACS (version
1.4.2) with parameters —bw =230 and -tsize 36 and
using the input controls available in the original data
[39]. A pool of 41,091 ChIP-Seq peaks was created con-
sidering all ChIP-Seq peaks called in at least one sample
and merging adjacent peaks.

Replication of eQTL variants and GWAS catalog intersection
Replication was sought between our identified eQTL
variants and previously published eQTL studies in brain
and other tissues (listed in Additional file 2: Table S3).
For this, we determined the overlap between our list of
eQTL variants and published ones and evaluated for the
RNA sequencing (RNA-seq) eQTL data whether the
overlapping ones influenced the expression of the same
gene/transcript. Additionally, we overlaid our results
with the GWAS catalog, containing genomic locations
associated with disease from 1927 studies and containing
over 14,000 variants (retrieved August 2014) [1]. To as-
sess enrichments in eQTL variants genomic locations,
we used as genome average the set of all included vari-
ants. We found that the local linkage disequilibrium
structures were highly similar between the set of all in-
cluded variants and sentinel variants (Additional file 2:
Figure S5). In the MAF distribution, there appears to be
some differences between the set of all included variants
and sentinel variants (Additional file 2: Figure S6). More
precise enrichment estimates could be obtained match-
ing on this property in the null distribution.
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Functional elements enrichment in expression quantitative
trait loci variants

To test whether the identified eQTL variants were lo-
cated in genomic regions with regulatory function, we
intersected eQTL variant locations with H3K27ac (his-
tone modification often found near active regulatory
elements) and DNase Hypersensitivity Sites (DHS, map-
ping to open accessible chromatin) data. Two frontal
lobe H3K27ac ChIP-seq libraries, each representing
uniquely mapped reads after duplicate removal, were
downloaded from the Roadmap Epigenomics Project
genome browser (retrieved 20/05/2014). Peak calling
was performed for each library independently using
MACS [39] with default parameters.

Two DHS datasets produced in the context of the
ENCODE project were downloaded from UCSC gen-
ome browser. A first dataset, that we named DHS-
general, represents aggregated data from 125 cell lines
(downloaded from UCSC genome browser; retrieved
02/07/2014). The second, which we named DHS-
brain, is limited to frontal cerebrum and frontal cortex
samples (downloaded from UCSC genome browser, re-
trieved 14/04/2014). The set of DHS peaks used for the
intersection represents the union of the two datasets
(151,372 peaks).

MiTranscriptome database

Supportive evidence for gene model structures was
sought using a public RNA-seq database recently created
named MiTranscriptome (http://www.mitranscriptome.
org) [40]. In ZENBU, a browser track of the MiTran-
scriptome assembly was present, based on the bed file
available at http://www.mitranscriptome.org. At regions
of interest (e.g. intergenic CAGE-clusters) this track was
used to identify the potential transcript structure and
the DNA sequence of these transcripts was used for
PCR primer design.

Experimental expression quantitative trait loci variant
validation

To validate the intragenic NRGN_TSS4 cluster and
therefore corroborate the identified eQTL, we isolated
total RNA from frontal cortex from six additional do-
nors. Samples were selected from our internal CAGEseq
expression data based on their NRGN_TSS4 expression:
three samples (indicated as donors 1, 3, and 4 in
Additional file 2: Table S4) showed expression for
NRGN_tss4 and three samples (donors 2, 5, and 6)
showed no expression. Primers were designed directly in
the NRGN_tss4 region and in the exon 2 of NRGN
(Additional file 2: Table S5). Total RNA primed with
oligoDT and random hexamers was used for cDNA syn-
thesis with Life Technologies Superscript III according
to the manufacturer protocol. PCRs reactions with the
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¢cDNA as template were performed to validate the
NRGN_TSS4 and the structure of the neurogranin
(NGRN) transcript initiating at NRGN_TSS4. Amplified
bands were Sanger sequenced using Life Technologies
BigDye terminators chemistry v3.

To verify the structure of the potential new antisense
transcript at the PARK16 locus, PCR reactions were per-
formed on cDNA and the amplified band was sequenced
as described above. Primers were designed directly in
the identified eQTL CAGE-cluster region and in the
nearest exon predicted by the MiTranscriptome data-
base. Primer sequences and PCR conditions for both
NRGN and PARK16 are provided in Additional file 2:
Table S5. Genotyping of rs35306015 on DNA from do-
nors 1 to 6 and rs320881 of three additional samples
already used in the FANTOMS5 brain CAGEseq libraries
was performed by PCR amplification and subsequent
Sanger sequencing as described above (see Additional
file 2: Table S6 for primers sequences).

Intersections and plots

Intersections between variants and supporting datasets
were performed using BEDtools suite (version v2.17.0)
[41]. Intersections with DHS data were performed using
windowBed and 500 bp added upstream and down-
stream (-w 500); intersections with H3K27ac with 50 bp
pairs added upstream and downstream (-w 50), chosen
consistently with FANTOMS5 [6]. The NRGN Spearman
correlation plot was generated based on expression
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values of all NRGN locus CAGE-clusters using R. One
sample (UMARY-1027) was excluded from correlation
plot due to low NRGN expression. All plots and statis-
tical calculations were performed using R (https://
www.r-project.org/).

Results and discussion

Frontal lobe transcriptome

We generated more than 1.5 billion CAGEseq reads
(average 12.5 million per sample) that mapped to the
human reference genome from 119 frontal lobe samples
of neurologically normal individuals. After preprocessing
and normalization, CAGEseq reads were grouped into
27,476 CAGE-clusters representing putative TSSs and
mapping to 15,324 distinct genes. Of the 27,476 CAGE-
clusters, the majority mapped into known TSSs regions
(>71 %) and overlapped with a FANTOMS5 identified
TSSs (>74 %). Protein-coding transcripts accounted for
the majority (>71 %) of CAGE-clusters. The remaining
clusters represent non-coding transcripts of different
classes including 1016 non-annotated intergenic CAGE-
clusters. A detailed feature annotation is presented in
Fig. 1a and 1b.

To corroborate that the 1016 non-annotated inter-
genic CAGE-clusters are genuine, we used five publically
available datasets. We found supportive evidence for
52 % of the intergenic CAGE-clusters of being associ-
ated with H3K4me3 marks, 51 % with known repeat ele-
ments, 20 % overlapped with a TSS of the FANTOMS5

A 16. 37 43
M Processed
m Pseudogenes 14.6 transcripts
M Intergenic M Antisense
W Retained introns
® Non-coding \ B lincRNA
m Coding 18 other
B total eQTL (%)
protein coding 19,597 1500 (7.7%)
processed transcript 2459 284 (11.5%)
nonsense mediated decay 1191 120 (10.1%)
retained intron 1182 102 (8.6%)
unannotated transcripts 1016 116 (11.4%)
antisense 706 133 (18.8%)
lincRNA 704 92 (13.1%)
other RNA biotypes 621 63 (10.1%)
total 27,476 2410 (8.8%)
Fig. 1 Frontal lobe transcriptome overview with expression features and eQTL percentages. a Pie chart showing the relative contributions (in %)
of the different GENCODE version 17 transcript classes and biotypes to the overall expressed CAGE-clusters (left) and a breakdown of the
non-coding transcripts in subtypes (right). b Percentage of CAGE-clusters per biotype class identified as eQTL: 7.7 % of the total identified
protein-coding transcripts were identified as eQTL, while the percentage of non-coding transcripts eQTLs (within the red boxes) is significantly higher
especially for antisense transcripts
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permissive set, 10 % with CAGE-defined enhancers, and
7 % with a RefSeq gene (note that each CAGE-cluster
can overlap any of the datasets and therefore percent-
ages are not expected to add to 100 %). Overall, 89 % of
the intergenic CAGE-clusters are likely to be genuinely
transcribed. (See Additional file 3: Table S12 for a full
list of all identified TSS and annotation and Additional
file 4: Table S13 for re-annotation of the intergenic
peaks). For the remaining 11 % (182 CAGE-clusters,
0.7 % of total identified CAGE-clusters), no functional
domain could be identified, indicating they are new tran-
scripts, unknown functional elements, or technical
artifacts.

eQTL discovery and replication

After combining 477,872 Illumina BeadChip SNPs,
81,397 exome derived common variants (including 5037
indels), 930 CAGEseq SNPs, and 5,240,393 imputed var-
iants, removing duplicates and filtering all genotyping
datasets, a total of 5,729,884 common variants remained
for eQTL analysis. We then searched for eQTL associa-
tions using an additive linear model considering a region
of 1 Mb upstream and downstream of the identified
CAGE-cluster for cis effects and distances greater than
1 Mb for trans eQTLs.

Cis eQTL discovery

By using a FDR of 1 %, we identified 141,468 unique var-
iants influencing 2410 unique CAGE-clusters in cis
(8.8 % of total CAGE-clusters expressed in our dataset)
representing 2113 distinct genes. On average, 1.19
CAGE-clusters (range, 1-5) were influenced by a single
variant, while we identified on average 69.9 variants
(range, 1-1137) per CAGE-cluster. Of the cis influ-
enced transcripts 62.2 % (n=1500) were coding,
21.2 % (n=509) were non-coding, 4.8 % (n=116)
were intergenic, and 11.8 % (n=285) mapped to
retained introns, nonsense mediated decay, or other
RNA biotypes. The 509 non-coding transcripts con-
sisted of 284 processed transcripts (55.8 %), 133 anti-
sense transcripts (26.1 %), and 92 lincRNAs (18.1 %)
(Fig. 1b and Additional file 3: Table S12). Among the
116 intergenic CAGE-clusters that were influenced by
an eQTL, 84 % were supported by other datasets
(ChIP-seq peaks (65 %), repeat element (43 %), FAN-
TOMS5 identified TSS (25 %), transcript in the RefSeq
database (5 %), and CAGE-enhancer (17 %)). Cis
eQTL associations are presented in Additional file 5:
Table S14.

Cis eQTL replication

To assess the reproducibility of the eQTLs identified
in this study, we compared our results with previ-
ously published datasets. We used data from four
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brain eQTL studies, two large studies on blood-
derived cell lines, and GTEx brain eQTL data (8, 9,
12-14, 42]. In total we could replicate 49,731 unique
eQTL variants influencing 1139 CAGE-clusters or
47 % (32 % replicated from brain microarray studies,
23 % from blood-derived cell lines microarray studies,
36 % in all included microarray studies, and 35 % in
the three GTEx RNA-seq datasets). The highest repli-
cation rates were identified from the more recent
RNA-seq eQTL data, specifically from the brain cor-
tex dataset (33 %). Variant-gene ID combination repli-
cation was performed in the three GTEx RNA-seq
eQTL datasets and this resulted in a replication rate
of 23.2 % (558 unique gene IDs). Some eQTL signals
were replicated in almost all investigated eQTL data-
sets like the eQTL influencing the expression of
C2o0rf74 and XRRAI. Overall, these replication rates
are in line with those found in previous studies, in
particular considering that some of the eQTL types
previously identified (including splicing eQTLs) cannot be
detected using CAGEseq [9, 43]. Alternative explanations
for the non-replicated eQTL signals could be genomic dif-
ferences that are cohort-specific and the inclusion in our
study of variants derived from exome sequencing and
CAGEseq. It is also important to note that eQTL signals
are not always consistent between brain regions and thus
extrapolation to other regions or tissues should be looked
at with caution [9].

We then performed indirect cis-eQTL validation by
replicating known eQTL characteristics such as the
enrichment of eQTLs near TSS, in variants according to
their genetic location (e.g. UTRs), and in variants in
close proximity of functional elements (e.g. enhancers)
[9, 44]. We used all included variants as a measure for
genome average and compared this with the location of
sentinel variants, observing a decrease in intergenic vari-
ants and enrichment in all other genomic locations in
the sentinel variants (Additional file 2: Table S10). In
addition, we searched for overlap in genomic locations
with two distinct types of data that mark regulatory ele-
ments: H3K27ac ChIP-seq and DHS data. Again, we
used all included variants as a measure for genome aver-
age. Here, we observed a clear enrichment for functional
elements in sentinel variants (Additional file 2: Table
S11). Furthermore, we investigated the distance between
the CAGE-clusters and the associated variants for both
coding and non-coding eQTLs. Although we detected
eQTLs as far away as 1 Mb from the TSS for both cod-
ing and non-coding transcripts, 82 % of the associated
sentinel variants are located within 200 kb and 65 % are
located only 50 kb from the influenced CAGE-cluster.
Thus, we confirm previous findings that the strength of
the eQTLs is inversely correlated with its distance to the
TSS (Additional file 2: Figure S7) [14].
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Trans eQTL discovery and replication

Trans eQTL analysis led to the identification of 7028
variants influencing 523 unique CAGE-clusters. Of
these, 55.1 % (288) consisted of coding CAGE-clusters
while 16.8 % (88) corresponded to non-coding CAGE-
clusters, 10.3 % (54) were intergenic, and 17.8 % (93)
mapped to retained introns, nonsense mediated decay,
or other RNA biotypes (Additional file 6: Table S15). As
previously described, trans eQTL signals generally dis-
play low replication rates across studies [43]. We identi-
fied nine variants from previous trans eQTL datasets
that were also present in our trans eQTL results, eight
from Gibbs et al. [12] and one from Byrois et al. [8].
However, all influenced CAGE-clusters were located on
a different chromosome or in a different part of the
chromosome with respect to the eQTLs previously re-
ported. Despite using tissue-matched datasets in our
analysis we could not replicate any of the identified
trans-eQTLs; therefore, we did not consider them for
further analysis. Trans eQTL associations are presented
in Additional file 6: Table S15.

eQTLs are enriched for non-coding genes

In recent years, non-coding RNAs have generated great
interest, especially in brain research [45]. However, only
few non-coding RNAs have been fully functionally char-
acterized (see, for example, the role of XIST, HOTAIR,
and Uchll antisense in X chromosome inactivation, epi-
genetic regulation, and gene regulation, respectively
[46-48]). There is accumulating evidence that non-
coding RNAs play a pivotal role in brain development
and brain-related diseases (see Qureshi et al. for review
[45]). In addition, it has been shown that brain expresses
more non-coding RNAs as compared to other tissues
[49, 50]. Taken together, it is interesting to identify the
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non-coding transcripts that are influenced by DNA vari-
ants and indirectly could alter the expression of coding
transcripts. Here we identified 509 eQTLs that correlate
with the expression of non-coding transcripts (processed
transcripts, antisense transcripts, and lincRNA), 21 % of
the total identified eQTLs. We found that expression
differences for lincRNA AC012309.5 (LINC01535) are
correlated with variant rs320881 (Fig. 2a). LINC01535 is
located on chromosome 19q13.12 between two zinc fin-
ger proteins, ZNF383 and HKRI, both involved in tran-
scriptional regulation of the mitogen activated protein
kinase (MAPK) signaling pathway, which activates tran-
scription factors related to learning, memory, cell prolif-
eration, and apoptosis [51, 52]. Suggestive evidence for
linkage has been reported for schizoaffective disorders to
the chromosomal location of these genes and abnormal
activity of the MAPK signaling pathway has been ob-
served in frontal cortical areas on postmortem brains in
schizophrenia patients [53, 54]. Within the FANTOM5
expression data, we observed that LINC01535 is pre-
dominantly expressed in CNS tissues (Fig. 2b) and ex-
pression differences between different FANTOMS5 brain
donors can be explained by the genotypes for rs320881
similar to the findings of our current study (Fig. 2c). It is
tempting to speculate that LINC01535 plays a role in
MAPK signaling and it would be of interest to study if,
for example, LINC01535 plays a role in the (transcrip-
tional) regulation of ZNF383 and HKRI and thereby
explain the identified association with schizophrenia.
Recently, it has been shown that lincRNAs are more
prone to be contained within eQTLs as compared to
protein-coding genes [55]. We replicated this finding for
all non-coding transcripts (antisense and processed tran-
scripts and lincRNAs) and identified a significantly
higher fraction of eQTLs for non-coding CAGE-clusters
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Fig. 2 Association between rs320881 and the expression of AC072309.5 (LINC01535). a Boxplot showing the association between rs320881 and
the expression (log(tpm + 1)) of AC072309.5 (LINCO1535) with a FDR of <2.29E-37. Individuals carrying the non-reference allele (G) have a higher
expression compared to reference allele (a) carriers. b Boxplot showing that LINCO1535 is predominantly expressed in central nervous system
(CNS) tissues (n = 126) as compared to non-CNS tissues based on FANTOMS expression data (p value 7.24E-12, Mann-Whitney U test one-sided).
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as compared to coding CAGE-clusters (p value <5.73E-
27, Chi-square = 105.6). Furthermore, when non-coding
transcripts were identified as an eQTL, their FDR value
was significantly lower than for coding transcripts
(2.01E-11 Mann—Whitney U test one-sided). The largest
difference was found between coding transcripts and
processed transcripts (3.24E-8 Mann—Whitney U test
one-sided), followed by coding transcripts versus lincR-
NAs or antisense (3.84E-4 and 4.67E-4, respectively,
Mann—Whitney U test one-sided). No statistically sig-
nificant differences were found between the different
types of non-coding transcripts (Mann—Whitney U test
two-sided). Additionally, the genomic distance between
the CAGE-cluster and the sentinel variant of non-coding
eQTLs was significantly smaller than for coding eQTLs
(p value <9.13E-5 Mann—Whitney U test one-sided).
This effect was strongest between coding transcripts and
lincRNAs (p value <4.53E-4 Mann—Whitney U test one-
sided), followed by antisense and processed transcripts
(p value <6.34E-3 and 0.056 Mann—Whitney U test one-
sided, respectively). No statistical difference was found
within the non-coding group.

Identifying “causal” variants for eQTLs

Variants obtained from CAGEseq data are of special
interest as the likelihood that they represent the actual
variant causing the expression changes is much higher
compared to tagging SNPs used on microarrays. This is
because they are located in the very close vicinity
(<30 bp) of the actual TSS and thus likely represent vari-
ants that directly influence the binding strength of the
transcription complex. Variants obtained from exome
sequencing are of special interest as well as they could
be close to the TSS as well or could influence transcript
stability. Indeed, we find in our data that CAGEseq vari-
ants were 85 times more often identified as a sentinel
eQTL compared to BeadChip and imputed variants and
exome sequencing variants showed a similar, albeit
weaker, trend (77 times, respectively).

We then used RegulomeDB to predict a causality score
for all the sentinel variants. We obtained causality scores
for all 2376 unique sentinel variants, with 127 scoring 1
(likely to affect binding and linked to expression of a
gene target) and 188 scoring 2 (likely to affect binding),
suggesting that at least 13 % of all our sentinel variants
are likely to be the causal variant. When focusing on
sentinel variants within 1 kb of the TSS, we observed
31 % of all variants scoring 1 or 2. Besides, CAGEseq
variant eQTLs had a lower average RegulomeDB score
compared to non CAGEseq variant eQTLs (3.1 vs 4.9)
supporting the more likely regulatory role of CAGEseq
variants. The complete list of the RegulomeDB scores is
provided in Additional file 7: Table S16.
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Using eQTLs to interpret GWAS results

As the majority of the identified variants from GWAS
are located in non-coding regions, the interpretation of
their consequences on a molecular level remains diffi-
cult. A straightforward method to interpret the bio-
logical effect underlying the risk loci is to correlate the
GWAS loci with eQTLs [56]. We therefore intersected
our list of eQTL variants with the GWAS variant catalog
[1]. Overall, we obtained an overlap with 381 variants
identified in 557 separate GWAS, representing 253 indi-
vidual eQTLs signals from the current study. Of these
557 GWAS associations, 359 reached whole genome
significance in their GWAS (p value <8e-5, Additional
file 8: Table S17).

Using CAGEseq as an expression profiling technique
allows the identification of eQTLs for specific TSSs of
transcripts. Therefore, we can correlate variants in the
identified risk loci with the individual transcripts of a
gene instead of measuring the effect on all gene tran-
scripts combined, which is important for designing
follow-up studies. This is exemplified by the inflamma-
tory bowel disease (IBD) locus on chromosome 2q25
associated with the rs2382817. Fifteen genes are present
in the region of association including the PNKD and
TMBIMI1 genes, in which the variant occurs. We identi-
fied an eQTL for a single TSS, downstream of the
primary TSS of TMBIM1 (TMBIM1_tss2), for two tran-
scripts variants of TMBIMI (Ensembl transcripts
ENST00000418569 and ENST00000444000) encoding
protein isoforms lacking five of the seven transmem-
brane domains. TMBIMI, a member of the transmem-
brane Bax Inhibitor-1 containing motif proteins family,
is located mainly in the Golgi apparatus and in the endo-
plasmatic reticulum (ER) [57, 58]. It controls ER-Ca2+
homeostasis and dynamics through a complex network
of interactions, likely pH-dependent, involving amino
acids residues located in the carboxyl terminal cytosolic
region, conserved among all the protein family members
and missing in the ENST00000418569 and ENST000
00444000 transcripts. It has been suggested that the
TMBIM proteins exert anti-apoptotic activities likely re-
lated to their capacity of controlling CA2+ flux at the
ER and Golgi [59]. Intestinal epithelial cells apoptosis
contributes to the development of IBD [60]. It is there-
fore tempting to speculate that change in expression of
ENST00000418569 and ENST00000444000 transcripts
might lead to reduced anti-apoptotic activity and there-
fore increase the risk to IBD.

A similar scenario can be found for rs3744028 and the
rs1055129, which have been consistently associated with
white matter hyperintensity [61-63]. The two variants are
physically close and influence a CAGE-cluster located
500 bp downstream of the main TSS for two isoforms of
TRIM47 (Ensembl transcripts nonsense mediated decay
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ENST00000587339 and retained intron ENST000005
87774) rather than the annotated main TSS of TRIM47.
There is good evidence that intron retention (IR), once
recognized merely as a consequence of mis-splicing lead-
ing to failed excision of intronic sequences from pre-
messenger RNAs, is part of a physiological mechanism of
gene expression control [64]. In particular, it has been
shown that the level of intron retention in genes involved
in differentiation processes increases markedly during
subsequent stages of maturation, resulting in greatly re-
duced protein levels due to nonsense mediated decay. IR
provides therefore an energetically favorable level of gene
expression control important to sustained gene transla-
tion. It is possible such a mechanism is more widespread
and therefore a change in expression of the ENST
00000587774 transcript might play a role in regulating
TRIM47.

Because the presented eQTL dataset was derived
from brain material, we focused mainly on GWAS for
brain-related disorders (which we defined as traits in-
fluenced by mental state or known brain diseases).
We identified 58 variants (16 reached whole genome
significance in the respective study) and identified
eQTLs for genes at risk loci for migraine, multiple
sclerosis, PD, Alzheimer’s disease (AD), and schizo-
phrenia (Additional file 8: Table S17).

Parkinson’s and Alzheimer’s disease GWAS loci eQTLs

We identified four CAGE-clusters influenced by an
eQTL for the MAPT locus on chromosome 17q21. Two
divergent MAPT haplotypes, H1 and H2, have been de-
scribed with distinct linkage disequilibrium patterns
across a 1.08-1.49 Mb region reflecting the presence of
a common inversion. The H1 haplotype has been associ-
ated with progressive supranuclear palsy, corticobasal
degeneration, PD, and AD [65, 66], while the H2 haplo-
type has been linked to recurrent deletion events of
KANSLI, a gene that encodes a nuclear protein that
plays a role in chromatin modification associated with the
17q21.31 microdeletion syndrome, a disease characterized
by developmental delay and learning disability [67, 68]. In
addition, recurrent partial duplications of KANSLI have
been reported on both haplotypes [69, 70]. An eQTL for
MAPT has been reported, [14, 71, 72] but other studies
could not confirm this finding and instead found an eQTL
associated with the alternative splicing of exon 3 of MAPT
[73-75]. We did not replicate the eQTL for MAPT in our
data because we solely focus on expression differences in
the TSS, but we detected eQTLs in this region influencing
two CAGE-clusters of KANSLI, one for a CAGE-cluster
of KANSLI-AS (LOC644246) and a CAGE-cluster of
CRHRI1. The eQTLs containing CRHRI1, KANSLI, and
KANSLI-AS have previously been identified [9, 76]. Inter-
estingly the eQTL for KANSLI was discussed in a recent
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meta-analysis for AD using more than 17,000 cases where
a new genome-wide significant association was identified
for rs2732703 on chromosome 17q21.31 approximately
200 kb downstream of MAPT in APOE4 negative cases
[66]. By conditioning the analysis on MAPT haplotypes,
the authors found that the causal variant(s) are more likely
located in a DNA segment between the 5" end of KANSLI
and 5 end of LRRC37A and not within MAPT or another
gene distal to LRRC37A. In the four eQTLs identified in
our study, we detected higher expression for the H2
haplotype, which is associated with a reduced risk for AD
[66]. Duplications and partial duplications of KANSLI
occur on both the H1 and H2 haplotypes (and subtypes)
[69, 70] and with the use of genotype and CAGEseq ex-
pression data we cannot determine the exact mechanism
behind these eQTLs, but our data and the recent meta-
analysis for AD suggest a role for disease risk of KANSLI
or KANSLI-AS [66]. Future studies that allow the full re-
construction of genomic variants and duplication events
in individuals combined with full transcript expression
and epigenetic data can hopefully resolve this.

Another example of an overlapping PD GWAS locus
and our eQTLs is the PARK16 locus, which is associated
with sporadic PD for SNPs rs947211 and rs823118, re-
spectively [4, 77, 78]. The PARK16 locus is located on
chromosome 1q32 and contains four genes, of which
RAB7L1 (RAB29) and SLC41A1 have been proposed as
possible causal genes (Fig. 3a) [79-82]. The Na+/Mg2+
exchanger SLC4IA is a key component of cellular mag-
nesium homeostasis and RAB7LI, together with LRRK2
assures proper functioning of the retromer complex that
links the endolysosomal protein degradation system with
the Golgi apparatus. We found that both GWAS SNPs
influence the expression of an antisense CAGE-cluster
(SLC41A1_tss2), which is part of a bidirectional promoter
of SLC41A1 (Fig. 3b), where having the reported risk allele
(T) results in higher expression of SLC41A1 _tss2 (Fig. 3¢).
SLC41A1_tss2 would function as TSS for LOC101059976,
however the NCBI record of this gene was withdrawn be-
cause it was not predicted in a later annotation. Analysis
of MiTranscriptome data suggests that SLC41A1_tss2 is
the TSS for the gene LOC284581, which would be a gene/
transcript spanning PM20D1 on the opposite strand of
RAB7LI1, SLC41A1, and PM20D1 (Fig. 3a) [40]. Partial val-
idation of this eQTL was found by an exon probe eQTL
of variant rs1772143 to influence LOC284581 expression
[9]. To test this prediction, we performed a PCR on cDNA
from brain using sets of primers covering SLC41A1_tss2
and the first exon predicted from the MiTranscriptome
RNA-seq data (Fig. 3a and 3b). Sanger sequence data from
the PCR supported the prediction of MiTranscriptome,
suggesting that SLC41A1_tss2 is a TSS for LOC284581
(Additional file 2: Figures S8-S10). It is tempting to
speculate that this novel gene could play a role in the risk
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for developing PD at the PARK16 locus by, for example,
transcriptional regulation, RNA stability, or alternative
splicing of neighboring genes including SLC45A3,
NUCKSI, RAB7LI1, SLC41A1, and PM20D1. We found no
clear correlation between expression levels, but our data
only allow for measuring expression at the transcrip-
tion start and other methods are needed to study
changes in RNA stability, alternative splicing, or
changes on protein level. Overall, more research is
needed to find the function of this “new” gene/tran-
script and whether it is involved in PD.

Schizophrenia NRGN GWAS loci eQTL

NGRN is an important risk factor for schizophrenia.
Association studies have identified common variants in
this gene region that are associated with an increased
risk for schizophrenia [83]. In particular, rs12807809
genotypes have been correlated to specific neuropsycho-
logical symptoms in schizophrenia and brain structure
[84, 85]. While several eQTLs have been described for
schizophrenia loci in brain, no eQTLs have been yet
identified for the NRGN locus [86]. Previous attempts to
explain the effect of GWAS variant rs12807809 in the
locus by eQTL analysis have been inconclusive [87]. Ohi
and colleagues, however, observed a diplotype for SNPs
rs12807809 and rs12278912 that increases the risk for

schizophrenia and influences NRGN expression in im-
mortalized lymphoblasts [88], and it was suggested that
it has an effect on the intelligence quotient of schizo-
phrenia patients [89].

We identified 11 CAGE-clusters for the NRGN locus,
nine sense and two antisense (Fig. 4a). Intragenic
CAGE-clusters are a common feature for this gene
based on our and FANTOMS5 data and are also identi-
fied in the mouse ortholog Nrgn [6, 90]. Additionally,
functional characterization of intragenic Nrgn tran-
scripts have already been described using (fluorescent)
in situ hybridization and it is proposed that the dif-
ferential regulation of sense and antisense transcripts
will increase the diversity of post-transcriptional regu-
lation [90].

We identified several eQTLs for the NRGN locus. One
of the CAGE-clusters, NRGN_tss4, which is 500 bp
downstream of the main TSS (Fig. 4a and 4b), correlates
with the highest associated SNP from a recent GWAS,
rs12807809 [83]. Homozygous individuals for the refer-
ence allele have a lower expression of NRGN_tss4 in
comparison to homozygous for the alternative allele.
Interestingly, heterozygous carriers show a clear separ-
ation into two groups, one behaving as the homozygous
reference and the other as the homozygous alternative
allele carriers (Fig. 4c), suggesting an additional factor
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carriers are clearly separated in two groups with 19 individuals showing the same expression pattern as the homozygotes AA while the remaining

13 carriers show the expression pattern of the homozygotes BB suggesting an underlying effect. This effect is not present for the rs35306015
variant. The minor allele frequency (MAF) for rs35306015 in our cohort (MAF =0.076) is similar to the European frequency in 1000 Genomes.

d Haplotypes drawn with Haploview using genotypes from all the 119 included individuals in this study. Note the specific haplotype with 8 %
frequency for the 17 individuals presenting highest expression for NRGN_tss4, highlighted with a red bar. Of the 17 haplotype carriers, 16 are
heterozygous and one homozygous. Black asterisks represent variants unique to this haplotype and in perfect linkage disequilibrium in our dataset

present, for example, a haplotype effect. In order to in-
vestigate this, we estimated haplotypes based on the
available genotype data and identified a specific haplo-
type spanning 17 variants surrounding rs12807809 for
the 17 individuals that have a high expression of the
CAGE-cluster (Fig. 4d). Four variants (all non-reference
alleles) were in perfect linkage disequilibrium and
strongly correlated to the expression of NRGN_tss4:
rs71491832, rs35306015, rs71491831, and rs34716506 in
a 6.2 kb region (Fig. 4b). We replicated these findings by
performing PCRs on ¢cDNAs from six additional donors
using sets of primers in the NGRN_tss4 and NRGN
exon2 (Fig. 4a and 4b). The results confirm that the
expression of this CAGE-cluster is genuine and that
expression is only detectable in the individuals carrying
the haplotype described here (Additional file 2: Figures
S11-S13). It is important to notice that NRGN_tss4 and
rs35306015 are in close proximity of predicted func-
tional elements (predicted enhancer and CTCF site [7]),
which could explain this eQTL effect.

Spearman correlation analysis performed on all the
NRGN CAGE-clusters showed a high correlation
(>0.64) between the expression of the main TSS

(NRGN_tssl) and most of the intragenic CAGE-
clusters with the exception of NRGN_tss4 and
NRGN_tss9 (due to the eQTL effect described) and
NRGN_tss8 (most likely because of low expression;
Additional file 2: Figure S14). When using only the
17 samples with expression of NRGN_tss4 a high cor-
relation (>0.65) was also present with the main TSS.
Considering these data, it is likely that alterations in
expression of human NRGN intragenic TSSs could re-
sults in a different post-transcriptional regulation of
human NRGN gene. This has similarities to the
mouse locus for which several sense and antisense
transcripts have been reported whose expression is
spatiotemporally regulated from development until
the adult mouse [90]. This complex expression pat-
tern in both human and mouse is consistent with the
role of NGRN in synaptic long-term potentiation,
which requires a precise and highly dynamic regula-
tion of gene expression in response to external stim-
uli. The functional role of the eQTL therefore
warrants further investigations to confirm the tran-
scriptional regulation of the NRGN gene and the
potential role on brain development and schizophrenia.
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Conclusions

One of the main hurdles to translate findings from
GWAS studies into biology is that the vast majority of
GWAS risk loci are located in non-coding or poorly an-
notated regions making the interpretation of their role
in disease etiology challenging. eQTL analysis has
emerged as an important tool to help understanding the
molecular consequences of human variation but has
mostly focused on genotypes from microarrays contain-
ing tagging SNPs and expression data have been mostly
generated for protein-coding genes. By performing
eQTL analysis on CAGEseq expression data obtained
from a series of human postmortem frontal lobe sam-
ples, in combination with genome wide array based
genotyping, exome sequencing, and variants derived
from CAGEseq, we have generated a rich resource for
researchers to mine. Overlapping eQTLs with GWAS
loci made it possible to create new hypotheses for in-
creased risk of disease via molecular effects, but further
confirmation is needed with additional statistical tests
and experimental follow-ups. Our data contain both
coding and non-coding transcripts and has the added
value that we have identified eQTLs for variants directly
adjacent to TSS. We demonstrated that these have a
high likelihood of being causal variants, which will be an
important tool to understand what the molecular mech-
anisms underlying genetic risk loci are.

Additional files

Additional file 1: Table S1. All included samples with their characteristics.
List of all the samples passing quality controls used in this study with sample
details including gender, age, RNA integrity number, postmortem interval,
number of mapped reads, included in exome sequencing, and brain bank
origin. (XLSX 361 kb)

Additional file 2: Supplementary data file containing supplementary
figures S1 to S14 and supplementary Tables S2 to S11. (DOCX 2548 kb)

Additional file 3: Table S12. List of all identified CAGE-clusters. List of
all identified CAGE-clusters reported with their chromosomal locations
gene ID, gene and transcript type class according to GENCODE version
17, and expression characteristics. (XLSX 2347 kb)

Additional file 4: Table S13. Manual annotation of intergenic CAGE-
clusters. Manual annotation of intergenic CAGE-clusters using the
following public databases/datasets: RefSeq genes; FANTOMS5 phase |
permissive TSSs; Repetitive Elements database; CAGEseq expression
derived enhancer dataset; frontal cortex H3K4me3 ChiIP-Seq dataset.
Overlap between datasets is provided. (XLSX 60 kb)

Additional file 5: Table S14. All identified cis eQTL variants. List of all
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