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Background The MChip uses data from the hybridization of

amplified viral RNA to 15 distinct oligonucleotides that target the

influenza A matrix (M) gene segment. An artificial neural network

(ANN) automates the interpretation of subtle differences in

fluorescence intensity patterns from the microarray. The complete

process from clinical specimen to identification including

amplification of viral RNA can be completed in <8 hours for

under US$10.

Objectives The work presented here represents an effort to

expand and test the capabilities of the MChip to differentiate

influenza A ⁄ H1N1 of various species origin.

Methods The MChip ANN was trained to recognize fluorescence

image patterns of a variety of known influenza A viruses,

including examples of human H1N1, human H3N2, swine H1N1,

2009 pandemic influenza A H1N1, and a wide variety of avian,

equine, canine, and swine influenza viruses. Robustness of the

MChip ANN was evaluated using 296 blinded isolates.

Results Training of the ANN was expanded by the addition of

71 well-characterized influenza A isolates and yielded relatively

high accuracy (little misclassification) in distinguishing unique

H1N1 strains: nine human A ⁄ H1N1 (88Æ9% correct), 35 human

A ⁄ H3N2 (97Æ1% correct), 31 North American swine A ⁄ H1N1

(80Æ6% correct), 14 2009 pandemic A ⁄ H1N1 (87Æ7% correct), and

23 negative samples (91Æ3% correct). Genetic diversity among the

swine H1N1 isolates may have contributed to the lower success

rate for these viruses.

Conclusions The current study demonstrates the MChip has the

capability to differentiate the genetic variations among influenza

viruses with appropriate ANN training. Further selective

enrichment of the ANN will improve its ability to rapidly and

reliably characterize influenza viruses of unknown origin.
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The MChip was developed with the goal of designing a

fast, low-cost diagnostic and surveillance tool capable of

differentiating among multiple subtypes of influenza A.1

Prior to MChip development, the classical process of dis-

tinguishing influenza strains required a tedious series of

viral culture and serologic assays to distinguish the anti-

genic subtype of the major influenza A antigens, hemagglu-

tinin (HA), and neuraminidase (NA). This process is not

commonly used in outpatient settings, because it requires

several days to first culture the virus and several more to

determine the subtype. Even then, this system is compli-

cated by cross-reactivity among the subtyping antisera. The

development of methods for subtype-specific reverse tran-

scription-PCR (RT-PCR) and subsequent sequencing of all

eight influenza gene segments has allowed more accurate

determination of virus subtype by inference from the gene

sequence.2–4 However, RT-PCR’s ability to determine spe-

cific subtype is limited by the availability of conserved sub-

type-specific sequences in the genetic targets and the

cognate subtype-specific primers. The development of a

RT-PCR method to amplify all eight influenza gene seg-

ments has facilitated more rapid characterization of full

viral genomes from which subtype can be determined

by inference from the genetic sequence.5 More recently,
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real-time RT-PCR assays have come into use for the deter-

mination of suspect subtype.6 These methods are limited to

the detection of only a few subtypes of viruses, therefore

the sequencing of additional gene segments is usually

required to detect newly emerging viruses, as was the case

with the 2009 pandemic H1N1 outbreak. Even though the

currently available molecular tools have greatly reduced the

time to subtype influenza A viruses, it can still take 2–

3 days for confirmation of newly emerged viruses.

Much like matrix-specific real-time PCR protocols, the

MChip takes advantage of genetic variations in the matrix

(M) gene that may have become conserved among mem-

bers of specific subtype or host species. However, rather

than requiring knowledge of these specific markers like

real-time PCR assays, the MChip relies on the differential

hybridization of viral RNA to an array of 15 oligonucleo-

tides consisting of sequences designed to be either broadly

reactive against all influenza A subtypes or reactive against

only a restricted subset of subtypes (Figure 1).

The MChip was the first single gene microarray to

indirectly provide subtype information for influenza A

when it was reported to be able to distinguish between

human influenza A ⁄ H3N2, human influenza A ⁄ H1N1 and

A ⁄ H5N1 in clinical isolates.1,7 Since then, further studies

have demonstrated that the MChip system can be a pow-

erful tool for rapid and reliable detection of genotypes

associated with drug resistance as demonstrated by its

ability to detect the presence distinct point mutations in

the M-gene associated with resistance to the antiviral ada-

mantine.8 Comparison of the MChip assay to viral cul-

ture, rapid immunoassay kits, and RT-PCR demonstrated

performance characteristics similar to other popular diag-

nostic techniques, while providing the additional benefit

of rapid turnaround times and the ability to differentiate

influenza A subtypes.9 Overall, these studies suggested that

the MChip system may have the ability to distinguish a

wider variety of influenza viruses, provided it has ade-

quate training.

The goal of the current work was to further test the

capabilities of the MChip by expanding the training of the

ANN to encompass additional subtypes of influenza viruses

through the addition of unique isolates to those isolates

previously used in training for subtype differentiation. This

work describes the doubling of the number of images from

unique influenza A isolates to include 374 images from

characterized isolates in addition to 52 negative samples.

Of these 426 images, 78 (plus 20 of the 52 negative sam-

ples) were used to train the neural network, while 32 were

used as validation examples during automated training.

The remaining 264 images (plus the remaining 32 images

of negative samples) were used to evaluate the robustness

of the MChip ANN.

Methods

Sources of viruses used in this study
In addition to images obtained from isolates in the collec-

tion of our laboratory, MChip images for this study were

obtained from large collections of well-characterized influ-

enza A isolates at the Veterinary Diagnostic Laboratory of

Iowa State University (Ames, IA, USA) and the US Naval

Medical Research Unit No. 3 (Cairo, Egypt). Additional

isolates and confirmed clinical specimens used by the

authors to create microarray images were obtained through

agreements with various collaborators. The majority of

viruses used in this study were of cultured isolates, includ-

ing the 2009 pandemic H1N1 prototypical strain A ⁄ Califor-

nia ⁄ 04 ⁄ 2009 (H1N1). The remainder of 2009 pandemic

H1N1 viruses used, however, were clinical specimens that

had been confirmed by the University of Iowa Iowa State

public health laboratory to contain 2009 pandemic H1N1

virus.

Microarray image acquisition and processing
The following standardized methods were used by all three

data acquisition sites to process viral isolates and acquire

A

B C D

Figure 1. (A) Microarray fluorescence image representative of a typical

human A ⁄ H1N1 influenza virus. (B) MChip microarray layout with

positive control sequences (closed circles) and capture sequences

labeled numerically (open circles) (C) Example of swine A ⁄ H1N1image

and (D) Typical Pandemic A ⁄ H1N1 image. Lighter shading represents

greater fluorescence intensity.
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MChip images for each of the viruses added to the MChip

ANN database during the course of this study.

RNA extraction
Viral RNA was extracted from isolates or clinical specimens

using the Qiagen RNAeasy kit following the manufactures

instructions (Qiagen Inc., Valencia, CA, USA).

RNA amplification
Reverse transcription was performed on the extracted viral

RNA as described by Mehlman et al.10 The method of

Zou4 was used to PCR amplify the first strand cDNA. The

5¢ primer included a T7 promoter site that facilitated T7

polymerase-mediated run-off transcription. Following tran-

scription, the amplified RNA was immediately fragmented

as described by Dawson et al.1 Hybridization was per-

formed immediately after fragmentation as described by

Townsend et al.11 and carried out in a humidified environ-

ment at room temperature for 1 hour.

Imaging and analysis
Slides were scanned using a Molecular Devices GenePix

Personal 4100 microarray scanner and analyzed using

GenePix Pro 6 microarray image analysis software (Molec-

ular Devices, Sunnyvale, CA, USA). Hybridization efficiency

was assessed by visual examination of the positive control

spots in each slide. The intensity value for each spot was

extracted, and the mean signal for each triplicate set was

calculated.

To normalize all the images for analysis by the neural

network and account for intensity differences attributed to

the RNA concentration used on each slide, relative signal

values were used rather than absolute intensities. For each

microarray, the oligonucleotide producing the highest

mean fluorescence intensity was used to define the maxi-

mum intensity and normalized to 100. Subsequently, the

mean intensities of all other oligonucleotides were appro-

priately scaled relative to 100. This treatment of the data

was not expected to introduce any bias, as relative intensity

among the different oligonucleotides on a single chip are

solely a function of the hybridization thermodynamics of

the RNA attributed to the sequence of the M-gene for that

particular isolate to the oligonucleotide sequences on the

MChip. The use of multiple isolates (‡20) for training

against a single subtype output also lessened the likelihood

that this treatment of the intensity data would bias out-

comes and maximized the ability of the MChip to recog-

nize the broadest range of acceptable representations of a

specific trained output.

Training and validation of the neural network
To assist in image analysis, the relative fluorescence

intensities of microarray images from a number of char-

acterized viruses were entered into an ANN that learns

to recognize fluorescence intensity patterns associated

with known isolates. During the automated learning pro-

cess, additional known viruses were used to challenge the

training of the ANN to validate the learning before it

was used to characterize query examples. EasyNN-Plus

(http://www.easynn.com), a commercially available soft-

ware package, was used to develop the ANN for auto-

mated image interpretation as previously described by

Dawson et al.1 The ANN used for this study had 16

inputs, seven outputs and had a hidden layer that con-

sisted of nine nodes. The inputs consisted of the mean

intensity data for each of the 15 oligonucleotides and the

signal to background ratio (S ⁄ B) for each slide as the

16th input. The 16th input was included to help differ-

entiate negative samples from influenza A-positive sam-

ples, as the S ⁄ B for a negative slide should be very low.

The six output categories were Human A ⁄ H1N1, human

A ⁄ H3N2, swine A ⁄ H1N1, 2009 pandemic A ⁄ H1N1, and

generic FluA (i.e., influenza A positive, but not belonging

to the other output categories, and negative). Although

Table 1. Summary of results from training the artificial neural network (ANN) upon challenge with 217 query influenza A virus isolates and

negative slides

Challenge isolates

Trained ANN output classifications and results for query examples n (%)

Human H1N1 Human H3N2 Swine H1N1

2009 pandemic

H1N1

Influenza

A Positive

Influenza

A Negative

Human H1N1, n = 9 8 (88Æ9%) 1 (11Æ1%) 0 0 0

Human H3N2, n = 35 0 34 (97Æ1%) 0 0 0 1 (2Æ9%)

Swine H1N1, n = 31 0 0 25 (80Æ6%) 4 (12Æ9%) 2 (6Æ5%) 0

2009 H1N1, n = 14 0 0 1 (7Æ1%) 12 (87Æ7%) 1 (7Æ1%) 0

Other, n = 105 1 (<1Æ0%) 1 (<1Æ05) 2 (1Æ9%) 0 100 (95Æ2%) 1 (<1Æ0%)

Negative, n = 23 0 0 1 (4Æ3%) 0 1 (4Æ3%) 21 (91Æ3%)

MChip identifies H1N1 influenzas of diverse origin
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sufficient swine A ⁄ H3N2 isolates were available to train a

swine A ⁄ H3N2 output during these studies, insufficient

isolates were available to provide query examples for test-

ing, and thus we could not assess MChip performance

for identifying this subtype. However, by training swine

H3N2 as a possible output, we were able to assess

whether the ANN could differentiate other isolates that

did not belong in this subtype output. In the ANN data-

base, the outputs of the known examples used in the

training set were entered as 1 or 0 designating true or

false. The images of 110 known samples and 20 negatives

were used to train the ANN, of these 130 images, 32

were used as validating examples in which known sam-

ples were used to automatically test the neural network

performance during learning. Leaning was considered

complete only when all 32 validating examples were cor-

rectly assigned and the output score was within 5% of

the expected value, which was set to 1. The trained neu-

ral network was used to determine the subtype of the

296 blinded query examples. Subtype assignment was

based on a threshold output score of 0Æ75.

Results

Additional training of the ANN database yielded relatively

high MChip system accuracy in distinguishing unique

H1N1 strains (see Table 1): nine human seasonal H1N1

strains (88Æ9% correct), 35 human seasonal H3N2 (97Æ1%

correct), 31 North American swine H1N1 (80Æ6% correct),

14 2009 pandemic influenza A H1N1 (87Æ7% correct), and

23 negative samples (91Æ3% correct) (shaded boxes in

Table 1). The range of human H1N1 and swine H1N1

included in this analysis is summarized in Table 2. For the

training of the ANN for the 2009 pandemic H1N1, we

made the assumption that the ANN will not differentiate

2009 pandemic H1N1 from other Eurasian H1N1; unfortu-

nately, we did not have sufficient isolates of Eurasian

H1N1 to test this hypothesis. In addition to the viruses

expected to be classified into one of the specific lineages,

105 influenza A isolates including a wide variety of sub-

types of low pathogenic avian influenza, highly pathogenic

avian influenza (H5N1), equine (H3N8 and H7N7), and

canine (H3N8) influenzas as well as non-H1N1 or non-

H3N2 influenza isolates from swine (H3N1, H1N2, and

H2N3) were used to challenge the training of the ANN.

The ANN performed very well at differentiating these iso-

lates, with very few being misclassified as one of the trained

subtypes. Overall, the ANN produced a very low rate of

false negative (<1Æ0%) or false classifications (<9Æ0%).

About 25% of our diverse collection of challenge viruses

(79 isolates) were unclassified by the ANN. This result was

often attributed to low signal intensity likely due to low

viral RNA input, which could easily be improved. These

isolates were not included in the aforementioned summary,

thus only 217 isolates of the 296 blinded isolates could be

included in this analysis.

Table 2. Isolate-specific output classifications for Swine H1N1 and

Human H1N1 viruses reported in Table 1

Swine H1N1 isolates ANN result

A ⁄ Swine ⁄ North Carolina ⁄ 7498 ⁄ 2007 (H1N1) X

unknown reassortant Swine H1N1 X

A ⁄ Swine ⁄ Virginia ⁄ 16624 ⁄ 2007 (H1N1) Misclassified as

pandemic H1N1

A ⁄ Swine ⁄ North Carolina ⁄ 35774 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 36260 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 37822 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 38614 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Ohio ⁄ 33431 ⁄ 2006 (SwH3N2) X

A ⁄ Swine ⁄ England ⁄ 117316 ⁄ 86 Misclassified as

flu A

A ⁄ Swine ⁄ North Carolina ⁄ 31430 ⁄ 2006 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 30777 ⁄ 2006 (H1N1) X

A ⁄ Swine ⁄ Wisconsin ⁄ 238 ⁄ 97 (H1N1) Misclassified as

flu A

A ⁄ Swine ⁄ Iowa ⁄ 11583 ⁄ 2007 (H1N1) Misclassified as

flu A

Unknown variant Swine H1N1 X

A ⁄ Swine ⁄ Iowa ⁄ 34516 ⁄ 2006 (H1N1) Misclassified as

flu A

A ⁄ Swine ⁄ Iowa ⁄ 17948 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 18983 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 35725 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 37613 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 38705 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Oklahoma ⁄ 8680 ⁄ 2006 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 18981 ⁄ 2007 (H1N1) Misclassified as

pandemic H1N1

A ⁄ Swine ⁄ North Carolina ⁄ 40688 ⁄ 2006 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 44504 ⁄ 2006 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 15891 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 37531 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ North Carolina ⁄ 37825 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Iowa ⁄ 45043 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Ohio ⁄ 3129 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Virginia ⁄ 4488 ⁄ 2007 (H1N1) X

A ⁄ Swine ⁄ Illinois ⁄ 14913 ⁄ 2008 (H1N1) X

Human H1N1 isolates ANN Results

Unnamed H1N1 clinical specimen Colorado 2006 Misclassified as

human H3N2

A ⁄ Bangkok ⁄ 1544 ⁄ 2004 (H1N1) X

A ⁄ Taiwan ⁄ 1571 ⁄ 2004 (H1N1) X

A ⁄ Singapore ⁄ 5 ⁄ 2004 (H1N1) X

A ⁄ Krasnoyarsk ⁄ 51 ⁄ 2005 (H1N1) X

A ⁄ Idaho ⁄ 1 ⁄ 2005 (H1N1) X

A ⁄ Singapore ⁄ 23 ⁄ 2004 (H1N1) X

Unnamed H1N1 clinical specimen Colorado 2006 X

A ⁄ Egypt ⁄ NAMRU3-2000909671 ⁄ 2001 (H1N1) X

X indicates a correct classification by the MChip ANN.

Heil et al.
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Discussion

The lower success rate observed for swine H1N1 may be

attributable to a significant amount of genetic variation

among the matrix gene segments of the swine H1N1

viruses available for this (Personal Communication with Dr

Kyoung-Jin Yoon). The genetic diversity of the M-gene seg-

ment among swine H1N1 was significant enough to be

visually noticeable in scanned array images as apparent

variations in the intensity pattern (Figure 2). As the num-

ber of viruses from each of the known genetic clusters of

swine H1N1 viruses was insufficient to train output classifi-

cations for each cluster, we attempted to train the ANN

with a broad diversity of isolates that represent the genetic

variation as a single-output classification. In this instance

rather than creating a ‘‘catchall’’ output for swine A ⁄ H1N1,

it appears that the genetic diversity may have contributed

ambiguity to the ANN training resulting in a higher rate of

misclassification of swine H1N1 among the challenge iso-

lates. This ambiguity may have also contributed to the

number of swine H1N1 isolates that could not be classified

by the ANN. Some misclassifications can be attributed to

low signal to background (S ⁄ B) ratios (<20), which appears

to be the case for all misclassified 2009 pandemic A ⁄ H1N1

as well as a number of misclassified or unassigned swine

A ⁄ H1N1. A few misclassifications can be attributed to

errors in chip printing or processing during hybridization.

Uniqueness of some isolates may have been a contributing

factor in the failure of the ANN to assign any classification

for a substantial number of isolates as was the case for

some of the more unique avian subtypes used to query the

ANN, as they were underrepresented in the training exam-

ples. The results from the challenge of the ANN with a

large number of isolates from outside the trained subtypes

suggests a potential use of this system as an early warning

system for detecting the emergence of novel influenza A

viruses among sentinel populations.

Conclusions

The results presented here for the current MChip ANN

training demonstrates that the MChip has the capability to

differentiate genetic variations among influenza A viruses

when appropriate training examples are available. Further

selective enrichment of the ANN training will likely

improve the system’s ability to rapidly and reliably charac-

terize influenza isolates and specimens of unknown origin.

One could argue that perhaps the MChip is too sensitive to

minor genetic variation in the M-gene as noted in the diffi-

culty it demonstrated in handling the level of genetic diver-

Figure 2. Images representing some of the

variability of fluorescence intensity seen

among swine A ⁄ H1N1 influenza isolates.

Slide images are displayed in a color

enhanced format to make variations in

fluorescence intensities easier to distinguish.

Red color represents the highest fluorescent

intensity, while blue represents the lowest.

Note the most significant difference in

sequences 9, 12, and 15 (see Figure 1 for

array layout and sequence numbering).

MChip identifies H1N1 influenzas of diverse origin
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sity expected among the swine A ⁄ H1N1 isolates. However,

these data also speak of the power of the method to detect

subtle genetic changes that may be associated with the phe-

notypes of emerging viruses. While the MChip appears to

possess the potential to be used as a method of detecting

emerging M-gene lineages, it would not eliminate the need

for sequencing, culture or HA subtyping of emerging

strains that may have acquired other gene segments

through reassortment.

The two swine H1N1 isolates that were misclassified as

2009 pandemic H1N1 (see Table 2) were of particular

interest. While sequence data for the M-gene of these iso-

lates were not available at submission time, differential RT-

PCR12 did confirm that their M-genes were of the North

American lineage (data not shown). In addition, visual

examination of the chip images from these two misclassi-

fied viruses suggests that they were more similar to other

North American swine H1N1 isolates than to the 2009

pandemic H1N1 virus. Thus, it is believed that the misclas-

sification of these isolates is the result of noise introduced

by the variability of the North American swine H1N1 M-

gene lineages used for training the ANN and not the exis-

tence of precursors of the 2009 pandemic H1N1 among

North American swine.
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