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Optimal control theory provides insight into complex resource allocation
decisions. The forward–backward sweep method (FBSM) is an iterative tech-
nique commonly implemented to solve two-point boundary value problems
arising from the application of Pontryagin’s maximum principle (PMP) in
optimal control. The FBSM is popular in systems biology as it scales well
with system size and is straightforward to implement. In this review, we
discuss the PMP approach to optimal control and the implementation of
the FBSM. By conceptualizing the FBSM as a fixed point iteration process,
we leverage and adapt existing acceleration techniques to improve its rate
of convergence. We show that convergence improvement is attainable with-
out prohibitively costly tuning of the acceleration techniques. Furthermore,
we demonstrate that these methods can induce convergence where the
underlying FBSM fails to converge. All code used in this work to implement
the FBSM and acceleration techniques is available on GitHub at https://
github.com/Jesse-Sharp/Sharp2021.
1. Introduction
Across the life sciences, we encounter systems over which we wish to exert
control. Whether we consider outbreak control in epidemiology [1,2], chemo-
therapy in oncology [3–5], muscle contraction and gait regulation in
biomechanics [6–8], engineering cellular processes in synthetic biology [9,10],
cell population growth in tissue engineering [11,12], or biodiversity and inva-
sive species management in ecology [13–15], we face decisions around how a
particular intervention should be applied to best achieve desired outcomes.
Using mathematical models of such systems, optimal control theory provides
insight into these resource allocation decisions.

Optimal control is a science of trade-offs; between competing objectives, or
in weighing up the benefits of control measures against their costs. We illustrate
some key concepts of optimal control in figure 1. Suppose that without inter-
vention, a crop yield will double, from x0 to 2x0, between now and harvest
time. We might consider applying a control, such as fertilizer, to increase
the growth rate of the crop; thereby increasing the yield at harvest to 3x0.
Of course, applying fertilizer comes at a cost, and this must be considered
against the increase in crop yield. As such, it is not immediately apparent
how much fertilizer should be applied, and over what time period. This
depends entirely on our characterization of optimality: the pay-off . Depending
on the pay-off, the optimal control may be continuous; whereby the strength
can be readily and continuously adjusted throughout time, or bang-bang (dis-
continuous); whereby the control is applied at either a lower or upper bound
with finitely many discrete switches between the two. The pay-off determines
the objective(s) of control; which in our stylized example may be to maximize
profits after cost of fertilizing is considered, or achieve a specific yield, for
example 3x0, using the minimum amount of fertilizer.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0241&domain=pdf&date_stamp=2021-08-25
mailto:jesse.sharp@hdr.qut.edu.au
https://doi.org/10.6084/m9.figshare.c.5557230
https://doi.org/10.6084/m9.figshare.c.5557230
http://orcid.org/
http://orcid.org/0000-0002-2865-4853
http://orcid.org/0000-0002-8111-1137
http://orcid.org/0000-0001-6254-313X
https://github.com/Jesse-Sharp/Sharp2021
https://github.com/Jesse-Sharp/Sharp2021
https://github.com/Jesse-Sharp/Sharp2021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


(a)

-$

co
nt

ro
l

yi
el

d

-$-$
-$-$-$-$-$

time
0 harvest

x0

-$ -$ -$

-$-$
-$-$

-$

-$-$-$co
nt

ro
l

uncontrolled

continuous control

bang-bang control

yi
el

d
yi

el
d

x0

x0

2x0

3x0

3x0

(b)

(c)

Figure 1. A pictorial example of optimal control for a growing crop. Suppose
that initially, the crop yield is x0. We want to grow this crop to increase the
yield, represented by the green line, come harvest time. Actions taken to
increase the growth rate of the crop, such as applying fertilizer, are the con-
trols, represented in black dash. Scenarios are presented for (a) no control, (b)
continuous control and (c) bang-bang control. Optimal control theory helps
us determine how best to apply these controls. Illustrations adapted from
ilyakalinin/iStock/Getty Images, johavel/iStock/Getty Images.
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Much ofmodern day optimal control theory stems from the
seminal works of Pontryagin, through the Pontryagin maxi-
mum principle (PMP) [16], and Bellman, through the advent
of dynamic programming and the Hamilton–Jacobi–Bellman
equation [17], in the 1950s and 1960s. These foundations of
optimal control are built upon centuries of development in
the calculus of variations [18]. For brief but broad expositions
of the theoretical roots of optimal control and developments
following these seminal works, we direct the reader to articles
such as [19,20].

Oftenwe are unable to solve optimal control problems ana-
lytically, so we pursue computational approaches. Broadly, the
numerical methods for optimal control can be classed as either
indirect or direct methods; for indirect methods optimality
conditions are derived in the calculus of variations fashion
via the PMP, leading to a two-point boundary value problem
(TPBVP), while for direct methods the control problem is dis-
cretized and reformulated as a nonlinear programming
problem [21]. For an early history of numerical methods in
optimal control, including gradient and conjugate gradient
methods, Newton–Raphson methods, quasi-linearization,
feasible direction algorithms and feedback solutions we
suggest [22]. Surveys [20,21] give an excellent overview of
more recent developments in relevant numerical methods,
including the forward–backward sweep method (FBSM),
multiple-shooting methods, control parameterization, colloca-
tion and pseudospectral methods and complete discretization
into finite-dimensional nonlinear programming problems.

Optimal controlmethodology and numerical solution tech-
niques are continually being developed and improved. The
growing popularity of artificial intelligence, machine learning
and related disciplines has precipitated significant advances
in computational techniques for handling large-scale systems
withmany variables, and related infinite-dimensional optimiz-
ation problems. Nonlinear approximators, including neural
networks, can be used to reduce infinite-dimensional optimiz-
ation problems to finite-dimensional nonlinear programming
problems. This approach is presented in [23], alongside other
techniques that arise through unifying aspects of decision
science, dynamic optimization, statistical and determinis-
tic machine learning, nonlinear approximation theory and
other fields. One example of control paired with machine
learning arises in autonomous vehicles, where machine learn-
ing techniques can accelerate obtaining approximately
optimal controls where computational power on-board is
limited and controls satisfying strict safety constraints must
be obtained rapidly [24]. Reinforcement learning, a technique
from artificial intelligence resembling a model-free analogue
of dynamic programming, has shown promising simulation
results for the control of multi-species microbial communities
in bioreactors [25].

Formulation and approximate solutions of fractional opti-
mal control problems (FOCP)—optimal control of systems
involving fractional derivatives—has also garnered wide
interest recently within the control, numerical methods and
applied mathematics communities; resulting in the develop-
ment of new numerical approaches such as the non-standard
two-step Lagrange interpolation method [26,27]; and amalga-
mations of new and existing techniques, such as pairing
predictor-corrector methods for solving fractional differential
equations with the FBSM for optimal control [28,29]. Appli-
cations involving FOCPs arise in areas of systems biology
including epidemiology, where the incorporation of memory
effects through fractional time derivatives may better describe
disease transmission, by modelling the capacity for the popu-
lation to learn from past outbreaks [26,30]; and in cancer
therapy for determining optimal chemotherapeutic and
immunotherapeutic treatment regimens [31,32].

The field of optimal control has historically focused on
determining optimal interventions to apply to systems to
meet specified objectives. More recently, however, optimal
control techniques have been applied in a systems biology
context to further our understanding of the underlying mech-
anisms or processes involved in a given system; for example
via inverse optimal control, whereby exhibited behaviour
observed in a system is used to elicit the underlying optimality
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Figure 2. The process of optimal control via the Pontryagin maximum
principle approach, with the incorporation of acceleration methods.
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principles that may guide the system [33]. Optimality prin-
ciples have been employed to investigate mechanisms in
metabolism; for example, in [34], where optimal control
techniques provide rationalization for experimentally and
numerically observed sequential activation of metabolic
pathways; in [35] where optimal control techniques predict
enzyme activation times and metabolite concentrations; and
in other work reviewed in [36], where further insights are
gained regarding metabolic pathway activation and regu-
lation. Optimal control has also provided insight into the
emergence of persister cells in the presence of environmental
volatility [37].

The FBSM is an iterative method for solving the TPBVPs
that arise from the indirect PMP approach to optimal control.
In systems biology, the FBSM for optimal control is very pop-
ular, owing particularly to its straightforward scalability to
large systems, and to its moderate computational cost and
mathematical complexity [38]. In this work, we review the
implementation of the FBSM to solve optimal control pro-
blems, and investigate means of accelerating the
convergence. To contextualize our discussion of the FBSM,
we first consider the more familiar technique of successive
over-relaxation (SOR). SOR is a generalization of the
Gauss–Seidel method, and is widely applied in numerical
linear algebra to accelerate convergence when solving linear
systems iteratively [39]. Essentially, the process of SOR
involves specifying an acceleration or relaxation parameter,
β∈ (0, 2); a weighting factor that serves to reduce the spectral
radius of the iterative matrix operator [40]. The error and rate
of convergence of SOR is sensitive to this (problem depen-
dent) choice of β, prompting investigation into theoretical
convergence results and methods of determining β [40–42].
Despite challenges in identifying the optimal β, the SOR
has historically been widely applied and studied in the litera-
ture due to the ease with which it can be implemented, and
the rapid convergence it can deliver; even without identifying
the optimal β [43,44].

This narrative closely parallels that of the FBSM in optimal
control, where a weighting factor ω can be applied when
updating the control between iterations to aid convergence.
The optimal choice of ω is problem dependent, and signifi-
cantly impacts the rate of convergence, or whether the FBSM
converges at all. Nonetheless, the FBSM is frequently used in
applied optimal control work as it is relatively straight-
forward to implement, and can still converge in absence of
the optimal ω. Theoretical convergence results of the FBSM
are available in the literature [45,46], although the focus is on
the FBSM without weighted updating, with no consideration
for choosing ω. Using regularization techniques, the FBSM is
modified in [47] to improve convergence properties for large
systems in a continuous setting, with a view to training deep
neural networks in machine learning. These convergence
results have recently been extended to the numerically discre-
tized setting through symplectic Runge–Kutta discretization;
taking advantage of the variational structure of optimal con-
trol problems [48]. The authors also demonstrate that the
rate of convergence of the regularized FBSM with symplectic
discretization can be improved with Anderson acceleration,
an iterative acceleration technique. Although promising, this
regularization introduces a regularization parameter, ρ. Simi-
lar to ω, the choice of ρ impacts convergence, and its choice
is problem dependent. Understanding and implementing the
regularization and symplectic techniques is not trivial, and
introduces conceptual complexity beyond what is necessary
for many applied optimal control problems. As such, the
standard FBSM remains an attractive choice for practitioners.

To this end, we aim to review acceleration techniques
that can be paired with the standard FBSM. We implement
such techniques alongside the FBSM with the goals of:
(1) increasing the rate and frequency of convergence and (2)
reducing the importance of, and challenges associated with,
selecting ω. A graphical overview of the optimal control pro-
cess we employ in this work, including the incorporation of
acceleration methods, is presented in figure 2. We note that
all code used to implement the algorithms presented in this
review, the FBSM and the Wegstein, Aitken–Steffensen and
Anderson acceleration methods, is available on GitHub
(https://github.com/Jesse-Sharp/Sharp2021).

Throughout this work, we consider optimal control in the
systems biology context. However, we note that optimal con-
trol is relevant to a wide variety of fields including chemical
engineering [49], aeronautics and astronautics [21], manage-
ment science and economics [50]. The FBSM, and by
extension, the acceleration techniques we consider in this
work, can be readily applied in any of these areas.

In §2, we review the PMP approach to optimal control,
and the implementation of the FBSM. We provide a single-
variable linear model, and a multi-variable nonlinear model
in §3; and pose and solve example continuous, bang-bang
(discontinuous), and fixed endpoint control problems. We
review potential iterative acceleration methods in §4, and pre-
sent the results of selected techniques in §5. We discuss
the performance of these techniques in §6, and identify
opportunities for application and further investigation.
2. Forward–backward sweep method
In an optimal control problem with one state variable, x(t),
one control, u(t), over a fixed time interval, t∈ [t0, tN], such
as the crop growth example presented in figure 1, we seek
the optimal control u*(t) that minimizes or maximizes a speci-
fied pay-off function, J, subject to the dynamics of the state. In
this section, we briefly review the PMP approach to such an
optimal control problem, and the standard implementation of
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the FBSM for solving the resulting two-point boundary value
problem. The FBSM is readily extended to problems with
multiple state variables, multiple controls, state constraints
and free end-times [5,38,46,51]; however for this overview,
we restrict ourselves to the single variable, single control,
fixed end-time case for clarity.

The pay-off typically comprises a cost function
Lðt, xðtÞ, uðtÞÞ integrated over the time interval, and/or a
function, ϕ, of the state at final time: ϕ(x(tN)). As such, we
seek to minimize or maximize J, subject to

J ¼ fðxðtNÞÞ þ
ðtN
t0
Lðt, xðtÞ, uðtÞÞdt ð2:1Þ

and

dx
dt

¼ f ðxðtÞ, uðtÞ, tÞ, xðt0Þ ¼ x0: ð2:2Þ

Applying the PMP, we construct the HamiltonianHðt, xðtÞ,
uðtÞ, lðtÞÞ ¼ Lðt, xðtÞ, uðtÞÞ þ lðtÞf ðxðtÞ, uðtÞ, tÞ, where λ(t) is
the co-state variable linking our state to our pay-off. The
necessary conditions for optimal control are obtained from
the Hamiltonian:

(1) The optimal control, u*(t), is obtained by minimizing the
Hamiltonian

@H
@u

¼ 0: ð2:3Þ

(2) The co-state is found by setting

dl
dt

¼ � @H
@x

,

(3) satisfying the transversality condition

lðtNÞ ¼ lN ¼ @f

@x

����
t¼tN

: ð2:4Þ

Following these steps yields a TPBVP to solve for x(t), λ(t),
subject to x(t0) = x0, and λ(tN) = λN. To solve this numerically,
we discretize t into N + 1 time points separated by a step-size
dt = (tN− t0)/N; t = [t0, t0 + dt,…, t0 +Ndt] = [t0, t1,…, tN].
Here, we consider a uniform discretization in time; although
this is not strictly necessary, as discussed in §3. Using super-
scripts to denote the iteration number, provide an initial
guess of the control at each t; uð0Þ ¼ ½uð0Þ0 , uð0Þ1 , . . . , uð0ÞN �.
From u (0), solve equation (2.2) numerically from t0 to tN to
obtain xð0Þ ¼ ½xð0Þ0 , xð0Þ1 , . . . , xð0ÞN �. Now, using x (0), solve for
lð0Þ ¼ ½lð0Þ0 , lð0Þ1 , . . . , lð0ÞN � backwards in time from tN to t0,
starting from λN. With the optimality condition from equation
(2.3), generate a temporary update for the control, ûð1Þ. The
next iteration begins with an updated guess for the control,
u (1). These steps are repeated until a convergence condition
is satisfied. The algorithm for the FBSM is summarized in §1
of the electronic supplementary material.

In some instances, directly updating the control, such that

uðkÞ ¼ ûðkÞ, k ¼ 1, 2, . . . ð2:5Þ
is sufficient; however more commonly a weighted update is
performed [5,38], such that in the (k + 1)th iteration,

uðkþ1Þ ¼ vuðkÞ þ ð1� vÞûðkþ1Þ,
k ¼ 1, 2, . . . , v [ ½0, 1Þ: ð2:6Þ
This weighted updating is also referred to as applying a
relaxation factor, similar to SOR as discussed in §1. An appro-
priate choice of ω in equation (2.6) can accelerate convergence
relative to equation (2.5), or in some cases induce convergence
where equation (2.5) leads to divergence. The weighting par-
ameter, ω, can be held constant between iterations, although
faster convergence may by achieved by updating ω. For
example, by reducing ω as the system approaches conver-
gence, a greater portion of the updated control is maintained
relative to the control from the previous iteration [38], possibly
accelerating convergence. A challenge commonly faced in
implementing this control updating scheme is that the best
choice for ω is problem dependent, and often is determined
heuristically in practice. We address the extent to which the
proposed acceleration algorithms address this issue in §4.

To facilitate the following discussion regarding accelera-
tion, we note that the FBSM can be thought of as a
generalized fixed point iteration [46], where each iteration
comprises a forward and backward sweep and a control
update. As such, for a control problem with one control, dis-
cretized into N + 1 time points, each iteration of the FBSM
can be thought of as the application of a nonlinear operator,
F , of dimension N + 1, such that uðkþ1Þ ¼ FðuðkÞÞ, or:

uðkþ1Þ
0

uðkþ1Þ
1

..

.

uðkþ1Þ
N

2
666664

3
777775 ¼

f0ðuðkÞ0 , uðkÞ1 , . . . , uðkÞN Þ
f1ðuðkÞ0 , uðkÞ1 , . . . , uðkÞN Þ

..

.

fNðuðkÞ0 , uðkÞ1 , . . . , uðkÞN Þ

2
666664

3
777775,

where F ¼ ðf0, f1, . . . , fNÞT. However, in general, we are not
able to write down an explicit expression for F . Viewing the
FBSM as a fixed point iteration process informs the choice of
acceleration methods discussed in §4.

Importantly, we use the term function evaluation in this
work to refer to the process of solving the system of ODEs
for the state forward in time and the system of ODEs for
the co-state backwards in time, once. This aligns with a
single iteration of the standard FBSM. The function evaluation
nomenclature becomes convenient when discussing the
FBSM in the context of acceleration algorithms that typically
focus on reducing the number of times expensive functions
are evaluated. Producing numerical solutions to the ODE
systems is by far the most computationally expensive com-
ponent of the FBSM. This computational expense increases
with the size and complexity of the systems; reducing the
number of times these systems must be solved becomes
more advantageous as the size and complexity of the systems
increases. The function evaluation description also facilitates
comparison between acceleration methods that require sol-
ving the ODE systems a different number of times per
iteration. Throughout this work, we use N to denote the
total number of function evaluations a given method takes
to achieve convergence.

2.1. Adapted forward–backward sweep method
The FBSM can be extended to handle problems where we aim
not only to minimize or maximize a given quantity over time
but also ensure that a specific state is reached at final time.
This aligns with the crop growth example from figure 1 if
the objective is to achieve a specific yield of 3x0 at harvest,
rather than to maximize yield. In this case, we may have an
integral term in the pay-off as described in equation (2.1);
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however, the function of the final state, ϕ(x(tN)), is redundant
in a control problem with a prescribed final state. Equation
(2.2) is also modified to incorporate the additional constraint

J ¼
ðtN
t0
Lðt, xðtÞ, uðtÞÞdt, subject to

dx
dt

¼ f ðxðtÞ, uðtÞ, tÞ, xðt0Þ ¼ x0, xðtNÞ ¼ xN : ð2:7Þ

Here, xN is the specified state that must be reached at final
time. Since we have introduced an additional boundary value
to the system, we no longer obtain the transversality con-
dition from equation (2.4). Instead, we seek the final time
condition on the co-state, λN, and associated optimal control
that satisfies equation (2.7). We proceed by considering an
adapted FBSM that takes as an input a guess for this final
time condition, l̂N , and solves the corresponding control
problem. If we denote this application of the FBSM as
the function Vðl̂NÞ, and the corresponding final value of
the state, x̂N , then the adapted FBSM is an iterative process
that solves for the root of Vðl̂NÞ; the value of l̂N for which
xN � x̂N ¼ 0. This outer iterative process can be solved
using standard techniques such as the bisection method or
secant method; the former converging more reliably provided
that the initial guesses for l̂N form an interval that brackets
the root, the latter converging in fewer iterations [38]. Each
of these outer iterations necessitates solving a boundary
value problem to convergence, often involving numerous
iterations of the FBSM. In this work, we apply the secant
algorithm as presented in [38] without modification, for the
adapted FBSM. The acceleration techniques described in §4
are applied only to the inner FBSM processes, reducing N
for each internal FBSM problem, leaving the outer secant iter-
ations unchanged. Using N ðkÞ to denote the number of
function evaluations in the kth internal FBSM problem, we
can express the cumulative function evaluations required
for convergence of the adapted FBSM as S, such that
S ¼ N ð1Þ þN ð2Þ þ � � �.

The adapted FBSM can also be used to solve control pro-
blems with isoperimetric constraints; integral constraints of
the form

ðtN
t0
hðt, xðtÞ, uðtÞÞdt ¼ K,

where K is a prescribed constant. For example, if h(t, x(t),
u(t)) = u(t), then K represents a specific and known amount
of control that must be applied. The approach to solve pro-
blems with isoperimetric constraints, as outlined in [38], is
to introduce an additional state variable, z, with

dz
dt

¼ hðt, xðtÞ, uðtÞÞ, zðt0Þ ¼ 0, zðtNÞ ¼ K:

This transforms the problem with an isoperimetric constraint
into a problem with a fixed endpoint, that can be solved
using the adapted FBSM as described.
3. Control problems
To investigate the robustness and effectiveness of the iterative
acceleration techniques that we will discuss in §4, we con-
sider two distinct systems, and for each system we study
three example control problems. The first system is a single
species linear differential equation subject to a control. We
later demonstrate that under certain conditions we are able
to obtain exact solutions for control problems applied to
this model. The second system is a three species model for
acute myeloid leukaemia (AML) governed by a coupled non-
linear system of differential equations, subject to a control.
We construct the linear model to examine the behaviour of
the acceleration techniques as applied to a simple idealized
set of control problems. We include the AML model, vari-
ations upon which have been considered in the literature
[5,51,52], to examine how the acceleration techniques perform
when applied to problems more reflective of those considered
in applied optimal control. For each model, we consider three
distinct control problems: continuous control, bang-bang
control and continuous control with fixed endpoint.

For all control results presented in this work, convergence
is deemed to be achieved when the error, ε, measured as the
Euclidean norm of the difference between subsequent controls,
falls below a tolerance of 1 × 10−10. Numerical solutions to
ODEs are obtained using a fourth-order Runge–Kutta
method [53] with constant time-stepping. A uniform time dis-
cretization is sufficient for all control problems considered in
this work. However, the FBSM and acceleration methods
readily generalize to a non-uniform discretization. If the
desired discretization for the state equations differs from that
of the co-state equations, it is necessary to perform interp-
olation within each iteration of the FBSM to obtain values
at corresponding time points. This can be computationally
expensive and introduce an additional source of error. Where
the desired discretizations for the state and co-state differ,
numerical schemes with internal interpolation such as
continuous Runge–Kutta methods may be appropriate [54,55].

3.1. Single-variable linear model
The linear model is a single species model for the growth of
x(t), subject to control u(t) that increases the growth rate. This
model could represent our stylized crop growth example pre-
sented in §1. We suppress the explicit time dependence of the
state and co-state variables and the control in the following
equations for notational convenience. For numerical results,
we solve the linear problems on the domain 0≤ t≤ 1, with
time-step dt = 3.91 × 10−3, giving N = 257 time points.

dxðtÞ
dt

¼ gxðtÞ þ uðtÞ, xð0Þ ¼ x0, g . 0, 0 � t � 1: ð3:1Þ

In the absence of control, u(t)≡ 0, this model admits the
solution x(t) = x0 e

γt, describing exponential growth.

3.1.1. Continuous control
We seek to maximize a quadratic cost function J, subject to

J ¼
ð1
0
ðax2 � bu2Þdt, a . 0, b . 0: ð3:2Þ

Following the standard PMP approach for solving optimal
control problems, we form the Hamiltonian and derive the
co-state equation, transversality condition and optimality
condition. The Hamiltonian is given by

H ¼ ax2 � bu2 þ lðgxþ uÞ: ð3:3Þ
The co-state equation is

dl
dt

¼ � @H
@x

¼ �2ax� lg, ð3:4Þ
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Figure 3. Solution to the linear continuous control problem. The optimal
control, u*(t), is shown in black dash and the corresponding state, x(t), in
blue. This solution is produced with model parameter γ = 0.5, time-step
dt = 3.91 × 10−3, over the interval 0≤ t≤ 1. The contributions of the
state and the control to the pay-off are equally weighted, with a = b = 1.
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Figure 4. Solution to the linear bang-bang control problem. The optimal
control, u*(t), is shown in black dash and the corresponding state, x(t), in
blue. This solution is produced with model parameter γ = 0.5, time-step
dt = 3.91 × 10−3, over the interval 0≤ t≤ 1, with pay-off weightings of
a = 1 for the state, and b = 3 for the control. The bang-bang control has
prescribed bounds of 0≤ u*(t)≤ 2.
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with transversality condition λ(1) = 0. In this case, the
optimality condition is

@H
@u

¼ l� 2bu ¼ 0,

such that the optimal control is given by

u�ðtÞ ¼ lðtÞ
2b

: ð3:5Þ

For model parameter γ = 0.5 and pay-off weightings a = b = 1,
with initial condition x0 = 1, we are able to solve the control
problem analytically using standard techniques for linear sys-
tems with complex eigenvalues [56]. The process is laborious
so we present the approach and analytical solution in §2 of
the electronic supplementary material. In the electronic sup-
plementary material, we also plot the analytical results
against the numerical results to demonstrate the excellent
agreement. The numerical solution to the linear continuous
control problem is presented in figure 3. Convergence via
the FBSM requires N ¼ 57 iterations.

3.1.2. Bang-bang control
For the bang-bang control, we consider the same state equation
as in equation (3.1), and incorporate bounds on the control.

dxðtÞ
dt

¼ gxðtÞ þ uðtÞ, xð0Þ ¼ x0,

g . 0, 0 � t � 1, 0 � uðtÞ � 2:

We seek to maximize a cost function J that is linear in u,

J ¼
ð1
0
ðax2 � buÞdt, a . 0, b . 0:

We form the Hamiltonian and derive the co-state equation and
transversality condition

H ¼ ax2 � buþ lðgxþ uÞ:
The co-state equation is

dl
dt

¼ � @H
@x

¼ �2ax� lg,

with transversality condition λ(1) = 0.
In seeking the optimality condition, we find

@H
@u

¼ l� b: ð3:6Þ

As equation (3.6) does not depend on u, we define a switch-
ing function

cðtÞ ¼ l� b,

and produce an expression for the control, based on the
bounds on u and the sign of the switching function:

u�ðtÞ ¼ 0, cðtÞ , 0,
2, cðtÞ . 0:

�
ð3:7Þ

If ψ(t) is zero over any finite interval excluding isolated
points, the optimal control is singular rather than bang-bang.
Over such intervals, minimization of the Hamiltonian does
not provide sufficient information to determine the optimal con-
trol, and further conditions must be considered [38,57]. We
restrict our focus in this work to non-singular bang-bang opti-
mal control problems. The numerical solution to the linear
bang-bang control problem is presented in figure 4. Conver-
gence to this solution via the FBSM required N ¼ 8 iterations.
3.1.3. Continuous control with fixed endpoint
For the fixed endpoint problem, we proceed with the same
state equation; however we now impose a terminal condition
on x.

dxðtÞ
dt

¼ gxðtÞ þ uðtÞ,
xð0Þ ¼ x0, xð1Þ ¼ 10, g . 0, 0 � t � 1:

We seek to maximize the same quadratic cost function J, as
considered in equation (3.2). As such, we form the same
Hamiltonian given in equation (3.3) and derive the same
co-state, equation (3.4), and expression for the control,
equation (3.5). Note however that we do not prescribe a
final time condition on the co-state equation via the transvers-
ality condition; as the system already has two boundary
conditions, doing so would cause it to be overdetermined.
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Instead, we make two guesses for λ(1); for example,
λ(0)(1) =−10 and λ(1)(1) = 10. We proceed by applying the
adapted FBSM outlined in §2, using these guesses to initialize
the secant method. Numerical results for the linear fixed
endpoint control problem are presented in figure 5. Conver-
gence of the adapted FBSM is achieved after S ¼ 177
iterations.

3.2. Multiple-variable nonlinear model
The AML model is a nonlinear coupled multi-species model
describing the interactions between progenitor blood cells,
A(t), and leukaemic stem cells, L(t), that occupy the same
niche in the bone marrow, thereby competing for space and
resources. Haematopoietic stem cells, S(t), act as upstream
production of A(t). These dynamics have been explored in
the literature both experimentally [58,59], and through math-
ematical modelling [52,60]. We subject the model to a
chemotherapy-like control, u(t), that acts as an additional
death term for L(t). The state can be expressed as
x(t) = [S(t), A(t), L(t)]T. As there are now three state equations,
we require three co-state equations: λ(t) = [λ1(t), λ2(t), λ3(t)]

T.
We suppress the explicit time dependence of the state and
co-state variables and the control in the following equations
for notational convenience:
J.R.Soc.Interface
18:20210241
dS
dt

¼ rSSð1� SÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
logistic growth

� dSS|{z}
differentiation

,

dA
dt

¼ dSS|{z}
upstream production

þ rAAð1� A� LÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
logistic growth with competition

� dAA|{z}
differentiation

and
dL
dt

¼ rLLð1� A� LÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
logistic growth with competition

� dLL|{z}
differentiation

� aL
gþ L|fflffl{zfflffl}

immune response

� uL|{z}
chemotherapy control

:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð3:8Þ
For each control problem associated with the AML model,
we use initial conditions that yield a coexisting steady state in
the absence of control (all three species non-zero): S(0) = 1−
δS/ρS, A(0) = 0.3255 and L(0) = 0.3715. We solve the AML
problems numerically on the domain 0≤ t≤ 10, with time-
step dt = 4.88 × 10−4, giving N = 20481 time points. Model
parameters are specified in table 1.
3.2.1. Continuous control
For the AML continuous control problem, we seek to mini-
mize a quadratic cost function J that accounts for both the
cost of applying the control and the cost of the leukaemic
burden, subject to

J ¼
ð10
0
ða1u2 þ a2L2Þdt, a1 . 0, a2 . 0: ð3:9Þ

We form the Hamiltonian and derive the co-state equation,
transversality condition and optimality condition. The
Hamiltonian is given by

H ¼ a1u2 þ a2L2 þ ðrSSð1� SÞ � dSSÞl1
þ ðdSSþ rAAð1� A� LÞ � dAAÞl2
þ ðrLLð1� A� LÞ � dLL� aL

gþ L
� uLÞl3: ð3:10Þ

The co-state equations are

dl1
dt

¼�@H
@S

¼�rSl1þ2rSl1SþdSl1�dSl2,

dl2
dt

¼�@H
@A

¼�rAl2þ2rAl2AþrAl2LþdAl2þrLl3L

and
dl3
dt

¼�@H
@L

¼�2a2LþrAl2A�rLl3þrLl3Aþ2rLl3L

þdLl3þ agl3

ðgþLÞ2þl3u,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð3:11Þ
with transversality conditions λ1(10) = λ2(10) = λ3(10) = 0,
obtained in the usual way. In this case, the optimality con-
dition is

@H
@u

¼ 2a1u� l3L ¼ 0, ð3:12Þ

such that the optimal control is given by

u�ðtÞ ¼ l3L
2a1

: ð3:13Þ

Numerical solutions for the AML continuous control problem
are presented in figure 6. These solutions are obtained via the
FBSM, requiring N ¼ 38 iterations with ω = 0.55. This choice
of ω minimizes N for the AML continuous control problem
solved with the FBSM without acceleration techniques. We
discuss the choice of ω further in §5.

3.2.2. Bang-bang control
For the bang-bang AML problem, we consider the same
states as in equation (3.8), and incorporate bounds, 0≤
u≤ 0.3, on the control. We seek to minimize a cost function
J that is linear in the control and the state variable L:

J ¼
ð10
0
ða1uþ a2LÞdt, a1 . 0, a2 . 0: ð3:14Þ

We form the Hamiltonian and derive the co-state equations,
transversality conditions and optimality condition. The
Hamiltonian is given by

H ¼ a1uþ a2Lþ ðrSSð1� SÞ � dSSÞl1
þ ðdSSþ rAAð1� A� LÞ � dAAÞl2
þ ðrLLð1� A� LÞ � dLL� aL

gþ L
� uLÞl3: ð3:15Þ



Table 1. AML model parameters. Parameters correspond to those
presented with the original model [52], with immune response parameters
introduced in subsequent work [5].

description variable value dimension

proliferation of S ρS 0.5 [T−1]

proliferation of A ρA 0.43 [T−1]

proliferation of L ρL 0.27 [T−1]

differentiation of S into A δS 0.14 [T−1]

differentiation of A δA 0.44 [T−1]

differentiation of L δL 0.05 [T−1]

characteristic rate of the

immune response

α 0.015 [T−1]

half-saturation constant of

the immune response

γ 0.1 [−]
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Figure 5. Results are presented for the linear problem with specified terminal
state value, x(tN) = 10, solved using the adapted FBSM. Underlying FBSM pro-
blems are solved with time-step dt = 3.91 × 10−3, over the interval 0≤ t≤ 1,
with pay-off weightings of a = b = 1. In (a), the x(t) iterates of the adapted
FBSM are presented. We annotate the cumulative function evaluations after
the first (N ð1Þ ¼ 59) and second (N ð1Þ þN ð2Þ ¼ 119) iterations of
the adapted FBSM, based on initial guesses for λ(tN) of λ(tN) =−10 and
λ(tN) = 10. The total cumulative function evaluations required for convergence
of the adapted FBSM, S ¼ N ð1Þ þN ð2Þ þN ð3Þ ¼ 177, is indicated.
The converged result for x(t), satisfying jxðtNÞ � 10j≤ 1 × 10−10 is presented
in (b); this figure also includes the optimal control, u*(t).
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Figure 6. Solution to the AML continuous control problem. The optimal con-
trol, u*(t), is shown in black dash and the corresponding state equations for
S(t), A(t) and L(t) are shown in blue, red and yellow, respectively. This
solution is produced with model parameters given in table 1, time-step
dt = 4.88 × 10−4, over the interval 0≤ t≤ 10, with pay-off weightings
of a1 = 1 for the control, and a2 = 2 for state variable L(t).
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The co-state equations are

dl1
dt

¼� rSl1 þ 2rSl1Sþ dSl1 � dSl2,

dl2
dt

¼� rAl2 þ 2rAl2Aþ rAl2Lþ dAl2 þ rLl3L

and
dl3
dt

¼� a2 þ rAl2A� rLl3 þ rLl3Aþ 2rLl3L

þ dLl3 þ agl3

ðgþ LÞ2 þ l3u,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

with transversality conditions λ1(10) = λ2(10) = λ3(10) = 0. In
this case, the switching function is

cðtÞ ¼ @H
@u

¼ a1 � l3L, ð3:16Þ

such that the optimal control is given by

u�ðtÞ ¼ 0, cðtÞ . 0,
0:3, cðtÞ , 0:

�
ð3:17Þ
Note that the correspondence between the sign of ψ(t) and the
chosen bound is reversed in equation (3.17) relative to equation
(3.7) as we are now performing minimization rather than max-
imization. Numerical solutions for the AML bang-bang control
problem are presented in figure 7. These solutions are obtained
via the FBSM, requiring N ¼ 34 iterations with ω = 0.4. This
choice of ω minimizes N for the AML bang-bang control pro-
blem solved with the FBSM without acceleration techniques.
We discuss the choice of ω further in §5.
3.2.3. Continuous control with fixed endpoint
For the fixed endpoint problem, we proceed with the same
state equations as for the AML continuous control problem
given in equation (3.8); however we now impose a terminal
condition on the leukaemic population: L(10) = 0.05. We seek
to minimize the same quadratic cost function J, as considered
in equation (3.9). We form the same Hamiltonian given in
equation (3.10) and derive the same co-state, equation (3.11),
and expression for the control, equation (3.13).
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Figure 7. Solution to the AML bang-bang control problem. The optimal con-
trol, u*(t), is shown in black dash and the corresponding state equations for
S(t), A(t) and L(t) are shown in blue, red and yellow, respectively. This
solution is produced with model parameters given in table 1, time-step
dt = 4.88 × 10−4, over the interval 0≤ t≤ 10, with pay-off weightings
of a1 = 1 for control, and a2 = 2 for the state variable L(t).
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Figure 8. Results are presented for the AML problem with specified terminal
state, L(tN) = 0.05, solved using the adapted FBSM. Each underlying FBSM
problem is solved with model parameters given in table 1, time-step
dt = 4.88 × 10−4, over the interval 0≤ t≤ 10, with pay-off weightings
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We obtain final time conditions, λ1(10) = λ2(10) = 0, via the
transversality conditions as usual; however we do not pre-
scribe λ3(10). Instead, we make two guesses for λ3(10); for
instance, lð0Þ3 ð10Þ ¼ 0 and l

ð1Þ
3 ð10Þ ¼ 10. We then proceed by

applying the adapted FBSM outlined in §2, using these
guesses to initialize the secant method. Numerical results
for the AML fixed endpoint control problem are presented
in figure 8. These results are produced using the adapted
FBSM with ω = 0.55 in S ¼ 434 iterations. This choice of ω
minimizes S for the AML fixed endpoint control problem
solved with the FBSM without acceleration techniques. We
discuss this further in §5.
of a1 = 1 for the control, and a2 = 2 for the state variable L(t). In (a),
the L(t) iterates of the adapted FBSM are presented in grey; the converged
solution satisfying L(tN) = 0.05 is plotted in yellow. We annotate N for the
first (N ð1Þ ¼ 38) and second (N ð1Þ þN ð2Þ ¼ 98) iterations of the
adapted FBSM, based on initial guesses for λ3(tN) of λ3(tN) = 0 and
λ3(tN) = 10. Due to the close proximity, subsequent iterations are not anno-
tated. The cumulative function evaluations required for convergence of the
adapted FBSM (S ¼ 434) is indicated. The converged result for L(t), satisfy-
ing |L(tN)− 0.05|≤ 1 × 10−10, is presented in (b); this figure also includes
the optimal control, u*(t), and trajectories for S(t) and A(t).
4. Iterative accelerators
In this section, we outline several techniques for acceleration
of iterative schemes. Where appropriate, we first present the
univariate/scalar version of the method for familiarity, then
provide the multivariate/vector analogue of the method for
use with accelerating the FBSM. We attempt to use notation
that aligns most closely with commonly used notation in
the literature, while maintaining internal consistency in this
work. In the scalar case, we consider the iterative process
x(k+1) = f (x(k)), where x(k) is the kth iterate and f is the iterating
function. In the vector case, we consider X(k+1) = F(X(k)),
where XðkÞ ¼ ½xðkÞ0 , xðkÞ1 , . . . , xðkÞN �T is the kth iterate, consisting
of N + 1 values, and F = [ f0, f1,…, fN]

T is the N + 1 dimensional
operator of the iterative process. For clarity, we stress that in
the context of the acceleration algorithms applied to the
FBSM, X(k) is the discretized control in the kth iteration.

The acceleration methods considered in this work apply
either to problems stated as fixed point iterations (as
above), or as root-finding problems. For acceleration via
root-finding algorithms, we can consider the complementary
problems in the scalar and vector setting, respectively: g(x) : =
x− f (x) = 0 and G(X ) : = X− F(X ) = 0, where 0 is the zero
column vector of length N + 1.

We note that many of the methods presented here can be
written in several different forms. While some forms better
facilitate analysis of aspects such as convergence speed and
numerical stability, others emphasize ease of understanding
and implementation. In this work, we prioritize usability
and present methods and algorithms in forms reflective of
their implementation where possible. For the purpose of
this work, we feel it is sufficient to present the methods
and discuss their implementation without delving into their
derivation or rigorous theoretical convergence results. For
readers interested in these aspects, we suggest these articles
[61,62], and numerical analysis texts [63,64].
4.1. Newton and quasi-Newton methods
Newton’s method is one of the most prevalent root-finding
algorithms, due to its relatively straightforward implementation
and potential for quadratic convergence [64]. For a univariate
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function, Newton’s method is given by

xðkþ1Þ ¼ xðkÞ � f ðxðkÞÞ
f 0ðxðkÞÞ : ð4:1Þ

We arrive at the scalar secant method by replacing the
derivative term, f0(x(k)), in equation (4.1) with a finite differ-
ence approximation

xðkþ1Þ ¼ xðkÞ � f ðxðkÞÞ xðkÞ � xðk�1Þ

f ðxðkÞÞ � f ðxðk�1ÞÞ :

Newton’s method for multivariate systems is

Xðkþ1Þ ¼ XðkÞ þ DXðkÞ,

where DXðkÞis obtained by solving

JkDXðkÞ ¼ �FðXðkÞÞ:
Here, Jk is the Jacobianmatrix of F evaluated atX(k) [64]. Setting
aside the interpretation of the Jacobian in the context of the
FBSM, numerically approximating an N ×N Jacobian matrix
using finite differences requires OðN2Þ FBSM iterations at
each Newton step. A range of quasi-Newton methods have
been developed tominimize the computational expense associ-
atedwith computing the Jacobian at eachNewton step. It is not
immediately apparent how the secant method should be
extended to multivariate systems, but one such interpretation
is the quasi-Newton Broyden’s method. Broyden’s method
reduces the number of function evaluations required at each
Newton step by forming the full Jacobian only initially, then
updating the Jacobian matrix via a rank-one update based on
the secant method [63,65]. We later discuss the Wegstein
method [66], which is another interpretation of the secant
method in multivariate settings.

In the context of accelerating the FBSM, techniques that
require forming or approximating a full Jacobian, even once,
are not appropriate. We have an N + 1 dimensional system,
where N + 1 is the number of time points in the discretization
of the ODEs, so we expect N to be large, relative to the
number of iterations required for the FBSM to convergewithout
acceleration techniques, via equation (2.6). As such, we restrict
our focus to Jacobian-free methods in the remainder of this sec-
tion; in particular, we discuss and implement the Wegstein and
Aitken–Steffensen methods and Anderson acceleration. We
provide a broad overview alongside the key equations here,
and provide complete algorithms alongside notes for
implementation in §4 of the electronic supplementary material.

4.2. Wegstein method
Wegstein’s method can be thought of as an element-wise
extension of the secant method to multivariate systems [67].
Although Wegstein’s method appears less popular than
other methods considered in this work, it has found practical
utility, particularly in chemical and process engineering soft-
ware [68,69]. We include it here due to the striking similarity
it bears to the control update with relaxation presented in
equation (2.6). It is also one of the more straightforward
techniques, both in conception and implementation:

x̂ðkþ1Þ ¼ f ðxðkÞÞ,
xðkþ1Þ ¼ qðkÞxðkÞ þ ð1� qðkÞÞx̂ðkþ1Þ,

9=
; ð4:2Þ

where qðkÞ ¼ aðkÞ

aðkÞ � 1
, and aðkÞ ¼ f ðxðkÞÞ � f ðxðk�1ÞÞ

xðkÞ � xðk�1Þ : ð4:3Þ
In implementation, from an initial value x0, it is necessary
to perform two function evaluations, i.e. x1 = f (x0), and f (x1),
before it is possible to compute equation (4.3) for the
Wegstein method [66]. In subsequent iterations only one
new function evaluation is required.

The extension of Wegstein’s method to multivariate sys-
tems follows exactly the process outlined in equations (4.2)
and (4.3), as it is extended element-wise. While convergence
is guaranteed when usingWegstein’s method for a single non-
linear equation, the uncoupling implied by the element-wise
extension can lead to divergence [70].

In equations (4.2) and (4.3), q(k) denotes q in the kth iter-
ation; however, we note that it is not necessarily most
effective to update q every iteration. As such, in this work,
we explore various updating regimes. There is also the
option of applying bounds on q. Bounds of −5 < qi < 0, 8i,
where i denotes the ith element of the system, are frequently
applied when implementing Wegstein’s method [71,72]. This
bounding appears to work reasonably well for the small non-
linear test systems we consider in §5 of the electronic
supplementary material, although we were not able to ident-
ify a theoretical result supporting this specific choice. For the
control problems we consider, this bounding is not effective,
so we apply different bounds, discussed further in §5.
The univariate Wegstein method can be thought of as a
modification of the Aitken method, which at the time the
Wegstein method was developed, was only understood for
the univariate case [73].

4.3. Aitken–Steffensen method
Aitken’s Δ2 method, also referred to as Aitken’s delta-squared
process or Aitken extrapolation, was originally posed by
Aitken in 1927 as a means of extending Bernoulli’s method
of approximating the largest root of an algebraic equation.
This extension facilitates numerically approximating not
only the largest root, but all roots of the equation [74].
Aitken’s method generates a new sequence, x̂, in parallel to
the fixed point iteration.

x̂ðkÞ ¼ xðkÞ � ðxðkþ1Þ � xðkÞÞ2
xðkþ2Þ � 2xðkþ1Þ þ xðkÞ

, or

x̂ðkÞ ¼ xðkÞ � ðDxðkÞÞ2
D2xðkÞ

, ð4:4Þ

where Δ is the difference operator; Δx(k) = x(k+1)− x(k), and the
higher order operator is applied recursively; Δ2 x(k) =
Δ(Δx(k)) = Δx(k+1)− Δx(k) [64]. From an initial value, x(0), two
function evaluations, iterations of the underlying fixed
point process, must be performed to obtain x(1) and x(2),
before equation (4.4) can be computed.

The derivation of Aitken’s method assumes an under-
lying linearly converging series of iterates. The order of
convergence of the resulting Aitken accelerated series is
still linear; however, this series converges faster than the
original series [63]. We discuss Aitken’s Δ2 method and
Steffensen iteration together, as Steffensen iteration is a
straightforward extension of Aitken’s method, whereby the
Aitken value, x̂ðkÞ, is used to continue the fixed point iteration,
i.e. xðkþ1Þ ¼ x̂ðkÞ. Despite the striking similarity, Steffensen’s
method was seemingly developed shortly after (1933) and
without knowledge of Aitken’s method [75]. Steffensen
iteration can achieve quadratic convergence [64,76,77].
Further theoretical convergence results for the Steffensen
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method are established by Nievergelt [78] and in a series of
papers by Noda [79–81].

Aitken and Steffensen iteration can be extended to
multivariate systems [64]. In the following statements, we
outline the method for an N + 1 dimensional system,
XðkÞ ¼ ½xðkÞ0 , xðkÞ1 , . . . , xðkÞN �T [ RNþ1, as appropriate for use
with the FBSM

X̂ðkÞ ¼ XðkÞ � DX ðkÞðD2X ðkÞÞ�1DXðkÞ, ð4:5Þ
where ΔX(k) =X(k+1)−X(k), X ðkÞ is a matrix constructed with
columns (X(k), X(k+1),…, X(k+N )), such that X ðkÞ is a square
matrix of dimension N + 1, with DX ðkÞ ¼ X ðkþ1Þ � X ðkÞ, and
D2X ðkÞ ¼ DX ðkþ1Þ � DX ðkÞ.

In the form given by equation (4.5), there are glaring
issues with using the Steffensen method to accelerate conver-
gence of the FBSM. Setting aside the question of whether
D2X ðkÞ is invertible, forming X ðkÞ would require OðNÞ iter-
ations of the FBSM to be performed, and since N relates
to the number of time points in the discretization of the
ODEs in the FBSM, we expect N to be large, relative to the
number of iterations required for the FBSM to converge
without acceleration.

We instead consider a modification of the Steffensen
method, requiring fewer function evaluations per iteration.
Introduce m <N, and define ΔX(k) =X(k+1)−X(k) as before,
X ðkÞ is now a rectangular matrix constructed with columns
(X(k), X(k+1),…, X(k+m+1)), such that X ðkÞ [ RNþ1�mþ2, with
DX ðkÞ ¼ X ðkþ1Þ � X ðkÞ, and D2X ðkÞ ¼ DX ðkþ1Þ � DX ðkÞ, both of
dimension N + 1 ×m. We now interpret the matrix inverse
in equation (4.5) as the Moore–Penrose pseudoinverse [82],
a generalization of the matrix inverse for singular and
rectangular matrices; we discuss this further in §3 of the elec-
tronic supplementary material. This partial implementation
requires only m + 1 function evaluations per iteration. For
the remainder of this document when referring to the
Steffensen method we are specifically referring to this partial
Steffensen implementation. We present the derivation of the
multivariate Aitken–Steffensen method and outline where
the partial implementation differs in §3 of the electronic
supplementary material.

4.4. Anderson acceleration
Anderson acceleration or Anderson mixing, originally
denoted as the extrapolation algorithm by Anderson in the
1960s [83], is a technique developed for accelerating con-
vergence of fixed point iteration problems with slowly
converging Picard iterations [84]. Anderson acceleration is
of particular interest in this work, as it has recently been
implemented to accelerate the convergence of a regularized
version of the FBSM [48]. In contrast to a standard fixed
point iteration, whereby the next iterate depends only on
the immediately preceding iterate, Anderson acceleration
has ‘memory’ through the inclusion of previous iterates
[85]. Unlike other methods considered in this work, Ander-
son acceleration explicitly uses the differences between
residuals of subsequent iterates alongside iterates and their
differences in computing future iterates.

Anderson acceleration involves solving a least-squares
problem at each iteration. The problem can be expressed in
both constrained and unconstrained forms, with the updating
step dependent on the form [86,87]. We solve the following
unconstrained least-squares problem in each iteration of
Anderson acceleration:

g ¼ argmin
g

ðkG� gdGkÞ, ð4:6Þ

where arg min( · ) returns the argument, γ, that minimizes the
expression in equation (4.6). The corresponding updating
step is

Xðkþ1Þ ¼ XðkÞ þ GðkÞ � ðdXðk�1Þ þ dGðk�1ÞÞg, ð4:7Þ
where G(k) = F(X(k))−X(k) is the residual, dX(k) is a matrix
with columns (ΔX(k−m), ΔX(k−m+1),…, ΔX(k)), and dG(k) is a
matrix with columns (ΔG(k−m), ΔG(k−m+1),…, ΔG(k)), and m
indicates the number of previous iterates that are
incorporated.
4.5. Acceleration methods applied to typical fixed point
problems

As a precursor to implementing these acceleration methods
for control problems, we apply them to solve example non-
linear systems of dimension 2 × 2, 3 × 3 and 4 × 4. We
provide these systems and the results of the acceleration
methods compared to standard fixed point iteration in §5 of
the electronic supplementary material. We do not discuss
these results in detail, although broad comparisons regarding
the application of the acceleration methods to these systems
and to control problems are made in §6. We provide code
on GitHub (https://github.com/Jesse-Sharp/Sharp2021) for
implementing the acceleration algorithms to solve systems
of arbitrary size.
5. Acceleration results
In this section, we discuss the results of applying the accelera-
tion algorithms. When discussing results we are solely
focused on reducing N , the number of function evaluations
required for the control problems to reach convergence; as
in all convergent cases we arrive at the same optimal control
results. We first discuss the aspects of each method that can
be tuned, then outline the results of the standard FBSM
with the best choice of ω but without acceleration methods
applied, to establish a baseline against which to compare
the acceleration methods. A detailed suite of results for
each control problem and each acceleration method, for
various combinations of tuning parameters, is provided in
§6 of the electronic supplementary material.
5.1. Tuning
Each method we consider has parameters that can be tuned
to improve performance for a given problem. For the FBSM
without acceleration, we can select ω∈ [0, 1); the parameter
that weights the contribution of the control from the previous
iteration, and the newly calculated control, to the control
used in the next iteration, as stated in equation (2.6). Control
problems based on the linear model are able to converge via
direct updating, as given in equation (2.5), equivalent to ω =
0. Increasing ω in this case only serves to increaseN , so we do
not attempt to tune ω when considering the linear model.
Using the standard FBSM without acceleration the continu-
ous linear problem requires N ¼ 57 while the bang-bang
linear problem requires only N ¼ 8.

https://github.com/Jesse-Sharp/Sharp2021
https://github.com/Jesse-Sharp/Sharp2021
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In figure 9, we plot N against ω∈ [0, 1), for the continu-
ous and bang-bang AML problems. As expected, for small
ω we find that the problem does not converge, and for
large ω, N increases. For the continuous AML problem we
identify ω = 0.55 as the best choice, with N ¼ 38. For the
bang-bang AML problem, we find that ω = 0.4 is best, with
N ¼ 34.

Recall that fixed endpoint problems are solved using the
adapted FBSM; this entails solving several control problems
to convergence with the FBSM. Each of these control problems
can have a different optimal ω. In this instance, ω = 0.55 also
happens to be best for theAML fixed endpoint problem if hold-
ing ω constant, when considering ω∈ [0, 1) at increments of
0.05. These ω values will not coincide in general. When apply-
ing the acceleration methods to the fixed endpoint problems,
we employ the tuningparameters that performbest for the con-
tinuous problem. This does not imply thatwe are using the best
tuning parameters for the acceleration methods in the context
of the fixed endpoint problem. Importantly, this demonstrates
whether or not the techniques can effectively reduce S, the
cumulative function evaluations required for convergence of
the adapted FBSM for fixed endpoint problems, without
requiring prohibitive tuning.

With the Wegstein method, we only select ω for the two
FBSM iterations required for initialization, and specify n,
such that we update q every nth iteration. We generate results
for n∈ {1, 2,… , 10}. We also bound q; however identifying
suitable bounds is challenging. In this work, we select
bounds that perform reasonably, but acknowledge that we
do not search for optimal bounds, nor do we think that
attempting to do so is realistic. This drawback of Wegstein’s
method contributes to its inconsistent performance relative
to other methods. For the partial Aitken–Steffensen methods,
we choose ω, and the parameter m that specifies the dimen-
sion of the N + 1 ×m matrices in the updating step,
requiring m + 1 function evaluations per iteration. We gener-
ate results for m∈ {1, 2,… , 10}. Similarly, for Anderson
acceleration we select ω and M, where M determines the
maximum number of previous iterations to retain when
solving the least-squares problem and performing the
updating step. We produce results for M∈ {1, 2,…, 10}.
5.2. Wegstein method
For the continuous linear problem, we apply bounds of −2≤
q≤ 0. For the bang-bang linear problem, we leave q
unbounded. For both AML problems, we apply bounds
−1≤ q≤ 1. We explore the effect of updating q every nth
iteration, n∈ {1, 2,… , 10}. For the continuous linear problem,
n = 4 minimizes N , although n∈ {1, 2,… , 5} all perform well.
For the linear bang-bang problem, the Wegstein method con-
verges without bounding on q, and varying n does not affect
convergence. The Wegstein method outperforms other accel-
eration methods for the linear bang-bang problem with
N ¼ 9, but does not improve upon N ¼ 8 for the FBSM
without acceleration.

For the continuous AML problem, the performance of
Wegstein’s method is inconsistent. With n = 6 and ω = 0.55,
the Wegstein method achieves convergence with N ¼ 26, out-
performing the FBSM; however, almost every other
combination of tuning parameters considered with ω∈ [0, 1)
and n∈ {1, 2,…, 10} require larger N than the FBSM without
acceleration. Generally, increasing n producesworse outcomes.
We do, however, observe that theWegstein method can induce
convergence for ω < 0.4, where the standard FBSM does not
converge. For the bang-bang AML problem, the Wegstein
method appears more robust; consistently outperforming the
standard FBSM across most of the tuning parameter space.
The best result requires only N ¼ 9, with ω = 0 and n = 7,
although several other combinations of tuning parameters
are similarly successful. For ω≥ 0.4, corresponding to values
that the underlying FBSM converges, we find that moderate
n∈ {3, 4,…, 7} produces the best results; while for smaller ω,
larger n∈ {6, 7,… , 10} consistently performs best. Once again
we observe that convergence is achieved for ω values where
the underlying FBSM would not converge.

For the linear fixed endpoint problem, the adapted FBSM
with the Wegstein method consistently generates a moderate
reduction in S, compared to the adapted FBSMwithout accel-
eration, for all n∈ {1, 2,… , 10}, −2≤ q≤ 0. For the AML fixed
endpoint problem we do not observe improvement. Using
the tuning parameters that perform best for the continuous
AML problem, we find that S for the adapted FBSM with
Wegstein’s method is more than double that of the adapted
FBSM without acceleration. This results from the inconsis-
tency of Wegstein’s method with poor tuning. In §6 of the
electronic supplementary material, it can be seen that some
control problems within the adapted FBSM that require
N � 50 without Wegstein’s method, require N � 200 with
the specified Wegstein tuning parameters.
5.3. Partial Aitken–Steffensen method
Both Aitken and Steffensen methods significantly and consist-
ently outperform the FBSM without acceleration for the
continuous linear problem. The Aitken method performs best
for m∈ {1, 2, 3}, requiring N ¼ 12. Steffensen’s method per-
forms best when m = 6, requiring only N ¼ 8. In the linear
bang-bang case, both Aitken and Steffensen methods perform
marginally worse than the FBSM without acceleration, which
requires only N ¼ 8. In the best cases, with m = 1 the Aitken
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method requires N ¼ 10, and with m = 7 the Steffensen
method requires N ¼ 9.

For the continuous AML problem, we observe a stark
difference between the Aitken and Steffensen methods; while
the Steffensen method is able to achieve convergence for
values of ω where the underlying FBSM fails to converge,
ω≤ 0.35, particularly for m∈ {1, 2, 3, 4}, the Aitken method
only converges to the optimal control for ω values where the
underlying FBSM converges. For ω≤ 0.35, the Aitken method
achieves apparent convergence; the iterative procedure termi-
nates as the convergence criteria are met. However, explicitly
calculating the pay-off associated with these controls via
equation (3.9), and comparing this result to the pay-off associ-
ated with the control obtained via the standard FBSM,
indicates that the controls obtained via the Aitken method for
ω≤ 0.35 are not optimal, as they fail to minimize J. The best
result for the Aitken method, with ω = 0.5 and m = 5, requires
N ¼ 30, marginally improving on the FBSM without accelera-
tion, requiring N ¼ 38. Steffensen’s method produces more
significant improvements, requiring only N ¼ 19 with ω = 0.5
and m = 5. In each case, neighbouring combinations of tuning
parameters also yield equivalent or comparable improvement
over the standard FBSM. In the bang-bang AML problem, we
observe similar behaviour; for ω values that the underlying
FBSM fails to converge, the Steffensen method consistently
converges. The Aitken method achieves apparent convergence
for these values of ω; the iterative procedure terminates as the
convergence criteria are met; however, the resulting controls
contain intermediate values between the lower and upper
bounds. As such the resulting controls are not bang-bang,
so we treat these results as failing to converge. At best,
Aitken’s method requires N ¼ 8, with ω = 0.5 and m = 1,
while Steffensen’s requires only N ¼ 7, with ω = 0.5 and
m = 5. The vast majority of tuning parameter combinations
yield improvements over the N ¼ 34 of the standard FBSM.

Aitken and Steffensen methods consistently offer signifi-
cant improvement over the standard adapted FBSM for the
linear fixed endpoint problem for m∈ {1, 2,…, 10}, with the
exception of m = 1 for the Steffensen method, which yields
only marginal improvement. Using the best performing
tuning parameters for the continuous AML problem, we find
that both Aitken and Steffensen methods improve upon the
standard adapted FBSM for the AML fixed endpoint problem.
Relative to S ¼ 434 required without acceleration, the S ¼ 360
requiredwith Aitken’s method reflects amodest improvement,
while the S ¼ 238 required with the Steffensen method is
a significant improvement.
5.4. Anderson acceleration
Anderson acceleration performs exceptionally well on the
continuous linear problem, requiring only N ¼ 7 for
M∈ {4, 5,… , 10} compared to N ¼ 57 for the standard
FBSM. For the linear bang-bang problem, however, it is the
worst performing acceleration method; achieving at best
N ¼ 11, with M = 1.

Similarly to the Wegstein and Steffensen methods, Ander-
son acceleration achieves convergence in both the continuous
and bang-bang AML problems for ω values where the under-
lying FBSM fails to converge. Anderson acceleration achieves
the best individual result for the continuous AML problem,
requiring only N ¼ 17, with ω = 0.85 and M = 6. Again, we
observe comparable improvement over a wide range of
tuning parameters. For the bang-bang AML problem Ander-
son acceleration consistently outperforms FBSM without
acceleration, particularly for ω < 0.7, at best requiring
N ¼ 17, with ω = 0.35 and M∈ {7, 8, 9, 10}, with other non-
neighbouring tuning parameter combinations also yielding
N ¼ 17.

For both the linear and AML fixed endpoint problems
Anderson acceleration produces the most significant
reduction in S, and improves upon the adapted FBSM over
a wide range of tuning parameters. In the linear case, Ander-
son acceleration requires only S ¼ 24 for M ∈ {4, 5,… , 10}.
In the AML fixed endpoint problem, using the tuning par-
ameters that perform best for the continuous AML
problem, Anderson acceleration converges in only S ¼ 204;
less than half as many as the standard adapted FBSM.

5.5. Method comparison with best tuning
Results presented in figures 10 and 11 provide comparison of
the error, ε, as each method approaches convergence, for the
linear and AML problems, respectively. Error is measured as
the Euclidean norm of the difference between subsequent
controls; ε = ||F(X(k))−X(k)||, with the exception of Aitken’s
method, where error is measured as the difference between
subsequent values in the Aitken series; 1 ¼ kX̂ðkÞ � X̂ðk�1Þk.
Convergence is achieved when ε≤ 1 × 10−10, marked in black
dash. In each case, we are plotting the result that minimizes
N for each method, over the space of tuning parameters con-
sidered, including the best tuning of ω for the FBSM without
acceleration. Error is plotted on a logarithmic scale. For the
linear bang-bang problem with the Wegstein and Anderson
methods, and the AML bang-bang problem with the Wegstein
method, the error after the final iteration is ε = 0, as two
subsequent iterates for the control are identical. This is rep-
resented on the logarithmic scale as a line that intersects the
horizontal axis.
6. Discussion
Modelling processes in systems biology is complex; frequently
involving large state systems consisting of several ODEs
[88–90], including canonical examples such as the mitogen-
activated protein kinase cascade [91], Wnt/β-catenin signalling
pathway [92], early incarnations of whole-cell models [93,94],
and other cellular signalling, metabolic and regulatory pro-
cesses and mechanisms [95,96]. The acceleration methods we
implement act only on the control term; the number and form
of state equations has no bearing on themathematical and com-
putational complexity of the acceleration methods. As such, the
methods scale excellently with system complexity. In this sec-
tion, we discuss the results presented in §5, and draw insights
into the convergence behaviour of the FBSM when augmented
with acceleration techniques. We highlight opportunities for
application of these methods, and outline several avenues for
further investigation.

6.1. Acceleration outcomes
In evaluating the performance of each acceleration method, we
are interested in: (1) how significantly they are able to reduceN ,
(2) method robustness and (3) method accessibility. In this con-
text, we use robustness to refer to how consistently the method
outperforms the best tuned FBSM over the range of tuning
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parameters considered. We judge the accessibility of each
method based on implementation and conceptual complexity.
Overall, we find that the acceleration methods, particularly
Anderson and Steffensen, significantly and robustly reduce
N . Anderson acceleration appearsmost effective for continuous
control, while the Steffensen method appears best for bang-
bang control. The Aitken method occasionally outperforms
Steffensen, but overwhelmingly the Steffensen method appears
to be the better option of the two for the range of parameters we
consider. Implementing the Anderson and Steffensen methods
introduces challenge beyond that of the underlying FBSM,
although it is not prohibitively difficult; particularly with refer-
ence to the code where we implement these methods, that we
make available on GitHub (https://github.com/Jesse-Sharp/
Sharp2021). Both methods introduce conceptual complexity,
perhaps marginally less so for the Steffensen method due to
the similarities it shares with the familiar Newton’s method.

We produce heatmaps to visualize the convergence behav-
iour of the acceleration methods across the range of tuning
parameters considered. Figure 12 corresponds to the AML con-
tinuous control problem, while figure 13 corresponds to the
AML bang-bang control problem. Recall that with the tuning
of ω that minimizesN , the FBSMwith no acceleration requires
N ¼ 38 for the AML continuous control problem, andN ¼ 34
for the AML bang-bang control problem. Tuning parameter
combinations that reflect a reduction in N relative to the
these FBSM results are shaded in the green spectrum, while

https://github.com/Jesse-Sharp/Sharp2021
https://github.com/Jesse-Sharp/Sharp2021
https://github.com/Jesse-Sharp/Sharp2021
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worse performing combinations are shaded in the red
spectrum. The midpoint of the colour spectra, yellow, corre-
sponds to the FBSM result with the best tuning, without
acceleration. Simulations are terminated when N exceeds
100; reflecting a combination of tuning parameters that do
not yield convergence within this specified maximum.
Data supporting these heatmaps, and similar results for the
linear control problems are provided in §6 of the electronic
supplementary material.

In identifying tuning parameter combinations that
yield significant reductions in N , we are looking for bright
green areas in the heatmaps. We assess the robustness of
each method by considering whether we observe large con-
tiguous areas in the green spectrum, such as in figure 12c,
indicating robustness, or patchy areas with both green spec-
trum and red spectrum, such as figure 13d, suggesting a
lack of robustness.

In table 2, we provide our subjective but informed
rating of the methods against the criteria of reduction in N ,
robustness and accessibility. We consider the continuous
and bang-bang control cases separately in terms of reduction
in N and robustness.

Despite its conceptual simplicity and straightforward
implementation, Wegstein’s method is significantly hampered
by the difficulty in choosing bounds. If there were a more
informed approach for identifying suitable bounds,Wegstein’s
method could be particularly useful for bang-bang control pro-
blems. Due to the effect of ω, intermediate control iterates of
the FBSM do not appear bang-bang; as such the bulk of N
are incurred in refining the control about the switching
points. Wegstein’s method can accelerate this refinement by
adaptively setting qi = 0 where appropriate.
6.2. Convergence insights
As outlined in §5, the linear model control problems con-
verge with ω = 0. It may at first seem counterintuitive that
Wegstein’s method can improve upon this, given that the
computed q in Wegstein’s method acts as a stand-in for ω.
There are two aspects of distinction that enable Wegstein’s
method to generate improvement in this case: first, while ω
is held constant both within the time discretization and
between iterations, the element-wise nature of Wegstein’s
method enables each element of the discretization to have a
different value, qi, i∈ {0, 1,… , N}, and q can be updated
between iterations; second, observing the values of qi in
Wegstein’s method indicates that q < 0 can be appropriate.
This suggests that ω < 0 could also be used to accelerate the
standard implementation of the FBSM. Preliminary investi-
gation suggests that this is true for the linear model;
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Table 2. Method comparison. We rate the methods considered in this work against key factors such as the reduction in N that they deliver and how robustly
they perform over the range of tuning parameters considered, for both continuous (Cts) and bang-bang (BB) control problems. We also consider how accessible
the methods are from the standpoints of ease of implementation (Imp) and conceptual complexity. Methods are rated as being either strongly positive (✓✓),
positive (✓), neutral (∼), negative (✗) against each aspect.

reduction in N robustness accessibility

method Cts BB Cts BB Imp complexity

FBSM ∼ ∼ ✓ ✓ ✓ ✓

Wegstein ∼ ✓✓ ✗ ✓ ✓ ∼
Aitken ✓ ✓ ∼ ✓ ∼ ∼
Steffensen ✓✓ ✓✓ ✓ ✓✓ ∼ ∼
Anderson ✓✓ ✓ ✓ ✓ ∼ ✗
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however, we do not pursue this further as we expect it to be
of limited applicability beyond contrived problems.

We apply the acceleration methods to small nonlinear test
systems in §5 of the electronic supplementary material. We
know these systems have multiple fixed points; all methods
we consider aside from Aitken’s method, in some of our
examples, reach different fixed points to fixed point iteration.
By contrast, when applied to accelerate control problems, we
observe only the Aitken method converging to a result other
than the optimal control obtained via the FBSM, as discussed
in §5. This apparent convergence of the Aitken method to
controls that are not optimal is a significant deterrent to
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using the Aitken method in situations where the optimal con-
trol is not known a priori. Outside of this issue with the
Aitken method, each acceleration method produces the same
optimal control for a given problem. However, they each
approach the converged control differently. In figure 14, we
plot the control as it converges for the FBSM and acceleration
methods. In the code, we provide on GitHub (https://github.
com/Jesse-Sharp/Sharp2021), users can view the control
iterates of each method as they approach convergence. Visua-
lizing these methods as they converge gives insight into how
they may be able to arrive at different fixed points; under cer-
tain circumstances the accelerated series of iterates may leave
the basin of attraction for the fixed point found via fixed
point iteration.
6.3. Summary and outlook
In this work, we review the theory and implementation of the
FBSM for solving TPBVPs that arise from application of PMP in
solving optimal control problems. We study a single-variable
linearmodel and amultiple-variable nonlinearmodel and con-
sider continuous, bang-bang and fixed endpoint control
problems. Conceptualizing the FBSM as a fixed point iteration,
we leverage and adapt existing acceleration methods to signifi-
cantly and robustly increase the convergence rate of the FBSM
for a range of optimal control problems. The Anderson and
partial Steffensen methods appear to perform best, without
requiring prohibitive tuning.
Accelerating the convergence of the FBSM, and reducing
the importance of appropriately selecting ω for a single control
problem, is promising. That said, the real utility of the robust
acceleration methods in this work is in application to families
of control problems. We provide a glimpse of this benefit
through considering fixed endpoint control problems, though
other excellent opportunities for application arise due to the
uncertainty prevalent in the life sciences. First, it is common
for there to be uncertainty aroundmodel parameters and struc-
ture [97,98]. In this case, solving optimal control problems over
several model structures and sets of model parameters
provides insight into the sensitivity of the control strategy
[99–102]. Secondly, when performing multi-objective optimiz-
ation, a trade-off is made between objectives. For example, in
equation (3.14), we seek to minimize the cumulative negative
impact of leukaemia and of the control; parameters a1 and a2
weight the relative important of each objective. In practical
applications, it is not always clear how to determine these
weightings. It can therefore be useful to generate a family of
optimal controls that are each optimal for their specific combi-
nation of pay-off weighting parameters, akin to a Pareto
frontier [49,103,104]. Producing these sets of control results
benefits significantly from acceleration techniques such as
the Anderson and Steffensen methods, where a consistent
reduction in N is obtained without optimal tuning.

In this work, multi-objective optimization is considered in
the form of a control problem with a single cost function com-
prising a scalar combination of state and control terms. More
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generally, multi-objective optimization can be formulated as a
control problem with a vector-valued cost function, with the
goal of minimizing each component simultaneously. There
are a range of strategies for handling multi-objective optimal
control problems formulated in this way, and we direct read-
ers to [105] for a recent and extensive survey.

Here, we have only considered systems subject to a single
control. While this is reflective of the vast majority of appli-
cations featured in the control literature, there are instances
where we are interested in applying multiple controls simul-
taneously [13,14,51]. The FBSM can be readily applied to
solve problems with multiple controls [51]; a logical extension
of this work is to adapt the acceleration methods or identify
suitable alternative methods for accelerating convergence of
the FBSM for problems with multiple controls.

Over a range of tuning parameters the Wegstein, Steffen-
sen and Anderson methods are able to induce convergence
where the underlying FBSM fails to converge; such as in
the AML control problems with ω = 0. This behaviour has
been documented for Anderson acceleration [87] and Weg-
stein’s method [67] when applied to standard fixed point
iteration problems. This presents an opportunity for future
exploration, in identifying control problems that cannot be
solved via the FBSM for any ω, and attempting to produce
solutions using these acceleration techniques.

The examples we consider in this work include a variety
of control problem formulations that arise in systems biology.
However, it is worth noting that the examples are not exhaus-
tive. Further challenges can be introduced; either through the
formulation of the control problem, or as a result of the
behaviour of the underlying system. Examples of such chal-
lenges include control problems with singular arcs, path
constraints, multiple local solutions, discontinuous dynamics
and sensitivity to the initial guess of the control [35]. These
challenges can introduce numerical difficulties, and compli-
cations in terms of the optimal control theory; for example,
control problems with singular arcs typically require
additional necessary conditions for optimality beyond those
obtained from the PMP [38]. A thorough assessment of the
appropriateness of the FBSM as a method for solving control
problems with such complications is an avenue for further
investigation. We stress that the acceleration techniques that
we develop and survey in this work are able to accelerate
convergence when compared to a naive FBSM implemen-
tation, and in some cases induce convergence where the
naive FBSM fails to converge. We anticipate that these
trends will persist if these acceleration techniques are applied
to appropriately conceived implementations of the FBSM for
the various complications outlined here.
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