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Simple Summary: Positron emission tomography (PET) imaging is increasingly used to supplement
MRI in the management of patient with brain tumors. In this article, we provide a review of the
current place and perspectives of PET imaging for the diagnosis and follow-up of from primary
brain tumors such as gliomas, meningiomas and central nervous system lymphomas, as well as brain
metastases. Different PET radiotracers targeting different biological processes are used to accurately
depict these brain tumors and provide unique metabolic and biologic information. Radiolabeled
amino acids such as [18F]FDOPA or [18F]FET are used for imaging of gliomas while both [18F]FDG
and amino acids can be used for brain metastases. Meningiomas can be seen with a high contrast
using radiolabeled ligands of somatostatin receptors, which they usually carry. Unconventional
tracers that allow the study of other biological processes such as cell proliferation, hypoxia, or
neo-angiogenesis are currently being studied for brain tumors imaging.

Abstract: PET imaging is being increasingly used to supplement MRI in the clinical management
of brain tumors. The main radiotracers implemented in clinical practice include [18F]FDG, radiola-
beled amino acids ([11C]MET, [18F]FDOPA, [18F]FET) and [68Ga]Ga-DOTA-SSTR, targeting glucose
metabolism, L-amino-acid transport and somatostatin receptors expression, respectively. This re-
view aims at addressing the current place and perspectives of brain PET imaging for patients who
suffer from primary or secondary brain tumors, at diagnosis and during follow-up. A special focus
is given to the following: radiolabeled amino acids PET imaging for tumor characterization and
follow-up in gliomas; the role of amino acid PET and [18F]FDG PET for detecting brain metastases
recurrence; [68Ga]Ga-DOTA-SSTR PET for guiding treatment in meningioma and particularly before
targeted radiotherapy.

Keywords: [18F]FDG; [18F]FDOPA; [18F]FET; [68Ga]Ga-DOTA-SSTR; glioma; brain metastases;
meningioma; PCNSL

1. Introduction

Multiparametric magnetic resonance imaging (mpMRI) is the reference method for the
diagnosis and follow-up of primary and secondary brain tumors. Nevertheless, its ability
to distinguish between viable neoplastic tissue and tumor-free areas is limited in many
cases [1–3]. This is especially true in the post-radiation therapy setting where treatment-
related changes (TRC) can mimic tumor progression. Over the past few decades, various
positron emission tomography (PET) tracers have emerged in the field of neuro-oncology.
These radiolabeled molecules can be used as a complementary tool to overcome some of
mpMRI’s limitations, as follows: to help discriminate TRC changes from tumor progression
or relapse, to delineate the tumor extent, to highlight non-enhancing tumors, and to monitor
treatment response and to predict the patients’ outcome [4,5].
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This narrative review aims at addressing the current place and perspectives of brain
PET imaging for patients who suffer from primary or secondary brain tumors, at diagnosis
and during follow-up. The main clinical applications are as follows: the delineation
of tumor extent for treatment planning, assessment of treatment response in gliomas,
differential diagnosis and detection of meningioma, distinction of post-therapeutic reactive
changes after radiotherapy from progression or recurrence in glioma and brain metastases
and differential diagnosis in primary central nervous system lymphoma (PCNSL). The PET
tracers involved are 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG), radiolabeled amino acids
([11C]methionine ([11C]MET), 3,4-dihydroxy6-18F-fluoro-l-phenylalanine ([18F]FDOPA),
O-(2-18F fluoroethyl)-l-tyrosine ([18F]FET)) and [68Ga]Ga-DOTA-somatostatin receptors
(SSTR). A brief look at the emerging aspect of theragnostic, especially for [177Lu]Lu-DOTA-
SSTR in the treatment of meningioma, is also included.

2. Tracers

In general oncology, [18F]FDG is a well-established and the most widely used tracer for
PET imaging [6]. An increased FDG uptake corresponds to increased glucose metabolism. It
is commonly seen in malignancy because of glucose transporter 1 (GLUT1) over-expression
and increased hexokinase phosphorylation. Nonetheless, the physiological high FDG up-
take in the normal brain, due to neurons’ activities, limits the lesion-to-background contrast
for brain tumors [5]. Nevertheless, [18F]FDG remains useful for intensely hypermetabolic
brain lesions such as PCNSL, glioblastoma and some metastases.

Amino acid PET tracers have the advantage over FDG in that they do not accumulate
too much in the normal brain. [11C]MET has been the first developed tracer in this field, but
its short half-life (20 min) limits its availability to centers equipped with in-house cyclotron.

Several amino acid PET tracers radiolabeled with 18F (half-life:110 min) have been
developed since then, including [18F]FDOPA and [18F]FET, which are the most often used.
Their uptake in brain tumors relies on the overexpression of large amino acid transporters
of the L-type (LAT) [7].

Another PET tracer family of interest is 68Ga-labeled SSTR ligands, since somato-
statin receptors are overexpressed in meningioma, with DOTA-D-Phe1-Tyr3-octreotate
(DOTATATE) and DOTA-Tyr3-octreotide (DOTATOC) being the most used in clinical rou-
tine. They usually require an in-house gallium generator as its half-life is quite short
(68 min) but can also be shipped over short distances.

Other PET tracers designed to study various biological aspect of brain tumors have
been developed or are currently being developed, but they are still rarely used in clini-
cal routine. It is always important to distinguish radiotracers regarding their ability to
cross the healthy blood–brain barrier. [18F]FDG and radiolabeled amino acids ([11C]MET,
[18F]FDOPA, [18F]FET) do cross the healthy blood–brain barrier, thus allowing researchers
to image infiltrative tumors that do not disrupt it [8,9].

3. Glioma

Amino acid PET tracers have relatively high sensitivity for gliomas as the LAT system
transporters is overexpressed in most of them [10], with a good tumor-to-background con-
trast in the brain [11]. Thus, their use has been recommended by the Response Assessment
Neuro-Oncology group (RANO) for the assessment of glioma in many situations [5].

3.1. Diagnostic and Characterization

[11C]MET is chemically equivalent to natural methionine it is incorporated into pro-
teins and could therefore accumulate over time within tumors [12]. Nevertheless, 11C short
physical half-life limits its availability and does not allow for delayed imaging. [11C]MET
has good performance to diagnose brain tumors as highlighted in a meta-analysis including
more than 400 patients by Zhao et al. [13]. In their study, [11C]MET had a high pooled
sensitivity and specificity of 91% and 86% for neoplastic tissue, whereas those of 18F-FDG
were only moderate with sensitivity and specificity of 71% and 77%, respectively.
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Nowadays, the emergence of 18F radiolabeled amino acid tracers such as [18F]FDOPA
and [18F]FET enabled a wide use of amino acid PET in clinical practice in many centers. In
general, they have comparable diagnostic value compared to [11C]MET [14,15].

[18F]FDOPA PET has a good accuracy for the diagnosis of primary brain tumors, with
a sensitivity of 96% and a specificity of 86% [16]. It is more specific than [18F]FDG [16]
and performs as well as 11C-MET [17]. The visual and semi-quantitative analyses can both
be used. In the visual analysis, the positivity can be defined by a lesion’s uptake greater
than or equal to striatum uptake. In the semi-quantitative analysis, the only pathology-
controlled thresholds to detect brain tumors is a ratio of 1.0 for tumor-to-striatum and
1.3 for tumor-to-brain [16,18] (Figure 1). It can also be used to differentiate high- and
low-grade gliomas as the uptake is significantly higher in high-grade gliomas [19]. A recent
meta-analysis found a pooled sensitivity of 0.88 and a pooled specificity and 0.73 for glioma
grading [20], making it a valuable clinical tool [21]. The dynamic analysis also seems to
be an interesting tool to integrate [22–24]. At diagnosis [18F]FDOPA uptake also has an
independent prognostic value [25].

In the same line, [18F]FET is another very performant tracer as a meta-analysis of 13
[18F]FET PET studies, including more than 450 patients, showed pooled sensitivity and
specificity both around 80% for the diagnosis of primary brain tumors [26]. More recently,
a second meta-analysis, including 119 patients, reported pooled sensitivity and specificity
of 0.94 and 0.88, respectively [27]. A mean tumor-to-background uptake threshold ratio of
at least 1.6 and a maximum TBR of at least 2.1 seems to be the best cutoff. Nevertheless, the
same authors, in another previous study, have found some contradictory results, especially
a relatively low specificity of 62% for a good sensitivity of 84% [26]. The threshold is 2.1 for
tumor-to-brain (TBR) max et 1.7 for TBR mean to distinguish glioma versus non-glioma [26].
It allows the biopsy guidance [9] and differentiate efficiently high- and low-grade gliomas,
especially thanks to parameters derived from dynamic acquisition [28].

It is particularly important to rule out false positivity, as increased amino acid tracer
uptake may also occur in nonneoplastic lesions or inflammatory processes such for [18F]FET
and for [18F]FDOPA [29–31], but uptake intensity is generally low or moderate, below the
intensity of high-grade gliomas’ uptake.

Regarding false negativity, it is mainly related to isocitrate dehydrogenase (IDH)-
mutated gliomas. Up to 30% of WHO grade II IDH-mutated gliomas do not show significant
amino acid uptake; thus, negative amino acid PET is not sufficient to rule-out low-grade
glioma [7,32,33].

3.2. Defining Tumor Extent

Delineating glioma extent is important for further diagnostic and therapeutic manage-
ment, such as biopsy, resection, or radiotherapy planning (Figure 1). To do so [18F]FDOPA
and [18F]FET can complement mpMRI. Indeed, conventional mpMRI is particularly lim-
ited in its ability to identify non-enhancing glioma subregions [1], whereas [18F]FDOPA
PET could discriminate glioma from benign brain lesions such as dysembryoplastic neu-
roepithelial tumor, and high- from low-grade gliomas, with no contrast enhancement on
mpMRI [19]. In a recent biopsy-validated study, molecular information obtained from
[18F]FET would reveal a more accurate glioma extent, which is critical for individualized
treatment planning [34].

As there is a significant difference in evaluating tumor volume between amino acid PET
and mpMRI, it suggests that the latter could substantially underestimate the metabolically
active tumor volume [35,36]. Another recent evidence-based article suggested that amino
acid PET could improve the delineation of high-grade gliomas compared to standard
mpMRI [37]. However, till today, only one study has demonstrated that the management
based on amino acid PET-guided benefits a better patient outcome [38].
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Figure 1. Characterization of a left temporo-fronto-insular brain lesion in a 60-year-old woman.
This lesion was considered suggestive of grade II or III glioma according T2-FLAIR (a) and post-
enhancement T1-weighted MRI (b). [18F]FDOPA PET images (fused with T2-FLAIR MRI (c) and PET
only (d)) showed an uptake more intense than twice the normal cortex, predictive of high-grade tumor.
Moreover, the lesion visualized with PET was much more extended than with MRI, particularly in
the contralateral frontal lobe. Pathological analysis of biopsy samples revealed a WHO grade IV
glioblastoma.

3.3. Defining Tumor Heterogeneity

The extent of tumor resection is one of the most important prognostic factors in
gliomas. Nevertheless, often these tumors are highly heterogeneous with a possible coexis-
tence of high- and low-grade subregions. Thus, presurgical identification of high-grade
subregions extent is of major importance. In this very recent biopsy validation study, Gi-
rard et al. found that the addition of [18F]FDOPA PET to mpMRI enlarged the delineation
volumes and enhanced overall accuracy for detection of high-grade subregions. Thus,
combining [18F]FDOPA PET with advanced mpMRI may improve treatment planning in
newly diagnosed gliomas [39]. In another clinical trial, better defining tumor heterogeneity
seems to have a high impact on radiation therapy. Indeed, [18F]FDOPA PET-guided dose-
escalated radiation therapy significantly improved the overall survival in the subgroup
of O6-methylguanine-DNA methyltransferase (MGMT) methylated glioblastoma patients
and the progression-free survival in MGMT unmethylated glioblastoma patients [38].
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3.4. Monitoring Therapy

In gliomas, frequently used systemic treatment options are alkylating chemotherapy
and antiangiogenic therapy, associated with radiotherapy (protocol STUPP). The mpMRI
method remains the standard tool for assessment of response but it often lacks specificity [3].

[18F]FET can provide a reliable response assessment after chemotherapy (temozolo-
mide and nitrosourea-based) in patients with high-grade glioma at recurrence [39]. It also
can predict patients’ outcomes as metabolic responders have better survival [40,41].

An early [18F]FET uptake change, seen 6 weeks after chemoradiotherapy using temo-
zolomide, could already have prognostic information. A decrease in metabolic activity of
more than 10% can be a cutoff for predicting better patients’ survival [42].

Contrary to [18F]FET, there is less evidence for [18F]FDOPA. There are two studies
on assessment after anti-angiogenic treatments, and they concluded that [18F]FDOPA
PET could monitor response and identify responders after 2 weeks of treatment with
bevacizumab [43,44].

3.5. Recurrence vs. Radionecrosis

Differentiating TRC from disease progression is of critical importance for patients’
management and prognosis and it can often be challenging [45]. In some countries such
as France, suspected recurrent or progressive glioma after treatment is the most common
indication for [18F]FDOPA PET in brain tumors. The mpMRI method has some limitations
in the case of pseudo-progression in the first 12 weeks after treatment, as in the case of
radio-necrosis after 12 weeks of treatment [45,46]. These TRC can appear like a new or
increasing contrast enhancement that cannot be distinguished from tumor recurrence.

The [18F]FDOPA PET has an accuracy from 82% to 96% to distinguish TRC vs. a
progressive tumor [47,48]. The visual criteria, using the striatum contralateral to the tumor
as the reference, or semi-quantitatively, with a tumor-to-striatum ratio of 1.4 for SUVmax
and 1.2 for SUV mean, could both be effective [47] (Figure 2).
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Figure 2. Differential diagnosis between recurrence versus radiation necrosis in a 70-year-old man
who suffered from a right frontal glioblastoma IDH1-wt and was treated with surgery then chemora-
diation with Temodal. Nine months later, there is an increase in edema in the site of the initial tumor.
Post-enhancement T1-weighted MRI (a) revealed an increasing contrast enhancement which could
correspond to a recurrence or a radionecrosis. [18F]FDOPA PET images (fused with T1-weighted
MRI (b) and PET only (c)) showed an intense uptake of this lesion, with tumor/striata ratio = 1.5,
suggesting tumor recurrence.

The [18F]FET has a similar performance [44], whereas the [11C]MET encounters a
slightly lower accuracy of approximately 75% [49] as MET has more affinity for inflamma-
tory processes [50].

4. Metastases

Brain metastases (BM) are the most common malignant brain tumors, as they are part
of the natural course of several types of cancer, especially breast and lung cancer, as well



Cancers 2022, 14, 879 6 of 17

as melanomas. Contrast-enhanced mpMRI is the cornerstone of metastatic brain tumor
evaluation. It has widespread availability and excellent spatial resolution, but its specificity
can be low, especially in distinguishing TRC from progression, resulting in substantial
diagnostic challenges [51]. Amino acid PET tracers can be useful because, as gliomas,
metastatic brain tumors overexpress LAT, independently of the primitive tumor. However,
[18F]FDG has also a role to play.

4.1. Diagnostic and Characterization

For the detection of BM, the [18F]FDG has poor accuracy, as highlighted in a recent
meta-analysis including more than 900 lung cancer patients with brain metastases and
comparing contrast-enhanced mpMRI to [18F]FDG PET. It was found that mpMRI has a
substantially higher cumulative sensitivity (77%) than [18F]FDG PET (21%) [52].

Amino acid PET tracers are substantially more performant than [18F]FDG, especially
for lesions more than 1 cm. Unterrainer et al. reported that [18F]FET were positive for
approximately 90% BM, using a ratio ≥ 1.6 for tumor/brain [53]. For lesions smaller than
1 cm, the detection rate by mpMRI remains the best, nearly 100% [53]. So, mpMRI is the
reference imaging modality for the detection of brain metastases.

There is limited evidence to support the use of PET to distinguish between BM and
other brain tumors, especially high-grade glioma [52]. Some authors reported that [18F]FDG
is generally lower in metastases than in PCNSL and amino acid PET tracers could identify
aggressive tumor features and thus predict a worse prognosis [54,55].

4.2. Detecting Occult Primary Extracerebral Malignancy Revealed by Brain Metastases

In the case of newly discovered BM in patients with no history of cancer, primary
lesion and other extracerebral metastases must be sought. Several studies investigating
[18F]FDG PET revealed its good performance.

Roh et al. showed that the sensitivity of [18F]FDG PET (87.5%) was significantly higher
than that of CT (43.7%) in the detection of the primary tumor in patients with BM [56]. The
main sites of other extracerebral metastases are in lymph nodes, especially mediastinal,
hilar and retroperitoneal ones [57,58], and the lung was the most frequent primary tumor
in patients with brain metastases [58,59]. Moreover, [18F]FDG PET detected additional
extracerebral metastatic sites in 42% to 63% of patients [57–60].

4.3. Recurrence vs. Radionecrosis

Among irradiated patients, brain radionecrosis is a common complication, mainly de-
pending on irradiation technique [61], which occurs with an incidence up to 25% [62]. Most
of the brain radionecroses are diagnosed during the year after the end of radiotherapy and
in 80% within 3 years [63]. Differentiating brain metastases recurrence from radionecrosis
can be challenging during mpMRI follow-up after stereotactic radiotherapy.

According to the RANO/PET working group, amino acids PET tracer should be
preferred in this indication [51,64]. Reported diagnostic performance of amino acids PET is
high and reproducible with sensitivity ranging between 74 and 90% and specificity between
75 and 100% [65–72].

Reported sensitivity of standard [18F]FDG ranges from 40% to 83% and specificity be-
tween 50% and 94%, respectively [63,73–75]. This limited diagnostic performance is mainly
due to low tumor-to-brain on standard images. To overcome this issue, some authors per-
formed additional delayed PET images 4 to 5 h after [18F]FDG injection. With such protocols,
[18F]FDG PET reached sensitivity of 93–95% and specificity of 94–100% [76,77] (Figure 3).
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Figure 3. Differential diagnosis between recurrence versus radionecrosis in a 73-year-old woman
who was treated with stereotactic radiation therapy 2 years earlier for a cerebellar metastasis (red
arrow) of breast cancer. Post-enhancement T1-weighted MRI (a) revealed an increasing contrast
enhancement. While standard [18F]FDG PET imaging performed 60 min (b) displayed no significant
uptake, delayed images performed 4 h post-injection (c) revealed uptake higher than the background
activity, suggesting tumor recurrence.

5. Meningioma

Meningioma is the most common non-glial primary brain tumor, which represents
approximately 35% of all brain tumors. A high SSTR type 2 density is found in all menin-
gioma [78]. [68Ga]Ga-DOTA-SSTR PET tracers are SST analogs with a high binding affinity
to SSTR type 2, which make them an effective tool for imaging meningioma.

5.1. Diagnostic and Characterization

Detecting meningioma can be challenging using mpMRI, notably when it locates at
the skull base or nearby the falx cerebri, often with extension to adjacent bone structure.
[68Ga]Ga-DOTA-SSTR has high sensitivity in the detection of meningioma compared to
contrast-enhanced mpMRI [79]. Except the pituitary gland, there is no physiological
uptake in the brain for [68Ga]Ga-DOTA-SSTR, which provides a high tumor-to-background
ratio. The specificity for meningioma is not perfect because [68Ga]Ga-DOTA-SSTR also
show a moderate uptake in inflammatory lesions [80]. [68Ga]Ga-DOTA-SSTR PET can
be particularly useful for differential diagnosis between meningioma and other kinds of
tumors with low SSTR expression, such as schwannoma [81].

5.2. Defining Tumor Extent

[68Ga]Ga-DOTA-SSTR PET can delineate more precisely the tumor extent in various
tumor locations than contrast-enhanced mpMRI, in a comparative study with histological
confirmation [82]. This added value is more pronounced when the tumor is located in
regions such as the skull base, orbit and cavernous sinus [83,84] or optic pathway [85].
This is particularly true in meningioma that were previously treated with surgery and/or
radiotherapy to differentiate post-therapeutic changes from active meningioma.

Before radiotherapy, it is a valuable tool for improving the GTV (gross tumor volume)
and the CTV (clinical target volume) definition and sparing the organs at risk [80].

This optimized target volume delineation is of great help for stereotaxic fractionated
radiotherapy in grade I-III meningiomas [86].

In a head-to-head comparison study, [68Ga]Ga-DOTA-SSTR PET performed better than
[18F]FET PET in GTV definition. Overall, 2 out of 21 false-negative patients were reported
with [18F]FET PET, whereas the [68Ga]Ga-DOTA-SSTR PET had 100% sensitivity [87].
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5.3. Assessment of Response to Radiotherapy

Only a few data are available in the literature. [11C]MET PET seems to be of interest in
the early response assessment after high-energy proton therapy with an average uptake
intensity reduction of 19.4% [88]. Ryttlefors et al. stated that a follow-up with [11C]MET
PET may be a valuable adjunct to, but not a replacement for, standard radiological follow-
up [89].

More recently, [68Ga]Ga-DOTA-DOTATATE PET has been proven to be a reliable tool
in evaluating treatment responses to radiation therapy. The mean and the maximal total
lesion activities decreased significantly with a median of 14.7% [range 8.5–97%] and 36%
[range 15–105%], respectively, while the tumor volume based on mpMRI measurement
did not change significantly, according to RECIST criteria. Thus, the [68Ga]Ga-DOTA-SSTR
PET has incremental value for assessing the treatment response [90].

5.4. Diagnosis of Recurrence after Surgery

The recurrence rate is estimated between 20 and 40% within ten years, despite macro-
scopically complete resection of meningioma [91]. If a sub-total resection has been per-
formed, the recurrence rate for WHO grade I meningiomas could outpass 50% within ten
years [92]. The diagnostic accuracy of standard mpMRI is limited, especially in complex
situations with bone infiltration or scar tissue. [68Ga]Ga-DOTA-SSTR PET has been proven
to add incremental value to mpMRI in the case of TRC [79,82] (Figure 4). It is also useful to
differentiate scar tissue from active tumors, with a high sensitivity of 90% [82]. It performs
particularly better than mpMRI in the case of transosseous meningiomas, with a sensitivity
of 97% and specificity of 100%, compared to 54% and 83%, respectively, for mpMRI [92].
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Figure 4. Post-enhancement T1-weighted MRI (a) before radiation therapy of a grade 2 skull base
meningioma in a 49-year-old woman who was previously treated several times by surgery. [68Ga]Ga-
DOTATOC PET (b) was performed to differentiate viable tumor (high uptake) vs. post-therapeutic
changes (moderate uptake). Meningioma extension (to frontal and left temporal areas) was much
more obvious using [68Ga]Ga-DOTATOC PET in addition to MRI.
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5.5. [177Lu]Lu-DOTA-SSTR

The prognosis of patients with progressive meningioma after failure of surgery and
radiotherapy is poor. Targeted radiation therapy with [177Lu]Lu-DOTA-SSTR, which is
well recognized for the treatment of advanced neuroendocrine tumors, is increasingly used
for patients with evolving and unresectable meningiomas.

In a phase II clinical trial, Marincek et al. performed 74 treatment cycles on 34 patients,
achieving disease stabilization among 23 of them (67%). Stable disease after treatment and
high tumor uptake were associated with longer survival [93]. Another retrospective study
evaluated the safety and efficacy of [177Lu]Lu-DOTA-SSTR in 20 patients with progressive
treatment-refractory meningiomas. The treatment led to disease stabilization in 10 of
20 patients. Median progression-free survivals of 32.2 months for grade I tumors, 7.2 for
grade II and 2.1 for grade III were reached. The median overall survival was 17.2 months
in grade III patients and not reached for I and II at a median follow-up of 20 months [94].
Finally, in a study including seven patients with progressive intracranial meningioma a
progression free survival at six months of 42.9% has been reported after a median of four
cycles of 177Lu-DOTA-SSTR administered, [95].

[68Ga]Ga-DOTA-SSTR PET imaging seems essential before treatment to evaluate the
tumor SSTR expression level for individualized treatment optimization.

6. PCNSL

PCNSL are non-Hodgkin lymphoma, most frequently represented by diffuse large B-
cell lymphoma (DLBCL), confined to the brain, spinal cord, eyes and leptomeninges. Most
PCNSL show a very intense [18F]FDG uptake. It can be used for differential diagnosis in
both for immunocompetent and immunocompromised patients. In immunocompromised
patients, [18F]FDG PET distinguishes correctly PCNSL from other brain infection with a
sensibility of 100% and a specificity yielded from 75% to 100% [96]. In immunocompetent
patients, [18F]FDG in addition to perfusion MRI enables to differentiate PCNSL from
glioblastoma with very good diagnostic accuracy, reaching a sensitivity of 95% and a
specificity of 96.4% [97]. The uptake intensity of PSNCL is usually more than twice that of
brain physiological uptake [97] (Figure 5).

Concomitant systemic involvement impacts patients’ management. [18F]FDG PET has
a higher diagnostic yield than computed tomography to detect extracranial lymphoma
location and is the imaging method of reference for the staging of systemic DLBCL. Bertaux
et al. reported that [18F]FDG PET revealed concomitant occult systemic lymphoma in-
volvement in 8% of 130 PCNSL patients and was more sensitive than a combination of
contrast-enhanced CT and bone-marrow biopsy [98]. In a very recent systematic review
and meta-analysis, Park et al. stated that whole-body [18F]FDG PET should be preferred
over CT in the initial workup of patients with suspected primary CNS lymphoma to detect
occult systemic involvement [99].
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Figure 5. Characterization of a single right parietal brain lesion in an 81-year-old woman. Post-
enhancement T1-weighted MRI (a) showed an intense increasing contrast enhancement; diffusion
weighted imaging (b) showed a hypersignal and the there was no hyperperfusion in perfusion-
weighted imaging (c). [18F]FDG PET (fused with T1-weighted MRI (d) and PET only (e)) showed a
highly intense uptake: SUVmax = 37. Pathological analysis of biopsy samples confirmed a PCNSL
(type DLBCL).

7. Other Aspects of PET Imaging
7.1. “Unconventional” Tracers

Numerous innovative PET tracers have been (and are still continuously) developed
that target several biological aspects of brain tumors and their micro-environment, as fol-
lows: blood flow, angiogenesis, hypoxia, neuroinflammation, mitotic activity and receptor
binding [100]. Notably, perfusion can be assessed by [15O]H2O and [13N]NH3; neoangio-
genesis can be highlighted by Arg-Gly-Asp peptide (RGD)-based PET tracers, especially
[18F]FPPRGD2, [64Cu]DOTA-VEGF121 and [89Zr]Bevacizumab; neuroinflammation can
be explored by multiple tracers targeting translocator protein (TSPO), mitotic activity can
be revealed by [18F]Fluorothymidine (FLT); and several tracers specifically receptors such
as C-X-C chemokine receptor type 4 (CXCR4), epidermal growth factor receptor (EGFR),
transforming growth factor-β (TGF-β), fibroblast activation protein (FAP) and pyruvate
kinase M2 (PKM2) [100].

In clinical practice, [18F]Fluorocholine (FCH) PET can be useful on a case-by-case for
tumor characterization and differential diagnosis [81], even though it does not cross the
intact blood–brain barrier. Alongi et al. reported a case in which [18F]FCH PET/CT had
successively made differential diagnosis between cystic glioblastoma and intraparenchymal
hemorrhage, supporting the potential use of this imaging biomarker in surgical or radio-
surgical approach [101].

7.2. PET/MRI

Integrated PET/MRI systems have been increasingly used in expert centers in recent
years. Such systems can provide a complete quick and accurate tumor evaluation by the
synchronous acquisition of complementary modalities and thus reduce transportations of
patients and increase their comfort. Nevertheless, since these high-end systems remain
very expensive, and brain images can be perfectly fused after being acquired separately,
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the highest added value of integrated PET/MRI systems is yet limited to clinical research
for many brain tumor types [102–104].

7.3. Additional Approaches in Image Analysis

Artificial intelligence (AI) has already become a reality in radiology. Since September
2020, the U.S. Centers for Medicare and Medicaid Services officially granted their first
reimbursement of a radiology AI algorithm. We can reasonably expect a broader coverage of
imaging AI software in clinical practice, including in nuclear medicine. In neuro-oncology,
several studies concerning machine learning algorithms and radiomics have already been
published, with encouraging results. For example, Russo et al. have developed a predictive
model using machine learning based on radiomics, for discriminating between low-grade
and high-grade CNS tumors in 56 patients who underwent [11C]MET PET [105]. Kebir
et al. highlighted the potential use of radiomics on [18F]FET PET imaging to differentiate
multiple sclerosis from glioma, and they concluded that machine learning can enhance
lesions classification [106]. Qian et al. used radiomics features extracted from [18F]FDOPA
PET to predict methylation of the O6-methylguanine methyltransferase (MGMT) gene
promoter status in gliomas, with reasonable accuracy (nearly 80%) [107].

8. Conclusions

Molecular imaging with PET, can be of great value in the clinical management of
primary and secondary brain tumors, especially as precision and personalized medicine
continues to develop. The existing literature provides strong evidence that PET can effi-
ciently supplement MRI in specific settings such as distinguishing recurrence from TRC in
glioma and brain metastases. Beyond amino acid PET tracers for glioma, [68Ga]Ga-DOTA-
SSTR PET and [18F]-FDG PET can play an essential role in the workup of meningiomas,
metastases and PCNSL. These diagnostic procedures directly lead to benefits for patients
suffering from brain tumors and could be more widely used in clinical routine as the avail-
ability of both tracers and imaging systems improves. When appropriately combined with
mpMRI, PET imaging has been shown to be of incremental value at many time points in the
course of several brain tumors, covering almost the whole diagnostic range in clinical neuro-
oncology. Studies are still needed to strengthen the evidence level, specify its exact role in
the different scenarios of clinical routine, homogenize practices and provide the community
with clear guidelines to systematically implement PET imaging in neuro-oncology.
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Abbreviations

mp-MRI multiparametric-magnetic resonance imaging
PET various positron emission tomography
PCNSL primary central nervous system lymphoma
[18F]FDG 18F-2-fluoro-2-deoxy-d-glucose
[11C]MET [11C]methionine
[18F]FDOPA 3,4-dihydroxy6-18F-fluoro-l-phenylalanine
[18F]FET O-(2-18F fluoroethyl
SSTR somatostatin receptors
GLUT1 glucose transporter 1
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LAT transporters of the L-type
DOTATATE DOTA-D-Phe1-Tyr3-octreotate
DOTATOC DOTA-Tyr3-octreotide
FLT 3′-deoxy-3′-18F-fluorothymidine
Fluciclovine anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid
RANO Response Assessment Neuro-Oncology group
TRC treatment-related changes
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