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The cerebellar cortex microcircuit is characterized by a highly ordered neuronal
architecture having a relatively simple and stereotyped connectivity pattern. For a
long time, this structural simplicity has incorrectly led to the idea that anatomical
considerations would be sufficient to understand the dynamics of the underlying
circuitry. However, recent experimental evidence indicates that cerebellar operations are
much more complex than solely predicted by anatomy, due to the crucial role played
by neuronal and synaptic properties. To be able to explore neuronal and microcircuit
dynamics, advanced imaging, electrophysiological techniques and computational
models have been combined, allowing us to investigate neuronal ensembles activity
and to connect microscale to mesoscale phenomena. Here, we review what is known
about cerebellar network organization, neural dynamics and synaptic plasticity and point
out what is still missing and would require experimental assessments. We consider
the available experimental techniques that allow a comprehensive assessment of circuit
dynamics, including voltage and calcium imaging and extracellular electrophysiological
recordings with multi-electrode arrays (MEAs). These techniques are proving essential to
investigate the spatiotemporal pattern of activity and plasticity in the cerebellar network,
providing new clues on how circuit dynamics contribute to motor control and higher
cognitive functions.

Keywords: multi-spot recordings, optical imaging techniques, multi-electrode arrays (MEAs), cerebellar circuit,
input processing, cerebellar neurons, short-term synaptic plasticity

INTRODUCTION

In current neuroscience research, there is growing interest to understand the functioning of
neuronal ensembles, which constitute local microcircuits and are intermediate between single-
cell and large-scale dynamics (Silberberg et al., 2005). Local neuronal microcircuits play a key
role in brain computation by processing synaptic inputs and integrating incoming information to
elaborate the neuronal discharges relayed to other brain areas.
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In microcircuit functioning, individual neurons
electroresponsiveness and their interactions are crucial.
Thus, when investigating microcircuit activity, techniques able
to acquire data from multiple single neurons simultaneously
and to capture short- and long-term changes in neuronal
dynamics are needed. The acquisition of this type of data is
crucial to understand not only internal microcircuit dynamics
but also the impact of microcircuit activity on whole brain
functioning. Not surprisingly, to bridge the gap between
microscale and macroscale activities, brain computational
modeling is increasingly demanding information on neuronal
interactions in local microcircuits. Although in vivo studies
provide insight into biological activity underpinning behavior,
ex vivo studies are still needed to investigate cellular mechanisms,
by performing measurements that would otherwise be unfeasible
in living animals or subjects.

In this review, we evaluate the recent developments in
imaging and electrophysiological techniques used to perform
multiple single neurons recordings on microcircuits ex vivo.
These techniques allow now to record the activity of several cells
simultaneously, monitoring their interactions and evaluating
excitation-inhibition integration and synaptic plasticity. The
pros and cons of multi-spot recordings are exemplified for
the cerebellar cortex microcircuit. This circuit is characterized
by a complex connectivity pattern (Apps et al., 2018), non-
linear excitation and inhibition properties and multiple forms of
synaptic plasticity that cooperate to generate the computational
schemes that process incoming signals and generate the
cerebellar output. The cerebellar example illustrates how the
techniques reviewed here can provide powerful tools for a
comprehensive assessment of the activity and connectivity in
neuronal ensembles, overcoming past limitations and opening
new perspectives in the modeling field (D’Angelo et al., 2016).

What We Want: A Deeper Insight Into
Microcircuit Functioning and Information
Processing
It has long been assumed that the geometric and modular
structure of cerebellar cytoarchitecture [schematically
represented in Figure 1; Cerminara et al. (2015), D’Angelo
(2018)] would be sufficient to explain microcircuit functioning.
According to the Motor Learning Theory (Marr, 1969), only
parallel fiber-Purkinje cell (PF-PC) and climbing fiber-PC
(CF-PC) synapses would be involved in the cerebellar learning
processes. However, experimental data collected over the last
decades suggest that many more different cerebellar neurons are
involved, indicating that the functioning of this network is more
complex than anticipated (Hull, 2020).

Currently, it is recognized that the granular layer (GL) plays
a central role in cerebellar processing. Mossy fibers-granule
cells (MFs-GrCs) relay constitutes the cerebellar input stage,
where each GrC receives four to five MFs terminals while one
MF excites about 400 to 600 GrCs in a folium (Ito, 2006).
MFs convey frequency-modulated bursts (Chadderton et al.,
2004; Rancz et al., 2007), in different glomeruli, activating
simultaneously GrCs and Golgi cells (GoCs) and triggering both

the excitatory circuit and the feedforward (MFs->GoCs->GrCs)
and feedback (MFs->GrCs->GoCs) inhibitory circuits. Within
5 ms after a single MFs stimulus, GrCs fire 1–2 spikes before
GoCs inhibition prevails, thus limiting GrCs burst duration to
a given time window (D’Angelo and De Zeeuw, 2009). The
broad extent of GoCs axons exerts lateral inhibition on GrCs,
determining a spatial reconfiguration of GL responses, in which
excitation prevails in the center of stimulation (Solinas et al.,
2010), while inhibition prevails in the surrounds (Mapelli and
D’Angelo, 2007). The excitatory and inhibitory circuits also
determine combinatorial operations in multiple small areas in
the GL, suggesting specific local circuit topologies (Mapelli
et al., 2010a). In the subsequent circuit stages, several dynamic
mechanisms act in series, integrating and reconfiguring the
received signals (D’Angelo, 2011; Courtemanche et al., 2013;
Zhou et al., 2014) and generating the cerebellar output that is
ultimately consolidated in deep cerebellar nuclei.

To further complicate the picture, several forms of synaptic
plasticity occurring at multiple sites of the network contribute
to shape the final output (Le Guen and De Zeeuw, 2010; De
Zeeuw et al., 2011; Gao et al., 2012; D’Angelo, 2014; Hoxha
et al., 2016). Long-term plasticity expressed at the MFs-GrCs
synapses plays a pivotal role in the regulation of GrCs first spike
delay, decreasing [long-term potentiation (LTP)] or increasing
[long-term depression (LTD)] it, changing the number of spikes
emitted by GrCs in the permissive time window (Nieus et al.,
2006) and favoring short bursts transmission toward PCs and
molecular layers (Arleo et al., 2010). Short-term plasticity, either
as potentiation (STP) or depression (STD), operates a fine-tuning
of incoming inputs. Repeated stimulation at the MFs-GrCs relay
leads primarily to STD (Wall, 2005; DiGregorio et al., 2007; Gao
et al., 2012), due to high release probability (Sola et al., 2004;
Sargent et al., 2005), vesicle depletion (Saviane and Silver, 2006)
and postsynaptic receptors desensitization. STP or STD can be
expressed also by PFs synapses, depending on both the target
neuron (PC or molecular layer interneurons) and the stimulation
frequency (Carter and Regehr, 2000; Beierlein et al., 2007).
PCs integrate and process stimuli supervised by the combined
activation of PFs and CFs, generating the cerebellar cortex
output. PFs-PCs synapses have low release probability (Isope and
Barbour, 2002; Valera et al., 2012) and show prominent AMPARs-
mediated facilitation (Atluri and Regehr, 1996; Häusser and Roth,
1997; Kreitzer and Regehr, 2000; Le Guen and De Zeeuw, 2010).
CFs-PCs synapses mainly express STD (Dittman and Regehr,
1998) related to a high release probability and multivesicular
release (Wadiche and Jahr, 2001; Foster et al., 2005). Both basket
(BCs) and stellate cells (SCs) activities further modulate PCs
response and are, in turn, modified by short-term dynamics.
Following high frequency stimulation, PFs-BCs synapses show
depression mediated by NMDARs components, while PFs-SCs
synapses show facilitation (Carter and Regehr, 2000; Bao et al.,
2010).

The combination of all these processes is crucial for the
elaboration of incoming signals and the generation of cerebellar
output (Pedroarena, 2020). Experimental investigations are
ongoing and there are still open issues to explore. Single
cells experiments cannot give precise indications about the

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 805670

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-805670 March 14, 2022 Time: 14:44 # 3

Tognolina et al. Multi-Spot Techniques for Discovering Microcircuits

FIGURE 1 | The cerebellar cortex structure and functioning. Schematic drawing of the neuronal composition of the cerebellar cortex. The colors indicate excitatory
(red) and inhibitory (blue) neurons and synapses. The feedforward and feedback inhibition between GoCs-GrCs synapses are represented by the dotted lines (blue
and light blue, respectively). The synapses known to express short-term potentiation (STP) or short-term depression (STD) are indicated.

role of multiple interactive elements. Conversely, multi-spot
techniques prove critical, allowing a comprehensive assessment
of microcircuits dynamics under physiological conditions and
filling the gap between the single cell and microcircuit scale.

What We Need: Multi-Spot Recordings
As shown above by taking the cerebellar circuit as an example,
the dynamics that can be generated in a microcircuit are various
and intertwined. To reconstruct these processes, beside the
investigation of individual neuron properties, it is necessary
to acquire data from multiple cells simultaneously to have in-
depth information on their connectivity and dynamics. Recent
developments in multi-spot optical imaging and new advances in
electrophysiological techniques have contributed to this goal.

Optical imaging techniques use probes that bind to specific
sites in neurons or to specific ions, transducing neuronal activity
into changes in optical signal intensity. Over the past years, both
voltage sensitive dye imaging (VSDi) and calcium imaging have
been extensively developed and used in different preparations
(Ebner and Chen, 1995; Baker et al., 2005; Bosman et al., 2005;
Homma et al., 2009; Sepehri Rad et al., 2017), and in particular,
in cerebellar slices.

In VSDi the dye binds to membrane neurons and acts as a
transducer of changes in membrane potential voltage (Chemla
and Chavane, 2010; Yan et al., 2012). The high temporal
resolution (down to millisecond) achievable with this technique
makes it an appropriate method for investigating networks
activity (Hill et al., 2014; Fröhlich, 2016).

In the cerebellum, VSDi experiments were used to study the
response of different circuit areas to MFs stimulation. VSDi
results showed that GL performs combinatorial operations in
response to MFs inputs under the control of the inhibitory circuit
(Mapelli et al., 2010a). The high temporal resolution of this
technique made it possible to observe the temporal evolution
of the signal propagating from GL to molecular layer and the
characteristics of this transmission, uncovering GL filtering and
resonance properties (Mapelli et al., 2010b; Gandolfi et al., 2013;
Casali et al., 2020). Furthermore, VSDi recordings revealed the
impacts of long-term synaptic plasticity expression in the spatial
reconfiguration of GL activity (Gandolfi et al., 2015) due to the
activation of the CREB/c-Fos pathway (Gandolfi et al., 2017).

One of the major disadvantages of VSD signal is related to
the non-specificity of the staining, which makes it difficult to
isolate and discriminate the precise contribution of different
components to the collected optical average signal (Chemla and
Chavane, 2010; Chemla et al., 2017). This limitation can be
partially solved by using genetically encoded voltage indicators
(GEVIs) to target specific neuronal types (Bando et al., 2019;
Mollinedo-Gajate et al., 2021). However, further improvements
are required to increase their efficiency so that they can be used
intensively (Yang and St-Pierre, 2016; Rhee et al., 2020).

Calcium imaging experiments are advantageous for
identifying individual neurons and monitoring their activity,
which is reflected in fluorescence changes related to variations in
intracellular calcium concentration.

To detect signals from multiple single neurons
simultaneously, systems with adequate spatial resolution
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FIGURE 2 | Schematic view of SLM-2PM and HD-MEA systems. (A) SLM-2PM. Scheme of the microscope and example of multiple stimulus-induced calcium
signals acquired simultaneously from different GrCs. (B) HD-MEA. Top, a cerebellar slice positioned on the HD-MEA chip (stimulating electrode positioned on the
MFs). Bottom left, PCs spontaneous activity (in red) can be observed selecting one of the channels in the ML. Bottom right, MFs stimulation evokes a LFP
propagating through the GL; the typical N2a-N2b complex is shown in the electrophysiological trace.

are needed. Two-photon microscopy fits this requirement.
The integration of devices such as diffractive optical elements
(DOE) (Watson et al., 2009) or spatial light modulators (SLM)
(Nikolenko et al., 2008, 2013; Watson et al., 2010) into two-
photon microscopes allows, by modulating the phase of a
laser beam, to generate arbitrary illumination patterns and to
record from different points on a sample simultaneously (Pozzi
et al., 2015). In particular, two-photon SLM microscopy has
been successfully implemented to study the cerebellar network.
Through these experiments, it was possible to acquire calcium
signals from different cell types in the network (Figure 2A). In
a first study, a preliminary investigation of the circuit dynamics

was conducted, which revealed sequences of neuronal activation
in response to MFs stimulation (Gandolfi et al., 2014). A second
work focused on the role of the inhibitory circuit in modulating
GL activity before and after the expression of long-term plasticity
at MFs-GrCs synapses. The data showed a combined activity
of excitation and inhibition, whose cumulative activations are
maintained in different spatial orientation (sagittal or coronal),
and how inhibition controls the spatial expression of LTP or LTD
(Casali et al., 2020).

These recent results further validate this methodology,
which could be widely exploited in the future to study
cerebellar processes that can only be uncovered by knowing
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the contribution of individual neurons in their expression. For
example, it would be possible to investigate how stimuli are
propagated from the input stage throughout the cortex, whether
and how the expression of plasticity induced at the input stage
propagates into subsequent layers, or how PCs integrate signals
from PFs and molecular interneurons. The progress made in
the development of VSD dyes suitable for two-photon imaging
(Akemann et al., 2013; Fisher and Salzberg, 2015; Kulkarni et al.,
2017; Kuhn and Roome, 2019), to be used in combination with
multi-spot techniques, would allow to achieve unique spatial and
temporal resolutions.

Despite the pros of the above imaging techniques, these
recording modalities measure neuronal activity indirectly.
The direct detection of neuronal activity is achieved using
electrophysiological measurements and, in this context,
extracellular recordings of signals generated by the activity
of neuronal ensembles play a relevant role in the study of
network dynamics. The summation of all ionic processes
coming from excitable membranes into brain tissues, gives rise
to an extracellular field. Currents flowing in the extracellular
space around active neurons determine a voltage deflection of
this electric field, which can be measured by extracellular
microelectrode arrays. To retrieve information on the
simultaneous activation of different portions of a network,
a single electrode positioned in the extracellular space is not
sufficient and a multi-electrode array (MEA) system is required.
Both the relative position between the recording electrode and
the cell body and their distance have a significant impact on
the shape of the recorded extracellular potential. In particular,
a detected spike tends to present a negative overshoot when
electrodes are close to neuronal soma and a positive deflection
moving down the axon (Lindén et al., 2010). Moreover, the
amplitude of the detected signals decays rapidly increasing
the distance between electrodes and neurons (Buzsáki et al.,
2012). Besides the recording of spiking activity, electrodes can
sample local field potentials (LFPs). The origin of this kind
of signal is harder to discern than spikes because multiple
neuronal processes concur in its generation. Synaptic activity
determining the transmembrane fluxes of sodium and/or
calcium ions following AMPARs and NMDARs activation is
among the main contributors. In addition, cells morphology
and neuronal synchrony significantly contribute to shape
LFPs signals (Buzsáki et al., 2012). MEA systems allows stable
recordings of extracellular signals, both as extracellular action
potentials (EAPs, spikes) and LFPs from a population of neurons.
For years, technical constraints have limited the size of the array
and the density of electrodes, hindering the development of
MEA systems able to achieve high enough spatial and temporal
resolution to explore the fine-grain properties of microcircuits.

During the last decades, technological advances have led
to the development of different kinds of MEAs, increasing
electrode sensitivity and spatial resolution (Spira and Hai, 2013;
Obien et al., 2014). The most recent improvement of MEAs
technology is the high-density multi-electrode array (HD-MEA,
Figure 2B), in which the increased electrodes density (e.g.,
4,096 electrodes in a 2.7 mm × 2.7 mm area) enables the
recording of neuronal activity at extremely high spatial and

temporal resolution (Berdondini et al., 2009; Ferrea et al., 2012).
This advanced technology opens new perspectives in the study
of microcircuits functioning, enabling both the recording of
single neurons EAPs and a comprehensive assessment of circuits
dynamics in physiological conditions [e.g., acute brain slices
(Emmenegger et al., 2019)].

To date, few investigations with MEAs have described
cerebellar microcircuit activity. Taking advantage of the high
spatio-temporal resolution of MEAs, PCs auto-rhythmic activity
has been assessed simultaneously from multiple sites in the
cerebellar slices (Egert et al., 2002; Frey et al., 2009), gaining
detailed insights into the mechanisms underlying action potential
dynamics (Bakkum et al., 2019). Cerebellar GL instead has
been explored recording LFPs following MFs activation. MFs
stimulation indeed determines the simultaneous firing of GrCs
in a narrow time window. With extracellular electrodes,
it is not possible to resolve single spikes from GrCs but
it is possible to record LFPs propagating through the GL
(Maffei et al., 2002; Mapelli and D’Angelo, 2007). The LFPs,
characterized both pharmacologically and by means of theoretical
models (Diwakar et al., 2011; Parasuram et al., 2016), show
a typical N1-N2-P2 complex in which N1 corresponds to
presynaptic volley activation, N2 (splitted in two components,
N2a and N2b) is informative of GrCs synaptic activation
and P2 represents currents returning from the molecular
layer. The recording of LFPs elicited by MFs stimulation has
already led to the reconstruction of excitation and inhibition
controlling the GL activity (Mapelli and D’Angelo, 2007).
Nevertheless, several aspects of cerebellar input processing
and the role of different forms of plasticity in dynamically
shaping cerebellar activity still remains unknown. Therefore,
the novel high-resolution approach proposed by HD-MEAs
paves the way for the reconstruction of the activity spread
throughout the entire cerebellar network. Subthreshold signals
would be lost together with specific information about single
neuron properties, but neuronal ensembles interactions will
be catched with unprecedented details compared to previous
electrophysiological recordings.

DISCUSSION

As the knowledge of electrophysiological properties of individual
neurons is refined, it becomes clear that each network element
plays its own role in shaping circuit activity. Thus, only by
taking into account both single and ensemble neuronal activities,
it will be possible to gain a deeper insight into microcircuits
functioning.

Experimental data obtained with multi-spot techniques have
advanced our understanding of some functional aspects of the
cerebellar cortex circuit, while other circuit dynamics deserve
to be investigated. For example, a comprehensive study of
cerebellar cortex responsiveness to different frequency patterns
is still lacking, as the test of hypothesis about cerebellar cortex
functioning (Kistler et al., 2000; D’Angelo and De Zeeuw, 2009)
or the validation of model predictions of filtering properties
(Casali et al., 2020; Rizza et al., 2021).
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The complementarity of ex vivo data with those acquired
in vivo is essential to gain a deeper understanding of
microcircuit mechanisms, assessing their impact on intact brain
functioning. In this perspective, technological developments
in the last decade have improved the use of imaging and
electrophysiological techniques in in vivo experiments too (Canto
et al., 2016; Giovannucci et al., 2017; Yang et al., 2018; Adam
et al., 2019; Barbera et al., 2019; Arlt and Häusser, 2020;
Roome and Kuhn, 2020; Kim and Schnitzer, 2022). In vivo
investigations can grasp the complexity of living organisms
and are more clinically relevant than ex vivo ones, being
closer to reality and giving the chance to explore physiological
mechanisms underpinning behavior. On the other hand, ex vivo
experiments are advantageous as they allow greater control
of environmental conditions at all times, uncovering the role
of different elements in the network and how their activity
reverberates in the microcircuit, whose interactions are preserved
following tissue slicing, although this causes the loss of some
connections.

Taken together, data coming both from ex vivo and in vivo
investigations of microcircuit functioning can contribute to
validate the increasingly refined tools which are appearing
in the modeling field to not only reproduce single cells

properties but also deeply reconstruct microcircuits activations
[i.e., the Brain Scaffold Builder (Casali et al., 2019; De Schepper
et al., 2021)]. Overall, a combination of ex vivo, in vivo
and modeling approaches could answer open questions on
microcircuits secrets, getting closer to a multiscale understanding
of brain functions.
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