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Abstract7

Several inhibitory interneuron subtypes have been identified as critical in regulating sensory8

responses. However, the specific contribution of each interneuron subtype remains uncertain. In9

this work, we explore the contributions of cell-type specific activity and synaptic connections10

to dynamics of a spatially organized spiking neuron network. We find that the firing rates11

of the somatostatin (SOM) interneurons align closely with the level of network synchrony12

irrespective of the target of modulatory input. Further analysis reveals that inhibition from13

SOM to parvalbumin (PV) interneurons must be limited to allow gradual transitions from14

asynchrony to synchrony and that the strength of recurrent excitation onto SOM neurons15

determines the level of synchrony achievable in the network. Our results are consistent with16

recent experimental findings on cell-type specific manipulations. Overall, our results highlight17

common dynamic regimes achieved across modulations of different cell populations and identify18

SOM cells as the main driver of network synchrony.19

Introduction20

As animals navigate the environment, their nervous systems process and react to an ongoing bombardment21

of sensory information. Internal factors such as motivation, attention, expectations, and arousal strongly22

impact animals’ perception, behavior and decision-making [1, 2, 3, 4]. Inhibitory neurons play an essential23

role in modulating the information processing and communication in cerebral cortex by tuning cortical24

oscillations, regulating the time window in which external inputs elicit cortical responses, and modifying the25

response gain of their excitatory counterparts [5, 6, 7]. Inhibitory neurons, however, cannot be considered26

as a homogeneous population, but instead exhibit differences in morphology, connectivity, and biophysical27

properties [8, 9]. Differences in molecular markers distinguish three non-overlapping inhibitory interneuron28

subtypes: parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) expressing29

neurons. These interneuron subtypes are differentially targeted by neuromodulators and cortical feedback30

projections [9, 10, 11], and are thought to be involved in the modulation of neural population responses31

by brain state. Arousal and locomotion state of an animal have been shown to exert diverse influences on32

the firing rates of interneuron subtypes [12, 13, 14] and to strongly impact the synchrony level of neural33

population responses [15, 16]. However, the functional role of each interneuron subtype remains unclear.34

Advancements in optogenetic techniques enable the use of cell-type-specific stimulation and suppression35

to study the causal contributions to circuit dynamics by each cell type. Prior work demonstrated diverse36

effects on cortical firing rates and oscillations elicited by manipulating different target cell classes within37

cortical microcircuits [6, 10, 17, 18, 19, 20]. Stimulating PV neurons periodically enhances the oscillatory38
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power of the local field potential (LFP) over the gamma frequency range [21, 22]. This is consistent with39

previous theories where PV neurons are instrumental in generating gamma oscillations, partly due to their40

strong reciprocal connections with the excitatory neurons [23]. However, recent work suggests that SOM41

neurons are involved in oscillations in low gamma/beta frequency range (20-40 Hz), while suppressing42

PV neurons increases the spectral power of the LFP overall [18, 24]. Suppressing SOM neurons also43

reduces the coherence between distant neural ensembles [24], consistent with their broad integration of44

lateral excitatory inputs [25]. Stimulating VIP neurons increases the response gain of excitatory neurons,45

presumably through the disinhibitory pathway via SOM neurons [26]. Silencing VIP neurons reduces the46

sensitivity of excitatory neurons to stimulus context [27] and increases the detection threshold for small47

visual stimuli [28]. Despite the proliferative experimental findings, the network mechanisms underlying the48

observed changes in neural activity remain elusive, due to the intrinsic nonlinearity of the highly recurrently49

connected networks to which all of these cell types belong. Manipulation of one cell type leads to changes50

in the activity of the other cell types; however, experimenters typically observe the activity of all neurons51

indiscriminately or label one cell type at a time (but see [29, 30]). Therefore, computational models are52

needed to parse out the interactions between excitatory neurons and the three interneuron subtypes.53

Previous models that incorporate multiple interneuron subtypes mostly focus on modulations of firing54

rates and do not consider impacts on network synchrony or correlations in neural activity [31, 32, 33, 34, 35].55

Some models have suggested that PV and SOM neurons contribute to oscillations of different frequencies56

[36, 37]. However, these models are small networks or rate models and do not consider the spatial depen-57

dence of synaptic connections. In this work, we studied state modulation in spatially structured spiking58

neuron networks including multiple interneuron subtypes. Our past work has shown that such models can59

reproduce the irregular and weakly correlated neural population activity commonly observed in cortical60

recordings [38]. We applied modulatory input to neurons of each cell type and analyzed the resulting61

changes in firing rates and network synchrony. We found that the pattern of activity changes resulting62

from activation of excitatory (E) or PV neurons is distinct from that due to activation of SOM or VIP63

neurons. Strikingly, SOM firing rates closely aligned with levels of network synchrony across all modulation64

cases. We further identified that stronger SOM→E than SOM→PV inhibition is important for maintaining65

a weakly synchronized dynamical regime, and that the interaction between E and SOM neurons is essen-66

tial for enhancing network synchrony. Our work emphasizes the uniquely critical role of SOM neurons in67

regulating the dynamical state of cortical networks.68

Results69

We developed a spatially-extended network model that includes one E population and three distinct in-70

hibitory interneuron populations: PV, SOM, and VIP. Each neuron is modeled as a spiking exponential71

integrate-and-fire (EIF) unit [39]. The synaptic connection patterns among the four neuron populations72

are constrained by anatomical and physiological data from mouse visual cortex (Figure 1A) [40, 41]. In73

particular, we assume there are no reciprocal connections among SOM neurons or among VIP neurons;74

VIP neurons mainly inhibit SOM neurons, in what is believed to be an important disinhibitory pathway75

[26]; and feedforward inputs only target E and PV neurons [25]. Neurons are randomly distributed on a76

two-dimensional plane and synaptic connection probability between neurons decays with distance (Figure77

1B; Equation 5). The spatial structure of the network allows for rich spatiotemporal activity patterns,78

such as propagating waves and spatiotemporal chaos, with population statistics consistent with cortical79

recordings (Figure 1C, S2; Ref [38, 42]). Connections to and from the SOM cells have a larger spatial80
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footprint compared to other connections, which is thought to be involved in surround suppression in visual81

cortex [25, 43]. The synaptic timescales of inhibitory connections from SOM and VIP neurons are slower82

than that of connections from PV neurons, which is in turn slower than that of excitatory connections,83

constrained by physiological data from mouse visual cortex [44]. The network has a total of 50,000 neu-84

rons comprising 40,000 E, 4,000 PV, 4,000 SOM, and 2,000 VIP neurons, with the population size ratios85

following anatomical data from mouse cortex [45].86
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Figure 1: General model scheme and example dynamics. (A) Default network circuit diagram shows
excitatory connections in blue (lines with circles) and inhibitory connections (T-lines) in other population-
specific colors. (B) The model comprises one recurrent layer with one excitatory population and three
inhibitory populations connected as in (A) and a feedforward layer, modeled as independent Poisson units,
that provides excitatory input to E and PV neurons. Connection probability decreases with pairwise
distance, as is illustrated schematically for E cells here. (C) Three consecutive spike raster snapshots,
where a dot with a cell-type-specific color indicates that the neuron at spatial position (x, y) fired within
1 ms of the time stamp. In this example, local activity of E neurons (t0) recruits more activity of SOM
neurons at a later time point (t1), which in turn suppresses the activity of all other neuron populations
(t2).

Network transitions through three dynamical states under variation of cell-type specific87

inputs88

To begin our investigation, we apply a static input to each population in the model, one at a time, and89

examine network dynamics across a range of input levels. We find that across all input targets, the behavior90

of the network transitions through the same three distinct activity patterns, which we call the subcircuit91

asynchronous (SA), weakly synchronous (WS) and strongly synchronous (SS) states (Figure 2). We first92

define each state and then examine the effects of input modulation separately for each population. In the SA93

state (Figure 2Ai-iv; Supplemental video 1), the network behaves essentially as a two population subcircuit94

composed of interacting E and PV neurons, while SOM and VIP activity is nearly, if not completely, silent.95

The E population is the only excitatory source of input to SOM and VIP. In the SA state, E neurons are96

unable to consistently drive SOM and VIP neurons over their respective spiking thresholds (Figure 2Aii-97

iii). E neurons exhibit little synchronization or organized activity, as indicated by the near-zero levels of98

average spike count correlations between E neuron pairs (Figure 2Aiv). The average spike train coherence99

among E or among PV neurons is also low with a peak above 25 Hz (Figure 2Av).100

Within the WS state, all four populations actively fire (Figure 2Bi-iv). PV neurons exhibit the highest101

firing rates, with the other three populations moderately active (Figure 2Bi-iii). The spiking activity of102

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2024. ; https://doi.org/10.1101/2024.08.23.609417doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609417
http://creativecommons.org/licenses/by-nc-nd/4.0/


A CBi

ii

iii

iv

i

ii

iii

iv

i

ii

iii

iv

v v v

N
eu

ro
n

E
PV
SOM
VIP

Subcircuit Asynchonous (SA)

4250 4625 5000
Time (ms)

0

25

R
at

e 
(H

z)

E PV SOM VIP
0

20

R
at

e 
(H

z)

0 0.1 0.2 0.3 0.4 0.5
Pairwise Distance (a.u.)

0

0.5

1

Sp
ik

e 
C

ou
nt

 C
or

r

E-E
PV-PV
SOM-SOM
VIP-VIP

0 25 50
frequency (Hz)

0

0.01

0.02

C
oh

er
en

ce E-E
PV-PV
SOM-SOM
VIP-VIP

Weakly Synchronous (WS)

4250 4625 5000
Time (ms)

0

80

E PV SOM VIP
0

15

0 0.1 0.2 0.3 0.4 0.5
Pairwise Distance (a.u.)

0

0.5

1

0 25 50
frequency (Hz)

0

0.3

0.6

Strongly Synchronous (SS)

4250 4625 5000
Time (ms)

0

125

E PV SOM VIP
0

20

0 0.1 0.2 0.3 0.4 0.5
Pairwise Distance (a.u.)

0

0.5

1

0 25 50
frequency (Hz)

0

0.5

1

3.9

18

0 0.29
4.5

14

5.7 3.8 4.5
10

17
11

Figure 2: Three representative network states, SA state (Ai-v), WS state (Bi-v) and SS state (Ci-v). Row
(i): Spike raster of a subsample of each of the four populations: 400 E (blue), 40 PV (red), 40 SOM
(green), and 20 VIP (purple) neurons. The number of neurons of each neuron population shown in the
rasters is proportional to the population size. Row (ii): Population-averaged firing rates over the same
time course as the spike rasters in row (i). Row (iii): Mean firing rates averaged over neurons and over
time for each population. The number on top of each bar is the value of the mean firing rate. Error bars
are standard error of mean (SEM). Row (iv): Average spike count correlations (see Methods) as a function
of distance for neuron pairs within each population. Row (v): Average pairwise coherence of spike trains
(see Methods) versus frequency for neuron pairs within each population. The asterisks mark the maximum
coherence over non-zero frequencies. Note the different y-axis scales across panels.
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E and PV neurons is largely asynchronous, interspersed with brief coordinated periods of silence (Figure103

2Bi; Supplemental video 2). The silent periods in E and PV are preceded by synchronous bouts of rapid104

firing in SOM and VIP neurons (Figure 2Bi,Bii). The spike count correlations and coherence of SOM-105

SOM and VIP-VIP neuron pairs are larger than those of E-E and PV-PV neuron pairs (Figure 2Biv-v),106

consistent with experimental observations in mouse cortex [44, 46]. The correlation between SOM neuron107

pairs persists over larger distances than those of other populations, due to the larger spatial footprints of108

SOM neuron connections, which is also consistent with cortical recordings [46].109

The SS state exhibits highly synchronized and oscillatory activity in all populations (Figure 2Ci-iv).110

Patterns of firing initially begin with a low number of E and PV spikes, which recruit many more E and111

PV neurons to fire, thereby activating a large portion of SOM and VIP neurons (Supplemental video 3).112

The elevated firing rates of all three inhibitory populations (Figure 2Cii-iii) supply a significant amount of113

inhibitory current, ultimately silencing all neurons until enough feedforward input accumulates to excite114

E and PV neurons and to cause the cycle to repeat (Figure 2Ci). Pairwise spike count correlations are115

relatively large within each population and only slightly decrease with distance (Figure 2Civ). The average116

coherence of each neuron population shows a dominant peak close to 1 at around 20 Hz (Figure 2Cv). Since117

spike count correlations depend on the choice of time window for calculating spike counts, the correlation118

value can be misleadingly low when the time window coincides with the multiples of the oscillation period.119

For this reason, we hereafter use the maximum coherence to measure the level of network synchrony.120

Comparing the effects of varying a static input current applied to different neuron populations reveals121

that external inputs to different targets modulate population dynamics across similar states. Specifically,122

we see that activating E neurons increases coherence in all populations (Figure 3A). As input to E increases,123

network activity transitions from the SA to the WS to the SS state. The transition is marked by non-124

monotonic changes in firing rates in E and PV populations (Figure 3Ai). The counterintuitive decrease of125

firing rate with increasing external input to E is due to the enhanced inhibition from SOM neurons. On the126

other hand, the firing rates of SOM neurons continue to rise despite reduced mean excitation from E due127

to the large increase in the temporal variance of the synaptic input currents they receive (Supplemental128

Figure S1Ai-ii).129

In contrast, we see that increasing the external input to PV neurons results in a reverse order of state130

transitions compared to the case with input to E (Figure 3B). Activating PV neurons decreases coherence131

in population spiking, moving the network from the SS to the WS to the SA state. The firing rates of E132

and PV neurons again exhibit non-monotonic changes, as in the case with input to E neurons (Figure 3A).133

In the WS state, driving PV leads to increases in E firing rate because of the reduction in the inhibition134

from SOM neurons. The firing rates of SOM drop in the presence of increases in mean excitation due to135

the large reduction in the variance of input current (Supplemental Figure S1Bi-ii).136

Driving SOM neurons increases population coherence and moves the network from the SA to the WS137

to the SS state, similar to the effects observed when driving E neurons (Figure 3C). However, the firing138

rates of E and PV neurons monotonically decrease as SOM neurons become more active (Figure 3Ci), in139

contrast to the non-monotonic changes that result when driving E or PV neurons (Figure 3Ai,Bi). VIP140

neurons become suppressed when SOM neurons are sufficiently activated due to inhibition from SOM to141

VIP (Figure 3Ci). In contrast, VIP and SOM firing rates co-vary in the same direction when input is142

applied to E or PV neurons (Figure 3Ai,Bi).143

Lastly, varying the external input to VIP neurons yields similar changes to those arising with PV input144

variations, but is unable to induce all three of the network states that we have identified (Figure 3D). When145

input to VIP is strong, inhibition from VIP to SOM shuts down SOM activity and firing rates of E and PV146
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neurons increase slightly due to disinhibition. With SOM silenced and VIP having no synaptic connections147

to PV and E neurons, the network behaves asynchronously and effectively like a two population E-PV148

subcircuit, thus adopting the SA state. When input to VIP neurons is reduced, the drop in inhibition from149

VIP to SOM means that SOM starts to fire and VIP firing decreases. The network transitions from the150

SA to the WS state, and stays in the WS state once VIP neurons are fully suppressed (Figure 3Di, ii).151

Therefore, modulating VIP neurons does not lead the system to the pathological SS state, which makes the152

VIP neurons a ideal candidate for moderate state modulations. In addition, we observe that the frequency153

of peak coherence within the E population transitions (Figure 3Diii) as a result of changes in static input154

to VIP neurons. Activating VIP results in peak frequencies occurring at around 30 Hz, but as VIP reduces155

its activity due to reduced input and SOM begins to fire, the peak frequency shifts to approximately 20156

Hz, with higher peak levels of E coherence.157

We find that the spatial structure in the network is important for gradual state transitions, consistent158

with the observations in our previous work [38]. In networks with no spatial structure, meaning that the159

connection probability between two neurons does not depend on distance, we observe sharp transitions160

between SA and SS states as external input varies (Supplemental Figure S2Ai-iv). Therefore, the spatial161

structure of the network contributes to maintaining a WS state over a range of input values.162

In all input cases, we observe similar network state for a given input in multiple simulation runs with163

random initial conditions. We also did not observe bistability when comparing network activity with164

gradually changing (increasing or decreasing) input (Supplemental Figures S7A,B). Based on the absence165

of hysteresis effects, we infer that the transition from the SA to the WS state likely occurs through a166

supercritical Hopf bifurcation.167

Firing rates of SOM neurons co-vary with network synchrony168

To directly compare how firing rates and network synchrony change together as input to each neuron169

population varies, we summarize the results of four input cases from the previous section with phase plots170

of the maximum coherence of the E population versus the firing rate of each neuron population (Figure171

4). On these phase plots, each trajectory corresponds to a path of network state transitions as input to172

a specific neuron population varies. The arrows represent the directions of transition as input increases173

value. We use the maximum coherence of the E population to represent the overall network synchrony174

level for two reasons: first, E neurons make up the majority of the total neuron population (80%) and are175

recorded most commonly in experimental research and secondly, the coherence of all four populations tend176

to vary together, other than some exceptional results in VIP neurons (Figure 3A-Dii).177

When plotting E population coherence versus E population firing rates, we find that for the cases of178

input to E or PV neurons, the network evolves along a common path, with opposite directions of traversal179

resulting from similar changes in static input levels (Figure 4A). Similarly, we obtain a common path for180

the cases of input to SOM or VIP neurons, but this common path differs from that observed with input181

to E or PV neurons. Previously we found that input to VIP never resulted in SS activity (Figure 4Dii),182

which explains why the VIP curve (purple) ends at a relatively low coherence value. Within the common183

path shared by E and PV stimulation, there exist three regimes: a lower branch where coherence is low (∼184

0) and input changes only affect firing rate (the changing markers on the x-axis), an upper branch where185

coherence remains high (> 0.5) over a range of high firing rates, and a transition between the low and186

high coherence plateaus, across which coherence changes significantly while firing rates remain relatively187

unchanged. These regimes align with the network activity: the lower branch is the SA state, the upper188

branch is the SS state, and the transition is the WS state. What is especially remarkable is the precise189
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Figure 4: Modulation patterns of population firing rates and E population coherence. Levels of external
input are indicated by individual circular markers, where decreasing marker size signifies decreased static
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overlap of pairs of paths, along with the alignment of all paths during the transition region (i.e. the WS190

state), which suggests that the network structure strongly constrains network dynamics. The modulation191

patterns in the full network are distinct from those in the isolated E-PV subcircuit, where firing rate and192

coherence levels tend to vary in the same direction and monotonically as input level varies (Supplemental193

Figure S3).194

Similarly, curves of E coherence versus PV firing rate overlap significantly for E and PV input cases,195

as do the curves for SOM and VIP input cases (Figure 4B). When comparing the E population coherence196

and SOM population rates (Figure 4C), however, the paths corresponding to application of static input to197

all four target populations largely overlap, no longer showing a distinction across input targets (aside from198

the direction of modulation across states as indicated by changes in marker sizes). Lastly, VIP firing rates199

compared to E coherence for all input cases (Figure 4D) features the dichotomy of trajectories generated200

by inputs to E and PV versus paths from inputs to SOM and VIP (as also observed in Figure 4A, B).201

Overall, we see that applying excitatory input to E or SOM neurons or inhibitory input to PV or VIP202

neurons tends to increase coherence, although this change is accompanied by distinct changes in firing rates203

for most cell populations. Comparing SOM population rates with the coherence within the E population,204

however, reveals that the two quantities increase together, in a stereotyped way, in all input cases (Figure205

4C). This consistency between E coherence and SOM activity across all input targets leads us to postulate206

that SOM activity plays a central role in dictating the level of network synchrony.207

Strong SOM inhibition to PV drives synchrony208

We next investigate how synaptic connection strengths in the network shape the modulation patterns of209

network states induced by cell-type specific inputs. Building on our prior observation of the alignment of210

SOM firing rate with network synchrony, we focus on the strengths of connections projecting onto or from211

SOM neurons, specifically SOM→E, SOM→PV, and E→SOM (next section) synapses. Since the influence212

of VIP’s inhibitory outputs is restricted to SOM neurons, varying the connection strengths between VIP213

and SOM neurons has little effect on the input-induced transition patterns (Supplemental Figures S4 and214

S5).215

We find that SOM→E connections are important for generating the non-monotonic changes in E and216

PV firing rates along the transition paths induced by varying input to E or PV neurons (Figures 3Ai,217
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Figure 5: Relative strengths of SOM→E and SOM→PV connections shape modulation patterns of network
state. Static input is applied to either PV neurons (Ai, ii) or SOM neurons (Bi, ii). Network state at each
input level is represented by E firing rate and E maximum coherence (with the same convention as in
Figure 4A). Increasing marker sizes correspond to increasing static input to the target population. (i)
SOM inhibition to PV is removed (JSOM→PV = 0) and increases of JSOM→E correspond to darker curves.
(ii) SOM inhibition to E is fixed (JSOM→E = −120) and increases of JSOM→PV correspond to darker
curves. Default values of connections strengths are JSOM→E = −120 and JSOM→PV = −60.
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Bi, and 4A). When we eliminate SOM→PV connections (i.e., JSOM→PV = 0), modulation patterns in218

network activity states (Figures 5Ai, Bi) remain qualitatively the same as in the network’s default setting219

(Figures 3Bi, and 4Ai, Bi; more combinations of SOM→E and SOM→PV connection strengths are in220

Supplementary figure S6). Stronger SOM→E connections lead to a larger range of firing rates over the221

transition from the SA to the SS state through the middle branch, corresponding to the WS state, where222

rate and coherence vary in opposite directions (Figure 5Ai). The changes in state in response to external223

input variations are gradual in networks with different SOM→E connection strengths (Figure 5Ai, Bi).224

This points to a degree of resilience in the network’s responsiveness to external input in the absence of225

SOM inhibition to PV.226

This resilience is disrupted when the synaptic strength of SOM→PV dominates the synaptic strength of227

SOM→E, which results in an increased sensitivity of the network to changes in external input. Specifically,228

we consistently observe that when SOM inhibition to PV is sufficiently large compared to SOM inhibition229

to E, more pronounced and abrupt transitions from the SA to the SS state occur (e.g., the cases in Figure230

5Aii with JSOM→PV = −420 and in Figure 5Bii with JSOM→PV = −240,−420; Supplemental Figure S6).231

That is, dominance of SOM→PV inhibition over SOM→E inhibition increases network sensitivity to input232

and reduces or eliminates the range of input levels that result in the transitional activity dynamics, the WS233

state. Indeed, in the transition through the WS state, as SOM firing intensifies (Figure 3i), the inhibition234

from SOM to E and PV neurons will tend to reduce their firing rates. Yet, the drop in PV firing can235

disinhibit E. If this disinhibitory effect is dominant due to sufficiently strong JSOM→PV , then E firing can236

increase rather than decreasing, resulting in a rapid transition through or elimination of the WS state. In237

this case, the firing rate and maximum coherence of E neurons tend to vary in the same direction (Figure238

5ii, Supplemental Figure S6). Comparing results from increasing and decreasing incremental changes in239

input levels, we observe that the abrupt transition between SA and SS states happens at different input240

values depending on the direction of change (Supplemental Figure S7). This hysteresis effect suggests that241

stronger SOM inhibition to PV neurons changes the criticality of the Hopf bifurcation at which SA stability242

is lost, from supercritical to subcritical.243

These results imply that stronger inhibition from SOM→E neurons than that from SOM→PV neurons244

is necessary to observe activity consistent with the WS state and underscores the pivotal influence of SOM245

inhibition on the network’s dynamical transitions.246

Dynamic interactions between E and SOM neurons are necessary for SOM-induced247

network synchrony248

In this section, we investigate the impacts of E→SOM connections on SOM-induced network synchrony.249

What might drive the high coherence among SOM neurons and the rest of the newtork? Since SOM250

neurons do not connect to other SOM neurons and do not receive feedforward input, the high correlation251

among SOM neurons is driven by the recurrent input they receive from within the network. There are only252

two sources of recurrent inputs to SOM neurons, the excitation from E neurons and the inhibition from VIP253

neurons. To investigate the importance of E→SOM connections, we removed the E→SOM connections,254

and replaced this recurrent excitation with an external input that mimicked the statistics of the recurrent255

excitation.256

First, we replaced recurrent excitation with colored noise that was independent for each SOM neuron.257

The colored noise was constructed as an Ornstein–Uhlenbeck (OU-) process that had equal mean and258

variance to the excitatory currents SOM neurons received on average in a intact default network with259

no static input (referred to as baseline; mean = 0.65 and variance = 0.12). In this decoupled network,260
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the coherence of the network remains low and decreases as we apply static input to SOM neurons, in261

addition to the noisy input, to increase their firing rates (Figure 6A). This result is opposite to the large262

increase in coherence with SOM rate that we observed in the default network (Figure 4A,C). The firing263

rate of E neurons is also suppressed much more abruptly compared to that in the default network as264

we increase input to SOM neurons (Supplemental Figure S8 compared to Figure 3C). This suggests that265

without E→SOM connections, SOM activity tends to reduce network synchrony mainly by reducing the266

E firing rate. The inhibition from VIP alone is not able to correlate SOM neurons. Consistently, varying267

VIP→SOM connections has little effect on network coherence (Supplemental Figure S5).268

Next, we consider the possibility that correlated excitatory inputs are able to synchronize SOM neu-269

rons, which in turn synchronize the network as a whole. Because each SOM neuron receives input from a270

large number of E neurons (∼1200 connections), very weak correlation in E spike trains can result in large271

correlation in the pooled excitatory current, as has been demonstrated theoretically [47]. The correlated272

excitatory current to SOM neurons cannot be dynamically canceled by inhibition due to the lack of in-273

hibitory connections among SOM neurons, which is distinct from the E-PV subcircuit where a balance of274

excitation and inhibition can be dynamically achieved [48, 49]. Therefore, excitatory input alone is able to275

drive correlated activity in SOM neurons. To demonstrate this, we record SOM spike trains from networks276

where SOM neurons receive excitation from E neurons but do not provide feedback inhibition to E and277

PV (Figure 6Bi, right column). Static input is applied to SOM neurons to modulate their firing rate. We278

then replay the recorded SOM spikes in networks where we remove E→SOM connections but allow SOM279

neurons to impact the rest of the network (Figure 6Bi, left column). In this way, E and SOM neurons280

are dynamically uncoupled, but SOM neurons receive realistic correlated excitation instead of simplified281

independent noise as in Figure 6A. We find that as input to SOM neurons increases, firing rate of SOM282

rises rapidly and their coherence level reaches to about 0.3 (Figure 6Bi, right column). This is consistent283

with the previous theoretical result that correlation between uncoupled neurons increases with firing rates284

[50]. The increased coherence in SOM spiking activity in turn induces synchrony among E neurons until285

E neurons are fully suppressed by the inhibition from SOM (Figure 6Bi, left column). Therefore, the286

correlated excitatory current to SOM neurons is able to drive the network into a weak synchrony regime287

(coherence around 0.15), but the peak coherence is much lower than that in the default network with288

E→SOM connections (Figure 6Bii).289

Lastly, as we gradually restore E→ SOM connections (JE→SOM > 0) to allow for dynamic interaction290

between E and SOM neurons, we observe a positive relationship between the increases in coherence and291

increases in connection strength (Figure 6C). These results demonstrate that mimicking E→SOM input,292

using either colored noise with matched mean and variance (Figure 6A) or recorded SOM spikes from293

a decoupled network (Figure 6Bi-ii), is not sufficient to modulate activity through the three identified294

network states; rather, it is the dynamic interaction between E and SOM neurons that amplifies the weak295

correlation in the E-PV subcircuit and drives the network to strong synchrony.296

Heterogeneous external inputs reduce SOM-induced network synchrony297

In our previous set of results, adding noise to SOM neurons only slightly reduced the coherence of the298

network when E firing rate is small (Figure 6C, compare dark green with grey curves). This observation299

suggests that the network can still readily transition into a highly coherent regime even in the presence300

of noisy inputs that vary in time. To investigate the impact of noise in the external input, we applied301

independent OU input, with equal mean and variance, to each neuron in the SOM population (see Meth-302

ods). Increasing the variance of the OU input only weakly impacted the coherence of the network (Figure303
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Figure 6: E→SOM connections are critical for SOM-induced network synchrony. (A) Removal of E→SOM
connections eliminates coherence, despite the presence of stochastic input (OU process, see Methods) with
mean and variance matched those of the excitatory currents to SOM neurons in the intact default network
with no static input (mean = 0.65 and variance = 0.12). Larger dots correspond to stronger static inputs
to SOM. (Bi-ii) E and SOM firing properties in networks where they are dynamically uncoupled, but SOM
neurons receive and provide realistically correlated inputs and outputs, respectively. (Bi) Left column:
Firing rate (top) and maximum coherence (bottom) of E neurons in networks with no E→SOM connection
and where SOM spikes were replaced with those recorded from the network on the right. Right column:
Firing rate (top) and maximum coherence (bottom) of SOM neurons in networks with intact E→SOM but
no SOM→E and SOM→PV connections. Static input was applied to SOM neurons in the network on the
right. (Bii) Modulation pattern of the firing rate and maximum coherence of E neurons from the network
in Bi left (green) and from the default network (grey) with changes in static input to SOM neurons. (C)
Increasing E→SOM synaptic strength increases the maximum coherence that can be achieved by varying
static input to SOM neurons. SOM neurons receive the same OU noise as in panel A as JE→SOM values
are varied. Hence the lightest green curve (JE→SOM=0) is the same as that in panel A. As in panel Bii,
the grey curve shows coherence for the default network with static input for comparison (same data as in
Figure 4A green curve).
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Figure 7: Comparison of two types of external input to SOM neurons. (A) Input to each neuron is modeled
as an independent Ornstein–Uhlenbeck (OU-) process with the same mean and variance. (B) Input to
each neuron is static in time but the strength is sampled independently from a normal distribution with a
specified variance. The case of static input (variance equal to 0) is plotted in grey for comparison in each
case (same as the grey curves in Figure 6).

7A). We next compared this outcome with the results of applying a different type of applied noise, het-304

erogeneous or quenched noise, which is constant in time but has heterogeneous strengths, sampled from a305

normal distribution of a given variance, across target neurons (see Methods). Implementing the OU input306

and the quenched input allows us to compare the role of time-varying noise versus spatially-varying noise307

in terms of influence on coherence.308

Interestingly, we find that quenched input to SOM neurons has a much larger impact on network309

synchrony than OU input with the same variance (Figure 7). With quenched input, we observe a substantial310

decrease in E coherence across most firing rates (Figure 7B). Across all cases of external quenched or OU311

inputs, the average population rates evolve similarly to the default network with homogeneous static input312

as input strength is varied (Supplemental Figures S9, S10). Firing rates change more gradually with313

increasing variance in the input, especially in the case of quenched input (Supplemental Figure S10). One314

difference across input types is that SOM is able to suppress E activity at lower values of quenched input315

than it can for static input. Overall, these results show that the transition to a synchronized network state316

resulting from enhancing the activation of SOM neurons is robust against time-varying noisy input that is317

of similar mean strength across the network, whereas a noise signal that has a spatially-varying strength318

is more effective at reducing the network synchrony level.319

Discussion320

In this study, using a spatially-structured spiking model of a canonical neural circuit comprising E, SOM,321

PV and VIP neurons, we demonstrate that SOM neurons are critical for synchronizing neural population322

activity. As external drive is varied to any target population, the firing rate of SOM neurons is highly323

predictive of the coherence level that emerges in the E population (Figure 4C). Without SOM neurons,324

network synchrony varies much more gradually with the level of input applied to the E-PV subcircuit325

(Figure S3). The spatial structure of the network is necessary for the gradual transition from asynchrony326

to strong synchrony via a weak synchrony state, because it allows for the richer spatiotemporal dynamics327

associated with this transitional regime, consistent with our past work ([38]; Figure S2). In addition, we328

find that when SOM→PV inhibition is strong, the smooth transition through the weak synchrony state is329

disrupted and the network becomes highly sensitive to input changes (Figure 5). We further show that the330

dynamic interaction between E and SOM neurons is a necessary factor in the emergence of SOM-induced331
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network synchrony, as a network in which E and SOM neurons are dynamically uncoupled remains in the332

asynchronous state even when SOM firing rate is high (Figure 6).333

Our model reproduces previous experimental findings where optogenetic inactivation of SOM neurons334

led to a reduction in the oscillatory power of the LFP around 30 Hz while inactivation of PV neurons335

did the opposite (Figure 3; [18, 24]). Consistent with these experiments [18, 24], SOM neurons contribute336

to oscillations of lower frequency (∼20 Hz) and PV neurons contribute to oscillations of higher frequency337

(∼35 Hz) in our model, partly due the differences in their synaptic decay time constants (8 ms for PV338

and 20 ms for SOM; [44]). We identified that the firing rate of SOM neurons is tightly correlated with339

the overall network synchrony level (Figure 4C), which is also consistent with the previous experimental340

finding that the average activity of SOM neurons co-varies linearly with the gamma power of LFP (20-40341

Hz) across multiple visual stimulus conditions (Figure S2 in [17]).342

We find that the firing rate and coherence of E neurons can vary in opposite directions through the343

weak synchrony regime in networks with three interneuron subtypes (Figure 4A). In contrast, rates and344

coherence are tethered to vary in the same direction in the E-PV subcricuit (Figure S3). SOM neurons345

are responsible for the opposite relationship between rate and coherence of E neurons; when SOM neurons346

are more active, they suppress E neurons and increase network synchrony, and when SOM neurons are347

suppressed, E neurons firing rate increases and network synchrony is reduced. The opposite directionality348

of changes in E firing rates versus network synchrony has been observed with changes in spatial attention349

[51] and arousal state [15, 52]. The simultaneous increase in firing rate and decrease in synchrony can350

presumably enhance the signal-to-noise ratio of neural representations of stimuli [53]. Our results suggest351

that incorporating multiple interneuron subtypes supports the robust emergence of this enhanced coding352

state.353

Our model predicts that a stronger or comparable magnitude of inhibition from SOM to E neurons354

compared to that from SOM to PV neurons is important for maintaining the weak synchrony regime355

(Figure 5, S6). When SOM to PV inhibition is much larger, the network shows abrupt transitions from the356

asynchronous to the strongly synchronous regime. This sensitivity arises because the positive feedback in357

the SOM→PV→E→SOM disinbitory loop can lead to instability. Our result is consistent with a previous358

model which suggests that SOM inhibition to PV neurons can result in a loss of stability [54]. The presence359

of stronger SOM inhibition onto E compared to PV neurons is in agreement with anatomical findings in360

cortex [40, 41, 55]. On the other hand, recent experimental work suggests that activating SOM neurons361

enhances the reliability of E neuron responses to natural movie stimuli by suppressing PV neurons [29].362

The discrepancy between our model and this work could be due to the different temporal patterns of363

stimulation across the two. In our model, we only consider sustained application of external input, to364

model slow processes like the variation of brain state, while in these experiments [29], pulse stimulation365

was used. Further analysis is needed to investigate the dynamic responses of our model to brief, cell-type366

specific stimulation.367

Our results also reveal an advantage of targeting VIP neurons to modulate a network’s dynamical368

state. That is, targeting VIP neurons flexibly transitions the network between asynchronous and weakly369

synchronous regimes without pushing the network to pathologically strong oscillations (Figure 3). Anatom-370

ically, VIP neurons reside mostly in superficial layers in cortex and receive mostly long-range projections371

from other brain regions [9]. Therefore, they are hypothesized to be the main locus of feedback connec-372

tions and neuromodulator release. VIP neurons also have been shown to respond strongly to locomotion373

signals [12], novel stimuli and unexpected events [56, 57]. Nevertheless, VIP neurons mainly act through374

SOM neurons to regulate the E-PV subcircuit. Therefore, it is the activity of SOM neurons that is mostly375
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reflective of network state in our model.376

Our model mainly generates fluctuations with spectral power concentrated around 15-40 Hz. However,377

past work has shown that activation of SOM neurons reduces low-frequency power (<10 Hz) of LFP in378

addition to increasing high-frequency power [10]. Arousal state also tends to have opposing impacts on the379

low- versus high-frequency oscillatory power of LFP; high arousal state is associated with reduced power380

in the low-frequency band and increased power in the high-frequency band [15, 58, 52]. The lack of slow381

time-scale fluctuations in our model means that the model cannot fully account for the impacts of brain382

state on population activity. Future work is needed to extend the current model to consider various slow383

time variables, such as spike frequency adaption and slow synaptic receptors, that are omitted from the384

present work.385

The brain features a vast diversity of neuronal types, each of which has unique connectivity patterns,386

expression of neuromodulator receptors and electrophysiological properties. Different cell types coordinate387

their activity to regulate neural population dynamics for flexible computations. Our model provides new388

insights and predictions about the different functions that each primary interneuron subtype may serve389

in modulating the dynamical state of cortex, highlighting the importance of E-SOM interactions and the390

relative strengths of SOM inputs to E versus PV neurons. Altogether, our results emphasize a unique role391

of SOM neurons in controlling network synchrony.392
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Methods393

Spiking neuron network model394

The model network consists of a single recurrent layer and a feedforward input layer (Fig. 1B). The395

feedforward layer (population X) is composed of 2,500 (NX) excitatory neurons modeled as independent396

Poisson processes with a uniform rate of 10 Hz. The recurrent layer contains 50,000 neurons (N) divided397

into four cell population types, Ne = 40, 000 E, Np = 4, 000 PV, Ns = 4, 000 SOM, and Nv = 2, 000398

VIP neurons. The population size ratios follow anatomical data from mouse cortex [45]. The synaptic399

connection patterns among the four neuron populations are constrained by anatomical and physiological400

data from mouse visual cortex (Figure 1A; [40, 41, 25]). In particular, we assume there are no reciprocal401

connections among SOM neurons or among VIP neurons; VIP neurons only inhibit SOM neurons; and402

only E and PV neurons receive input from the feedforward layer (see Model parameters). Most of model403

parameters are similar to those in our previous work [38] except for some changes to incorporate different404

interneuron subtypes.405

Each neuron in the recurrent layer is modeled as an exponential integrate-and-fire (EIF) neuron with406

membrane potential defined as:407

Cm

dV α
j

dt
= −gL

(
V α
j − EL

)
+ gL∆T e

(V α
j −VT )/∆T + Iαj (t), (1)

where neuron j is a member of the α population, α ∈ {e, p, s, v}. When V α
j (t) exceeds a threshold Vth,408

the neuron spikes and the membrane potential is held at Vth for a refractory period τref and then reset409

to a lower potential value, Vre (see Model Parameters). All membrane potentials are bounded below by410

Vlb = −100 mV. The total current to neuron j in population α is411

Iαj (t)

Cm
=

NX∑
k=1

JαX
jk√
N

∑
n

ηX(t− tX,k
n ) +

∑
β={e,p,s,v}

Nβ∑
k=1

Jαβ
jk√
N

∑
n

ηβ(t− tβkn ) + µα + xj(t), (2)

where n indexes the spikes fired by the presynaptic neurons, Jαβ is the recurrent synaptic strength from412

population β to population α (which may be 0 in some cases), JαX is the synaptic strength from the413

feedforward layer to population α (see Model Parameters), µα is a constant external input current and414

xj(t) is input noise (Eq. 6). Note that the strength of each synaptic connection is scaled by 1/
√
N . In415

equation (2), the postsynaptic current terms are defined as:416

ηβ(t) =
1

τβd
− τβr

{
e−t/τβd − e−t/τβr , t ≥ 0

0, t < 0
, (3)

where τβd
and τβr (see Model Parameters) are the synaptic decay and rise time constants for population417

β. The synaptic timescales of inhibitory connections from SOM and VIP neurons are slower than that of418

connections from PV neurons, which is in turn slower than that of excitatory connections, constrained by419

physiological data from mouse visual cortex [44].420

Neurons are uniformly distributed on a unit square, Γ = [0, 1] × [0, 1]. The connection probability421

between a pair of neurons with coordinates x = (x1, x2) and y = (y1, y2), respectively, depends on the422

populations to which the neurons belong and the distance between the two neurons as423

pαβ(x,y) = p̄αβg(x1 − y1;αβ)g(x2 − y2;αβ), (4)
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where p̄αβ is the mean probability of connections from population β to population α and g(x;σ) is a424

wrapped Gaussian distribution:425

g(x;σ) =
1√
2πσ

∞∑
k=−∞

e−(x+k)2/(2σ2) (5)

with projection width σ (see Model Parameters). Connections to and from the SOM cells have a larger426

spatial footprint compared to other connections, based on findings from mouse visual and auditory cortex427

[25, 43]. A presynaptic neuron is allowed to make more than one synaptic connection to a single postsynap-428

tic neuron. The number of synaptic projections, or out-degree, Kαβ, from population α to population β is429

fixed for all neurons in population α, and indices of postsynaptic neurons are selected randomly according430

to the connection probability in Eq. 4.431

For many of our simulations, the external input, µα, was varied between -1.0 and 1.0 with step size 0.1.

Input noise, xj(t), was modeled as an independent Ornstein-Uhlenbeck (OU) process (Figures 6, 7):

τEd
dxj =(µn − xj)dt+ σndW, (6)

where W is a Wiener process, and the time constant of the OU process was chosen to be the same as the432

decay time constant of the excitatory synaptic current, τEd
. The mean of xj(t) is µn and the variance is433

σ2
n/(2τEd

). In simulations where we replaced E→SOM connections with an OU process (Figure 6), we set434

µn = 0.65 and σn = 1.1 to match the mean (0.65) and variance (0.12) of the excitatory current from E435

to SOM neurons in default networks without external input. In simulations with quenched input (Figure436

7B), the constant external input, µα
j , to neuron j from population α is sampled from a normal distribution437

with mean µα and standard deviation ∆µ.438

The cellular parameters of the EIF model for each cell type and all network parameters are summarized439

in the Model Parameters section. The differential equations (1) and (2) were solved using a forward Euler440

method with a timestep of 0.05 ms. All simulations were performed on the CNBC Cluster at the Carnegie441

Mellon University. All simulations were written in a combination of C and MATLAB R2021b (9.11),442

MathWorks.443

Model Parameters444

The following tables specify the parameter values used in our simulations. As above, the symbol X denotes445

the feedforward connections.446

Synaptic time constants

E PV SOM VIP X

τd (ms) 5 8 20 40 5
τr (ms) 1 1 1 1 1

Synaptic connection strengths, Jαβ

from (β)
E PV SOM VIP X

E 30 -90 -120 0 120

to (α)
PV 40 -150 -60 0 250
SOM 27 0 0 -10 0
VIP 72 0 -10 0 0
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Mean synaptic connection probability, p̄αβ

from (β)
E PV SOM VIP X

E 0.01 0.04 0.03 0 0.1

to (α)
PV 0.03 0.04 0.03 0 0.05
SOM 0.03 0 0 0.1 0
VIP 0.01 0 0.1 0 0

Number of postsynaptic connections, Kαβ

from (β)
E PV SOM VIP X

E 400 1600 1200 0 4000

to (α)
PV 120 160 120 0 200
SOM 120 0 0 400 0
VIP 20 0 200 0 0

Connection widths, σαβ

from (β)
E PV SOM VIP X

E 0.1 0.1 0.2 0 0.1

to (α)
PV 0.1 0.1 0.2 0 0.1
SOM 0.2 0 0 0.2 0
VIP 0.1 0 0.2 0 0

EIF Parameters

E PV SOM VIP

τm = Cm
gL

(ms) 15 10 10 10

τref (ms) 1.5 0.5 1.5 1.5
Vlb (mV) -100 -100 -100 -100
Vth (mV) -10 -10 -10 -10
∆T (mV) 2 0.5 2 2
VT (mV) -50 -50 -50 -50
Vre (mV) -65 -65 -65 -65
EL (mV) -60 -60 -60 -60

Quantification and Statistical Analysis447

Spike Count Correlations Spike counts were computed using a sliding window of 100 ms with a step448

size of 1 ms. Pearson correlation coefficients were computed for all neuron pairs as a function of distance449

(Figure 2iv), except that neurons with rates less than 1 Hz were excluded from correlation calculations.450

The membrane potential of each neuron was randomly initialized for each simulation, and connectivity451

matrices were regenerated for each input condition. A total of 5 simulations of 15 seconds each were452

performed for each input condition. The first 500 ms of each simulation was excluded from the analysis.453

Coherence Wemeasured the average pairwise coherence within each cell type population as an indication454

of network synchrony across simulation conditions. Spike trains were first partitioned into 1 ms time bins455
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and these were collected into 1 second time windows with 0.5 second overlap. Mean firing rate of each456

sampled neuron was subtracted. Power spectral density, Si, of neuron i, and cross spectral density, Sij ,457

between neuron i and neuron j, were calculated using the fast Fourier transform and averaged over time458

windows. The coherence between neuron i and neuron j at frequency f was calculated as459

Cij(f) =
Sij(f)√

Si(f)Sj(f)
. (7)

Pairwise coherence was averaged across all sampled neuron pairs within a population. Note that the460

coherence definition used here is not magnitude-squared, because the magnitude-squared coherence is461

always positive even when the network is asynchronous. We excluded neurons with rates less than 1 Hz462

and ensured that 500 neurons were sampled from each population. The first second of each simulation was463

removed.464

Activity State Definitions We identified three network states that were observed for the range of465

input levels considered, based on mean firing rates and maximum coherence. Specifically, the subcircuit466

asynchronous (SA) state occurs when the average firing rate of SOM neurons is less than 1 Hz and the467

maximum coherence of E neurons is less than 0.1. The weakly synchronous (WS) state arises when the468

maximum coherence of E neurons is between 0.1 and 0.5 and the average firing rate of SOM neurons is469

larger than 1 Hz. The strongly synchronous (SS) state is when the maximum coherence of E neuron is470

larger than 0.5 and the average firing rate of SOM neurons is larger than 1 Hz.471
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[50] De La Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A. Correlation between neural spike trains590

increases with firing rate. Nature. 2007;448(7155):802–806.591

[51] Cohen MR, Maunsell JHR. Attention improves performance primarily by reducing interneuronal592

correlations. Nature Neuroscience. 2009;12(12):1594–1600.593

[52] Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. Pupil fluctuations track594

fast switching of cortical states during quiet wakefulness. neuron. 2014;84(2):355–362.595

[53] Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A. Correlations and Neuronal Population Information.596

Annual Review of Neuroscience. 2016;39(1):237–256.597

[54] Bos H, Oswald AM, Doiron B. Untangling stability and gain modulation in cortical circuits with598

multiple interneuron classes. bioRxiv. 2008;doi:10.1101/2020.06.15.148114.599

[55] Xu H, Jeong HY, Tremblay R, Rudy B. Neocortical somatostatin-expressing GABAergic interneurons600

disinhibit the thalamorecipient layer 4. Neuron. 2013;77(1):155–167.601

[56] Garrett M, Manavi S, Roll K, Ollerenshaw DR, Groblewski PA, Ponvert ND, et al. Experience shapes602

activity dynamics and stimulus coding of VIP inhibitory cells. elife. 2020;9:e50340.603

[57] Najafi F, Russo S, Lecoq J. Unexpected events modulate context signaling in VIP and excitatory cells604

of the visual cortex. bioRxiv. 2024; p. 2024–05.605

[58] Akella S, Ledochowitsch P, Siegle JH, Belski H, Denman D, Buice MA, et al. Deciphering neuronal606

variability across states reveals dynamic sensory encoding. bioRxiv. 2024; p. 2024–04.607

[59] Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. Paradoxical effects of external modulation608

of inhibitory interneurons. Journal of neuroscience. 1997;17(11):4382–4388.609

[60] Ozeki H, Finn IM, Schaffer ES, Miller KD, Ferster D. Inhibitory stabilization of the cortical network610

underlies visual surround suppression. Neuron. 2009;62(4):578–592.611

[61] Sanzeni A, Akitake B, Goldbach HC, Leedy CE, Brunel N, Histed MH. Inhibition stabilization is a612

widespread property of cortical networks. Elife. 2020;9:e54875.613

23

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2024. ; https://doi.org/10.1101/2024.08.23.609417doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609417
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental information614

Input to E Input to PV Input to SOM Input to VIP

i iii

ii iiiiii

A DCB

-1 0 1
-0.5

0

0.5

1

-1 0 1
static input

0

1

2

3
-1 0 1

-0.5

0

0.5

1

-1 0 1
static input

0

0.5

1

1.5

2

-1 0 1

0

0.5

1

-1 0 1
static input

0

0.5

1
-1 0 1

-1

0

1

2

-1 0 1
static input

0

0.1

0.2

0.3

Figure S1: Changes in synaptic currents as input is applied to each population. Related to
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Average total synaptic current to each population. Row (ii): Population-averaged variance of the total
synaptic current to each population.
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input was applied to PV neurons. (Ai-iv) Firing rate and coherence in the four neuron populations in
networks with no spatial structure, meaning that the connection probability between two neurons does not
depend on distance. A sharp transition from the asynchronous to the strongly synchronous state occurs
as input is increased. (Bi-iv) The same quantities for networks with spatial structure, as also shown in
Figure 3B. The spatially dependent network exhibits a more gradual transition and the existence of weakly
synchronous state over a range of input values. The parameters of the networks in A and B are the same
except for the connection widths, σαβ (see Model Parameters in Methods).
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Figure S3: Modulations of firing rates and maximum coherence in the E-PV subcircuit. Re-
lated to Figure 4. Static external input was targeted to E (top row) or PV (bottom row) neurons.
Firing rates and network synchrony are tethered to change in the same direction in the E-PV subcircuit.
That is, stimulating E neurons increases the firing rates and coherence of both E and PV neurons, while
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inhibition-stabilized regime [59, 60, 61]. Network parameters were the same as those Figures 1-4 except
that we removed SOM and VIP populations.
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Figure S4: SOM→VIP connection strength has little effect on modulation patterns. Related to
Figure 5. Static input was applied to SOM neurons.(A) E, (B) PV, (C) SOM, and (D) VIP population
rates compared to E maximum coherence in networks with different SOM→VIP connection strengths,
JSOM→V IP . Only the relation to VIP firing rate (panel D) is different in networks with different JSOM→V IP .
In networks with larger JSOM→V IP inhibition, SOM is able to suppress VIP at a lower rate, resulting in the
darkened curves shifting leftward (D). Therefore, altering the connection strength of JSOM→V IP exclusively
affects the VIP population and does not influence how the rest of the network responds to external input.
Note that JSOM→V IP = −10 is the default circuit parameter used in the main text.
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Figure S5: VIP→SOM connection strength has little effect on modulation patterns. Related
to Figures 5, 6. Same format as Supplemental Figure S4. Static input was applied to SOM neurons.
Modulation patterns are the same across VIP→SOM connection strengths JV IP→SOM except for in the
network with the largest strength (darkest color). Networks with large JV IP→SOM become sensitive to
small changes in external input to SOM. The firing rate of SOM neurons switches from zero to above 10
Hz and the rate of VIP neurons switches from about 20 Hz to near zero as input to SOM increases slightly
(one step in panels C,D). Therefore, networks with large inhibition from VIP to SOM exhibit the WS state
over only a limited parameter range and switch relatively abruptly between the SA and the SS states as
input varies. Note that JV IP→SOM = −10 is the default circuit parameter used in the main text.
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Figure S6: Modulation patterns in networks with different SOM→E and SOM→PV connection
strengths. Related to Figure 5. Static input was either applied to PV neurons (red) or SOM neurons
(green). Each plot represents the maximum coherence of E neurons versus the average firing rate of E
neurons. Marker sizes correspond to increasing static input to the target population. Rows represent
(negative) increases in synaptic connection strength of SOM→E. Columns represent (negative) increases
in synaptic connection strength of SOM→PV. The boxed plot features the same parameters as the default
network. We find that when |JSOM→E | > |JSOM→PV | (lower triangle of the plots), the shapes of the
modulation patterns for both input cases remain qualitatively consistent. When |JSOM→PV | is much
larger than |JSOM→E |, the network exhibits abrupt changes from the SA to the SS state, and the firing
rate and coherence of E neurons tend to vary in the same direction over all levels of input to PV. The
orange shading in row two and green shading in row three highlight examples of changes in modulation
patterns as |JSOM→PV | increases (across columns in the same row). Discontinuities in the shading are
abrupt changes between adjacent dots (i.e., small changes in external input leading to large changes in
coherence) along the modulation path.
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Figure S7: Hysteresis effects in networks with strong SOM→PV inhibition in response to
ramping input. Related to Figures 3,4,5. (A,B) The default network (JSOM→E = −120 and
JSOM→PV = −60; Figures 3,4) with input applied to PV (A) or SOM (B) neurons. (C,D) Same as
A,B for a network with stronger SOM to PV inhibition (JSOM→E = −60, JSOM→PV = −240) with input
applied to PV (C) or SOM (D) neurons. Panel (i): Modulation path of E population firing rates versus E
maximum coherence with varying static input (same format as Figures 4A, S6). The blue outlined marker
in (i) represents the input value that is indicated in panels (ii)-(iv) by colored rectangles. Note that each
panel (i) was generated with a sequence of fixed values of static input to the indicated population, and not
with ramping input, which changes in time. Panel (ii): The population-averaged firing rate of E neurons
as a function of time with slowly increasing input (ramp up case). Panel (iii): same as panel (ii) for slowly
decreasing input (ramp down case). In the ramping input cases, external inputs were increased or decreased
by a small incremental change, ±0.05, every 5 seconds. The 5-second interval allows sufficient time for the
network to converge to a stationary state at the given input value. The colored rectangle in panels (ii)
and (iii) indicates time intervals of the same input value in both ramping cases, which are aligned in time
for comparison. Panel (iv): E population-average firing rates calculated within each 5-second interval of
ramping input. The initial 250 ms of each interval was excluded to avoid transient activity. In the default
network with |JSOM→E | > |JSOM→PV | (A,B), the E firing rate is the same for each fixed input value in
both ramp up and ramp down cases. This suggests that there is no co-existence of multiple network states
for any input value and that the transition from the SA to the SS state is likely through a supercritical
Hopf bifurcation where the amplitude of oscillation increases gradually after bifurcation. In contrast, in a
network with |JSOM→E | < |JSOM→PV | (C,D), the same input value results in different dynamic states in
the ramp up and ramp down cases (Cii-Civ,Dii-Div, regions indicated by colored rectangles). This hystere-
sis effect demonstrates the co-existence of two network solutions, one asynchronous and one synchronous
oscillation, over a range of input values. This suggests that oscillations arise via a subcritical Hopf bifurca-
tion, where there is a sudden jump in the amplitude of oscillations after the bifurcation point, in networks
with strong SOM→PV inhibition.
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Figure S8: Population rates and coherence in networks with different E→SOM connection
strengths. Related to Figure 6. Both static input and colored noise were applied to SOM neurons.
The colored noise was constructed as an OU process to match the mean and variance of the recurrent
excitatory input that SOM neurons receive in the default network without external input (same noise
input as in Figure 6A,C). Static input varied from -1 to 1. Column: (A) E, (B) PV, (C) SOM, (D) VIP
population. Row (i): Average firing rates of each cell population with respect to static input value. Row
(ii): The maximum coherence of E neurons compared to the population firing rates of each cell type.
The grey curves are from the default network (JE→SOM = 27), with SOM neurons receiving static input
without the OU noise.
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Figure S9: Weak impacts of dynamic noise input parameters on population rates and coher-
ence. Related to Figure 7. Independent temporally-varying noise, modeled as an OU process of given
mean (dot size) and variance (color shade), is applied to each SOM neuron. Columns show firing rate and
coherence of (A) E, (B) PV, (C) SOM, (D) VIP populations. Row (i): Average firing rate of each cell
population with respect to the mean value of OU input. Row (ii): The maximum coherence of E neurons
compared to the population firing rates of each cell type. The grey curves are from the default network
with SOM receiving static input.
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Figure S10: Impacts of quenched inputs on population rates and coherence. Related to Figure
7. Quenched input is spatially variable, but temporally invariant. Each SOM neuron receives an input
value that is sampled from a Gaussian distribution with given mean (dot size) and variance (color shade).
Columns show firing rate and coherence of (A) E, (B) PV, (C) SOM, (D) VIP populations. Row (i):
Average firing rate of each cell population with respect to the mean value of the quenched input. Row
(ii): The maximum coherence of E neurons compared to the population rates of each cell type. The grey
curves are from the default network with SOM receiving static input.
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Supplementary Video 1: Spiking activities of the spatially dependent spiking neuron network in the615

subcircuit asynchronous (SA) state (same parameters as in Figure 2A). Each dot indicates that the neuron616

at spatial position (x, y) fired within one millisecond of the time stamp shown on top. Color of each dot617

indicates the cell type of the neuron that fired (blue: E; red: PV; green: SOM; purple: VIP).618

619

Supplementary Video 2: Same as Video 1 for the network in the weakly synchronous (WS) state (same620

parameters as in Figure 2B).621

622

Supplementary Video 3: Same as Video 1 for the network in the strongly synchronous (SS) state (same623

parameters as in Figure 2C).624

625
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