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A B S T R A C T   

Late childhood and early adolescence is characterized by substantial brain maturation which contributes to both 
adult-like and age-dependent resting-state network connectivity patterns. However, it remains unclear whether 
these functional network characteristics in children are subject to differential modulation by distinct cognitive 
demands as previously found in adults. We conducted network analyses on fMRI data from 60 children (aged 
9–12) during resting and during three distinct tasks involving decision making, visual perception, and spatial 
working memory. Graph measures of network architecture, functional integration, and flexibility were calculated 
for each of the four states. During resting state, the children’s network architecture was similar to that in young 
adults (N = 60, aged 20–23) but the degree of similarity was age- and network-dependent. During the task states, 
the children’s whole-brain network exhibited enhanced integration in response to increased cognitive demand. 
Additionally, the frontoparietal network showed flexibility in connectivity patterns across states while networks 
implicated in motor and visual processing remained relatively stable. Exploratory analyses suggest different 
relationships between behavioral performance and connectivity profiles for the working memory and perceptual 
tasks. Together, our findings demonstrate state- and age-dependent features in functional network connectivity 
during late childhood, potentially providing markers for brain and cognitive development.   

1. Introduction 

Late childhood and early adolescence marks a crucial development 
period characterized by the substantial maturation of functional brain 
networks and the emergence of complex cognitive abilities (Casey et al., 
2005; Steinberg, 2005). Recent network analyses using resting-state 
functional connectivity (rsFC) revealed increasing long-range connec-
tions (Betzel et al., 2014; Lee et al., 2013), stronger cortico-cortical 
connectivity (Baker et al., 2015), and more well-defined networks 
(Grayson et al., 2014) with age. Concurrently, cognitive domains 
including working memory, decision making, and cognitive flexibility 
also undergo substantial improvement during this period (Dajani and 
Uddin, 2015; Shing et al., 2010; Zelazo and Carlson, 2012). A link be-
tween brain network and cognitive development has been recently 
suggested. For instance, stronger rsFC in core neurocognitive networks, 
specifically the frontoparietal network (FPN), has been associated with 
better working memory (Li et al., 2013), executive function (Lin et al., 

2015), and reading competence (Koyama et al., 2011) in children. 
Nevertheless, few studies examined the direct relationship between 
task-state network connectivity and behavioral performance in children. 
Furthermore, a feature of the mature neural networks during cognitive 
processing is the ability to respond differentially in connectivity patterns 
to different tasks and yet flexibly switch between them when cognitive 
demand changes (Cole et al., 2013; Shirer et al., 2012). Whether such 
ability is present or to what extent it is present in late childhood and 
early adolescence, however, remains poorly understood. 

In response to increased cognitive demand, functional networks in 
adults exhibit greater connection strength and density across distributed 
brain regions. This enhancement, referred to as integration, is quantified 
by several graph metrics including modularity and global efficiency (see 
Methods) (Rubinov and Sporns, 2010). For instance, whole-brain 
network exhibited more efficient and less modular connectivity pat-
terns during the cognitively demanding n-back task relative to finger 
tapping or resting (Cohen and D’Esposito, 2016; Shine et al., 2016). 
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Such task-induced integration is postulated to reflect the convergence of 
information from diverse brain sources to support complex cognition 
(Shine and Poldrack, 2017; Sporns, 2013). In late childhood, develop-
mental characteristics of functional networks may significantly impact 
integration as distal connection density and modularity during resting 
have been shown to be lower in children than adults (Gao et al., 2009; 
Miskovic et al., 2015). Abnormalities in integration can also affect 
cognition as attenuated frontoparietal connectivity during working 
memory (Koshino et al., 2005) and reduced global efficiency in the 
default mode network (DMN) at rest (Wang et al., 2009) were associated 
with poor cognitive outcomes in autism and attention deficit hyperac-
tivity disorder. Thus, better understanding of network properties such as 
the degree of integration during task performance in children may 
provide insights into the typical as well as atypical developmental tra-
jectories of brain and cognition. 

As tasks involving different cognitive demands can elicit distin-
guishable patterns of network connectivity (Cole et al., 2013; Shirer 
et al., 2012), the transition from one cognitive state to another (e.g., 
resting to task) likely elicits changes in connectivity patterns, necessi-
tating adaptive flexibility in functional neural network configuration 
(Bassett and Gazzaniga, 2011; Davison et al., 2015). Flexibility in 
shifting functional connectivity patterns across tasks has been recently 
quantified by graph measures involving the variability in nodal mem-
bership, connectivity strength, and network configuration (see Methods) 
(Bassett et al., 2010, 2015a; Cole et al., 2013). The FPN has been shown 
to be particularly flexible, demonstrated by highly variable connectivity 
patterns across tasks of distinct demands including learning, decision 
making, inhibitory control, and motor responses (Cole et al., 2013; 
Spielberg et al., 2015). Flexibility is likely reflective of cognitive abili-
ties. In adults, greater flexibility, as measured by connectivity variability 
and changes in nodal memberships between different neural networks, 
predicted higher behavioral flexibility (Nomi et al., 2017) and faster 
skill acquisition in a motor task (Bassett et al., 2010), respectively. Both 
cognitive demand and age have been shown to influence variability in 
neural activity, with greater variability reported in tasks relative to 
resting and in young relative to older adults (Garrett et al., 2013). In late 
childhood, behavioral studies have reported children’s ability to flexibly 
switch between distinct tasks (Chevalier and Blaye, 2009; Davidson 
et al., 2006). Yet, given the relatively slow gray matter maturation of the 
FPN in children (Gogtay et al., 2004), the neural basis for such behav-
ioral variability is still unknown. 

As functional network connectivity in late childhood is subject to the 
influence of both cognitive demand and brain development, we sought 
to characterize how functional networks respond to distinct cognitive 
tasks and how such responses may vary by age. Using graph theory, we 
examined functional network properties in children aged between 9 and 
12 during resting and three task states involving rewarded decision 
making, visual perception, and working memory. The three tasks were 
designed to tap into several distinct cognitive and sensory domains, 
recruiting various brain networks associated with motivational, working 
memory, perceptual, and motor processing. The whole-brain network 
architecture (i.e., the brain organization into functional network mod-
ules of highly interconnected regions) was defined for each state. The 
intrinsic (i.e. resting) architecture was compared to that of an adult 
sample to quantify potential age effects. We tested the hypothesis that 
the intrinsic network architecture in children would be broadly similar 
to that in adults although this similarity would vary with age and 
modules, the latter of which is likely due to the different neuronal 
maturation rates across the cerebral cortex. Next, we examined whether 
whole-brain functional integration as well as network module flexibility 
were modulated by task demand. We hypothesized that greater inte-
gration would be associated with increasing cognitive demand in chil-
dren, while anticipating the degree of integration to be both task- and 
age-dependent. Among neurocognitive networks including the FPN, 
Salience, DMN, Visual, and Somatomotor (SMN) networks, (Dosenbach 
et al., 2006; Bassett et al., 2010; Duncan, 2010), those implicated in 

executive function or multimodal processing were hypothesized to 
exhibit a high degree of flexibility. 

2. Materials and methods 

2.1. Data samples 

Eighty children recruited from a larger study investigating in-
dividuals with and without parental history of depression (Kujawa et al., 
2012) participated in one fMRI session. During the session, participants 
performed resting, a reward task, a visual perception task, and a spatial 
working memory task. We analyzed a subset of the sample after 
excluding data with excessive head motion in at least one of the fMRI 
sessions (20 participants) and failures to follow task instructions (8 
participants). For the final analysis, a total of 60 participants (28 fe-
males, age 9–12, mean ± SD: 10.72 ± .88 years) with usable resting state 
fMRI data were used in the community detection analysis to define the 
intrinsic network architecture; and a total of 52 participants (27 females, 
10.77 ± .90 years) with complete fMRI data for all four task states were 
used in the analysis of network properties. The Pubertal Development 
Scale was used to measure puberty score at the time of fMRI. The par-
ticipants had a mean puberty score of 8.37 ± 2.36 (data was missing 
from one male). Female and male participants did not significantly differ 
in their PDS scores (p = .067). Informed consent was obtained from 
parents of subjects prior to participation in accordance to the Stony 
Brook University Institutional Review Board. 

For comparison, we used a subsample of 60 young adults from the 
Cambridge Buckner 1000 Connectomes Project dataset (referred to as 
CB sample from here on) (Biswal et al., 2010). These subjects (age 
20–23, mean 21.2 years) were selected to match the age variance in our 
child sample. 

2.2. Tasks during fMRI 

Resting: Resting state fMRI data were acquired in two runs (11 min 52 
s total), during which participants were instructed to relax and look at 
the center of a target covering the whole screen. Resting-state sessions 
were performed prior to the task-state sessions. 

Reward task (Fig. 1A): On each trial, after a 2-s fixation, two doors 
were displayed on the screen for 2 s and participants were instructed to 
indicate their choice by pressing the left or right button. After an 800-ms 
fixation, feedback of monetary gain (“You Win”) or loss (“You Lose”) 
was displayed for 1.2 s. There was a total of 60 trials (30 win, 30 loss), 
with win/loss trials in a pseudorandom order. The intertrial interval 
(ITI) was jittered (mean: 2.5 s, range: 0− 14 s), with an average trial 
duration of 8 s. There were 2 runs with each run lasting 4 min 20 s. 

Perception task (Fig. 1B): There were 4 different block conditions: 
neutral faces, sad faces, happy faces, and houses. Each block was 16-s 
long and contained 4 trials. At the beginning of each block, a 1-s 
warning fixation changed in color from black to blue to cue the start 
of the block. On each trial, a 600-ms fixation cross was followed by the 
simultaneous presentation of two images for 3000 ms, either two faces 
or two houses and participants made a button press to indicate whether 
the two images were identical or different (50/50 chance). There were 3 
blocks per condition, presented in a pseudorandom order. These task 
blocks were interleaved with 14 s of fixation. The run lasted 6 min and 
12 s. 

Working memory task (Fig. 1C): We used a 1-back spatial working 
memory paradigm with two load conditions (Load 1 and Load 3). One 
rabbit was presented in the Load 1 condition, whereas three rabbits in 
three different locations were presented in the Load 3 conditions; rabbits 
were positioned pseudorandomly around an invisible circle with a 
radius of 5◦ visual angle. The two load conditions were presented in 
blocks of 5 trials. On each trial except the first trial of each block, par-
ticipants pressed a button to indicate whether any rabbit was in a 
different location from the previous trial. In the Load 3 condition, one of 
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the rabbits changed location on a change trial. The rabbits were pre-
sented for 200 ms. There were 8 possible locations shifted between 5◦ to 
10◦ from regular clock orientation. Locations were masked with 8 rabbit 
holes (average 1◦ visual angle) presented during a variable ITI of 2.3, 3.3 
or 4.8 s (average 3.2 s). Each task block lasted 17 s with a 13-s fixation 
period between blocks. There were two runs of 4 min 12 s each (8 
blocks/run). 

To ensure task compliance and minimize head and body motion 
during the experiment, each child practiced all tasks and participated in 
a training session prior to scanning. During the training session, par-
ticipants were positioned in a mock scanner to become acclimated with 
the scanner environment (e.g., spatial dimensions, sounds, lighting etc.). 
In the mock scanner, a motion sensor worn on the participants’ forehead 
and connected to a computer screen was used to visually demonstrate 
the magnitude of movements in real time. The children were given 
feedback when their movements exceeded the set motion threshold (see 
below). Due to computer software malfunctions, behavioral data were 
only recorded during the working memory and perception task for 35 
and 39 participants, respectively. Thus, while fMRI data were available 
and analyzed for all 52 individuals, behavioral analyses were only per-
formed on the subset of those participants. 

2.3. Data acquisition and analysis 

2.3.1. Imaging parameters 
Data were collected on a 3 T Siemens Tim Trio whole-body MRI 

system (Erlangen, Germany). Whole-brain structural anatomical images 
were acquired in the sagittal plane with a T1 weighted MPRAGE scan-
ning sequence (TR =2400 ms; TE =3.16 ms; slices = 176; flip angle = 8◦; 
FOV = 256 × 256; matrix = 256 × 256; resolution = 1 × 1 × 1 mm3). 
T2-weighted structural images were collected in the axial oblique plane 
parallel to the AC-PC (TR = 6450; TE = 88; slices = 37, 3.5 mm with no 
gap; flip angle = 120◦; FOV = 256 × 256; matrix = 256 × 256; reso-
lution = 1 × 1 × 3.5 mm3). Two runs of resting state (175 volumes each), 
two runs of the reward task (123 volumes each), one run of the 
perception task (183 volumes), and two runs of the working memory 
task (127 volumes each) were acquired in the axial oblique plane 

parallel to the AC–PC with a T2*- weighted single-shot echo-planar pulse 
sequence (TR =2000 ms; TE =30 ms; slices = 37; flip angle = 90; FOV =
224 × 224; matrix = 64 × 64; resolution = 3.5 × 3.5 × 3.5 mm3). Each 
session began with 3 dummy scans which were discarded prior to data 
analysis. 

For the adult data sample, structural images were acquired using the 
MPRAGE sequence: slices = 192, matrix size = 144 × 192, resolution =
1.20 × 1.00 × 1.33 mm3. Resting state T2*-weighted axial images were 
acquired using the EPI sequence: 47 interleaved axial slices, TR =3000 
ms, resolution = 3.0 × 3.0 × 3.0 mm3 (119 volumes, interleaved slices). 

2.3.2. Image preprocessing 
Images were preprocessed with SPM12 (Wellcome Trust Centre for 

Neuroimaging). Standard preprocessing steps were applied to each 
dataset including slice timing correction, volume alignment for motion 
correction, and co-registration of anatomical to the mean EPI image. A 
unified segmentation algorithm was applied to the high-resolution 
structural images to separate the gray matter, white matter, and CSF. 
The functional and anatomical images were then spatially normalized 
and transformed into the MNI space, using affine nonlinear trans-
formation, and then spatially smoothed with a 4-mm full-width at half- 
maximum Gaussian kernel. 

As head motion can influence measures of functional connectivity, 
especially in children (Satterthwaite et al., 2012), we employed several 
measures to reduce the potential influence of motion-related artifact in 
the data. First, movement was visually inspected and calculated using 
the Artifact Detection Tools (ART, www.nitrc.org/projects/artifact_de 
tect/). Runs with significant motion (> 3-mm translation peak-to-peak 
movement and/or 1.5◦ rotation) and significant change in signal 
global mean (> 3SD) were removed. Outlier volumes were identified for 
frame-to-frame displacement that exceeded 0.5 mm and/or rotation >
1.5◦. On average, 94.3 % of all volumes were retained across runs and 
across subjects. Second, prior to assessing the functional connectivity, 
additional preprocessing steps were performed. A nuisance regression 
was constructed to control for the following confounding variables: 6 
motion parameters up to their second derivatives, volumes with exces-
sive motion, modeled physiological signal generated through aCompCor 

Fig. 1. Behavioral tasks. Participants performed three cognitive tasks during fMRI. (A) In the reward task, upon presented with 2 doors, participants were instructed 
to choose either the one on the left or on the right. Monetary gain (shown in figure) or loss (50:50 chance) was indicated by visual feedback. (B) In the perception 
task, two images, either of faces (shown in figure) or houses, were presented to participants who were instructed to determine by a button press whether the images 
were identical or not. (C) In the working memory task, either 1 or 3 (shown in figure) rabbits were shown. Participants were instructed to determine whether the 
rabbits were in the same locations as the immediately preceding trial. 
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(Behzadi et al., 2007) of the white matter and CSF voxels, and the linear 
drift. For resting state data, the residuals of this regression were then 
filtered utilizing a bandpass between the frequencies of 0.008 and 0.09 
Hz and despiked using the CONN toolbox (https://www.nitrc.org/proj 
ects/conn). For the task state data, similar to a previous study (Cole 
et al., 2014), no low pass filter was applied (i.e., bandpass =.008 Hz - 
Inf) to preserve the possible presence of task signals at higher fre-
quencies than the relatively slow resting-state fluctuations. Finally, to 
rule out the possibility head motion may have impacted network mea-
sures, we calculated the rate of change of BOLD signal across the entire 
brain at each frame of data (DVARS) and framewise displacement (FD) 
(Power et al., 2012) for each resting and task state in each subject. We 
then examine the relationship between DVARS/FD and measures of 
network properties (see Results). 

We chose not to regress out the global signal in order to retain the 
interpretability of negative correlations (Murphy et al., 2009). In addi-
tion, to reduce potential influence of transient task-related effects, all 
visual and motor events were treated as events of no interest in a stan-
dard general linear model regression. The residuals from these regres-
sion models were used to estimate functional connectivity during the 
tasks. Only relevant task blocks were included in the time series (i.e., no 
fixation blocks), with 6 s of hemodynamic delay accounted for, and 
concatenated prior to correlation calculation. 

2.3.3. Functional connectivity 
We first conducted Pearson correlations between time series in all 

pairs of regions from the commonly used 264 cortical and subcortical 
regions-of-interest (ROIs) atlas from Power et al. (2011). ROIs were 
spheres of 5-mm radius centered at the coordinates as previously per-
formed in similar analyses (Cohen and D’Esposito, 2016; Cole et al., 
2014). Correlation coefficients were Fisher’s Z transformed and used for 
all subsequent computations. As there is no clear consensus on the 
treatment of task events, we conducted another set of analyses without 
the removal of task events and produced similar results, as expected 
from previous reports (Cohen and D’Esposito, 2016). Here, we chose to 
report the findings with task events removed. 

Community Detection. To determine the network architecture during 
resting-state, we used the Louvain community detection algorithm with 
two free parameters to partition the 264 ROIs into functional modules (i. 
e., networks of highly interconnected brain regions). The density 
parameter determines the threshold of connection strength. Connections 
with strength below this threshold were removed prior to community 
detection. The structural resolution parameter was used to restrict the 
number of communities identified in the functional connectivity matrix. 
To be consistent with previous work (Cole et al., 2014), we applied the 
same range for density threshold (40 % to 2 % in steps of 2.5) and res-
olution (0–3 in steps of 0.2). Each set of parameters was evaluated based 
on the resulting partition. The parameters were considered superior if 
they successfully partitioned the ROIs into functional modules as pre-
viously identified in the literature (Power et al., 2011). As such, optimal 
density threshold of 0.045 and resolution of 2.2 were chosen as they 
produced a twelve-community partition similar to Power et al. (2011). 

The optimal parameters obtained from resting-state community 
detection were subsequently applied to the task data to identify com-
munities in the three task states. As the Louvain algorithm is stochastic, 
we ran this algorithm 150 times to obtain 150 partitions. These parti-
tions were then used to create an agreement matrix which was subjected 
to consensus clustering (Lancichinetti et al., 2009) to yield a final 
partition for each subject and each task state. 

To examine architectural changes within each module across the four 
cognitive states, community detection was applied to key neuro-
cognitive modules including FPN, salience, DMN, visual, and SMN using 
data from each of the four states. These networks represent the cognitive 
and sensory domains likely recruited by the different cognitive demands 
engaged during the performance of the three distinct tasks. Changes in 
network architecture across states, both at the whole-brain and module 

levels, were quantified by adjusted Rand index (ARI) (Arabie and 
Hubert, 1985) which measures the similarity between two partitions 
while accounting for chance of similarity due to randomness. We 
calculated the partition similarity between the child and the CB samples 
to delineate potential age effects. Brain network graphs were visualized 
with BrainNet Viewer (Xia et al., 2013). 

2.3.4. Integration metrics 
At the whole-brain level, we examined the degree of integration 

changes in network connectivity between the resting and the three task 
states. Brain Connectivity Toolbox (Rubinov and Sporns, 2010) (https:// 
sites.google.com/site/bctnet/) and custom MATLAB scripts were used to 
calculate these measures. Connectivity matrices were thresholded with 
the density of 0.045 (as determined by community detection optimiza-
tion) prior to obtaining the graph metrics. 

For the measures of integration, we used global efficiency, local ef-
ficiency, participation coefficient, number of connector hubs, and 
modularity. Global efficiency is the measure of average inverse shortest 
path length between nodes within a network (Latora and Marchiori, 
2001), with higher global efficiency indicative of stronger connections 
between modules or high degree of integration. Global efficiency is 
defined as follows: 

Eglobal =
1

N(N − 1)
∑

i∕=j∈G

1
Li,j  

where L is the minimum path length, N is the number of nodes in graph. 
Local efficiency is the global efficiency computed on neighboring 

nodes (i.e., the inverse of the average shortest path connecting all 
neighbors of that node), with high local efficiency indicative of low 
integration. 

Participation coefficient refers to the measure of diversity of inter- 
modular connections of individual nodes. A network with high partici-
pation coefficient contains nodes that have dense connections with other 
networks and is thus more integrated. Participation coefficient is defined 
as follows: 

PCi = 1 −
∑NM

s=1
(
kis

ki
)

2  

where kis is the degree (number of connections) of node i to other nodes 
in its own network (s), and ki is the degree of node i regardless of 
network membership. 

A connector hub is a node that displays a high-degree of diverse 
inter-modular connectivity (van den Heuvel and Sporns, 2013). Here, 
connector hubs were defined as nodes with high participation coefficient 
(>0.8) and low within-module degree (<1.5) (Guimerà and Nunes 
Amaral, 2005a, 2005b). An increase in the number of connector hubs 
reflects an increase in integration. 

Modularity is the degree to which the network may be subdivided 
into non-overlapping groups of nodes such that the number of within- 
group edges is maximized while the number of between-group edges 
is minimized. A high modular configuration indicates a low degree of 
integration. Modularity is defined as follows: 

Q =
∑m

n=1

(
eii − x2

i

)

where eii is the fraction of all edges connecting two nodes within module 
n, xi is the fraction of edges connecting a node in module i to any other 
node, and m represents the total number of modules. 

2.3.5. Flexibility metrics 
At the module level, we assessed the flexibility of connectivity 

pattern for the five functional modules across the four cognitive states. 
Flexibility refers to the degree of change in connectivity patterns of a 
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network across multiple states. Specifically, we used connectivity vari-
ability, nodal membership change, and module partition similarity. 
Connectivity variability is the variability in connectivity strength 
measured by standard deviation across the four cognitive states (Cole 
et al., 2013). High variability indicates a high degree of flexibility. 

Nodal membership change is the probability of a node switching its 
membership to a different module upon transition from one state to 
another, calculated by the number of times a node changes membership 
normalized by the total possible number of changes (Bassett et al., 
2010). To avoid potential bias for/against any network(s) or state(s), 
nodal membership changes were averaged across the three 
resting-to-task switches (i.e., rest to reward, rest to perception, and rest 
to working memory) in the current study. 

Module partition similarity is the architectural similarity between 
resting partition and a task partition for a given module. High similarity 
indicates stable module architecture and thus low flexibility. The same 
community detection procedure used for whole-brain architecture was 
performed for each state and each module. 

To examine the potential age effects in the child sample, we exam-
ined the relationship between participants’ age (in months) and the 
network measures. All significant p values survived correction for 
multiple comparisons using false discovery rate (Benjamini and Hoch-
berg, 1995) unless otherwise noted. 

3. Results 

3.1. Global network architecture in different cognitive states 

Using Louvain community detection algorithm, we characterized the 
whole-brain network architecture by identifying 12 functional network 
modules for each of the four cognitive states (i.e., resting, reward, 
perception, and working memory). The 12 communities were similar to 
those defined in adults (Power et al., 2011): somatomotor, 

cingulo-opercular, auditory, default-mode, visual, frontoparietal, 
salience, subcortical, ventral attention, dorsal attention, and cere-
bellum. The optimal resting-state community detection parameters were 
then applied to the three task states, similarly yielding 12 communities 
for each task (Fig. 2A). Partition similarity was higher among the three 
task states than between resting and task states (p’s < 0.01) (Fig. 2B). 
Reward-resting partition similarity was significantly greater than 
perception-resting partition similarity (t(51) = 2.43, p = .018) but only 
marginally greater than working memory-resting partition similarity (p 
= .17). Partition similarity did not exhibit a significant relationship with 
differences in amount of data (in scan volume) between states (p’s >
.12). 

To determine whether the child sample’s rsFC network architecture 
was comparable to that in adults, we measured partition similarity be-
tween our 60-child sample of usable resting state data, a subset of 60 
adults in the CB resting-state dataset, and the published adult network 
architecture (Power et al., 2011). As expected, while the resting network 
architecture of our child sample showed high similarity to the adult 
network architecture defined by Power et al. (M [SD] = .25 [.06]), the 
degree of similarity was significantly higher between the two adult 
samples (i.e., CB and Power et al. network architectures) (M [SD] = .29 
[.05]) (t(118) = 3.8, p < .001). Further, we found an age effect in our 
child sample such that the degree of partition similarity between the CB 
average network partition and each children’s network partition was 
positively correlated with the children’s age (in months) (r = .33, p =
.01) (Fig. 2C). To rule out potential confounding effects of head motion, 
we performed the same regression analysis while controlling for the 
mean and median DVARS and FD in each run and found the resulting age 
effect remained significant (r = .34, p = .016). 

We further examined whether the degree of similarity in rsFC 
network architecture between the child and CB samples varied across 
the functional network modules. The child sample’s Salience (M [SD] =
.14 [.11]) and FPN (M [SD] = .15 [.1]) modules were significantly less 

Fig. 2. Whole-brain network architecture in each state. (A) Louvain community detection algorithm was used to identify 12 communities (in different colors) in 
resting, reward task, perception task, and working memory task. (B) Adjusted Rand index of partition similarity was higher among the three task states than between 
resting and task states. (C) Partition similarity of whole-brain resting-state network between children and young adults was positively correlated with the children’s 
age. * p ≤ .01. 

T.M. Le et al.                                                                                                                                                                                                                                    



Developmental Cognitive Neuroscience 45 (2020) 100862

6

similar to the CB sample than the other modules (all p’s < .001), whereas 
the DMN (M [SD] = .19 [.06]), Visual (M [SD] = .2 [.08]) and SMN (M 
[SD] = .23 [.1]) were more similar. 

In sum, children in early adolescence showed stable whole-brain 
network architecture across various cognitive states but with detect-
able differences between resting and task states. The degree of similarity 
to the adult network architecture at rest varied with age and network 
modules. 

3.2. Functional integration and flexibility across cognitive state 

Next, we examined functional integration in the 52 children with 
usable data from the resting and three task states. Greater whole-brain 
network integration was found for all task states relative to the resting 
state. Specifically, the task states exhibited significant increases in 
global efficiency, number of connector hubs, and participation coeffi-
cient compared to the resting state (p’s < .002) (Fig. 3A-C). 

There was a significant decrease in local efficiency from the resting 
to task states (corrected p’s < .001) (Fig. 3D). However, modularity did 
not significantly differ across the four states (p’s > .28) (Fig. 3E). As 
reduced modularity was associated with increased cognitive processing 
in adults (Cohen and D’Esposito, 2016), we examined the effect of age 
on modularity and found that the older the participants, the lower the 
degree of modularity in task state (averaged across the three tasks) (r =
− .35, p = .01) (Fig. 3F). It is worth noting that most integration mea-
sures during the resting state were comparable to the CB adult sample 
(p’s > .14), with the exception of participation coefficient which was 
higher in the child sample (t(110) = 4.13, p < .001). 

To rule out the potential confounding effects of head motion, we 
confirmed that there were no significant correlations between the mean/ 
median FD/DVARS and each network integration measure across the 
children (p’s > .19). FD was found to be significantly higher for task 
states (working memory = .19 ± .08, reward = .18 ± .09, perception =
.17 ± .08, M ± SD) relative to resting state (.14 ± .07) (p’s ≤ .029). 3 
subjects showed significantly greater FD than the group (i.e., beyond 3 
SD from the mean), one in each of resting, working memory, and 

perception run. The removal of these subjects did not significantly alter 
any of the findings of network integration. 

To examine functional flexibility, we used the DMN, FPN, Salience, 
Visual, and SMN functional modules identified in the resting state 
(Fig. 4A) and extracted connectivity variability, nodal membership 
change, and partition similarity across the four states for each network. 

Among the networks, FPN showed the higher variability in connec-
tivity strength across states than DMN (p = .004), visual network (p <
.001), SMN (p < .001), and Salience network (p < .001) (Fig. 4B) 
whereas variability was lowest in the visual network (p’s < .001). 
Similarly, FPN showed the highest nodal membership change (p’s ≤
.001) (Fig. 4C). Note that all comparisons were significant after 
correction for multiple comparisons. In addition, relative to all other 
modules, FPN and Salience showed lowest rest-task partition similarity 
(p’s < .05), indicating a higher degree of architectural changes (Fig. 4D). 
In sum, FPN (and to a lesser degree, Salience) showed greatest functional 
flexibility whereas sensory and motor modules exhibited relatively more 
stable connectivity patterns across the four states. 

Finally, we conducted additional analyses to examine to what extent 
these network integration observations may have been confounded by 
small head motions or motion differences between rest and task states. 
All global and modular effects maintained after removing the subjects 
with average FD > 0.3 mm (N = 13) or those that showed non-matching 
FD between states (N = 15), with the exception of the age and modu-
larity association (respectively r = − .39, p = .014 and r = − 0.22, p = .18; 
compared with Fig. 3F). 

3.3. Relationship between connectivity profiles and task performance 

We conducted exploratory analysis to examine whether integration 
and flexibility in network properties were associated with individual 
differences in behavioral performance in the working memory and vi-
sual perception tasks. (We did not examine the reward task due to the 
lack of interpretable behavioral measures.) 

For load effect on working memory performance (L3-L1Acc, accu-
racy difference between Load 3 and Load 1), there was a negative 

Fig. 3. Measures of whole-brain network integration during various task states: (A) global efficiency, (B) number of connector hubs, (C) participation coefficient, (D) 
local efficiency, and (E) modularity. There was a general increase in the degree of integration in task states relative to resting state, and a negative correlation 
between age and task-state modularity (F). For comparison, measures of integration during resting state were shown in the plots for the CB sample (blue bars). 
Abbreviation: CB – Cambridge Buckner, RS – resting state, WM – working memory. ** p ≤ .001, * p ≤ .01, n.s. not significant (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article). 
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association between the number of connector hubs and the performance 
difference between working memory load (r = .49, p = .003) (Fig. 5A), 
suggesting that larger performance difference or larger load effect was 
related to a higher degree of inter-modular connectivity. In contrast, 
rest-WM partition similarity was positively associated with better L3- 
L1Acc (r = − .41, p = .014) (Fig. 5B), suggesting a less changes in 
community architecture is associated with more stable performance 
across working memory load. 

For the perception task, global efficiency during visual perception 
was positively associated with performance accuracy (r = .34, p = .037, 
not significant after correction for multiple comparisons) (Fig. 5C). At 
the module level, average FPN, Salience, DMN, Visual, and SMN parti-
tion similarity between resting and perception state was negatively 
correlated with performance accuracy (r = − .41, p = .009) (Fig. 5D). 
The relationship between performance accuracy and whole-brain 
partition similarity was not significant (p = .13). Taken together, these 
results suggest a low degree of network integration and flexibility is 
beneficial to working memory performance, whereas more flexibility in 
network connectivity is beneficial to perceptual performance. 

4. Discussion 

We found that functional brain networks in children during late 
childhood and early adolescence exhibited age- and state-dependent 
connectivity patterns while showing broad adult-like organization. 
Specifically, during resting, the whole-brain network was organized into 
distinct modules as previously identified in adults (Power et al., 2011). 

During task states, the connectivity at the whole-brain level became 
more integrated as reported in adults (Cohen and D’Esposito, 2016). At 
the module level, networks implicated in executive function or multi-
modal processing exhibited highly variable connectivity patterns across 
task states involving working memory, decision making, and visual 
perception whereas those associated with motor and sensory processing 
remained relatively stable. Such results are consistent with previous 
work suggesting the emergence of core neurocognitive networks in the 
development of cognitive abilities (Casey et al., 2005). Age-related 
characteristics were found in task-induced modularity as well as in the 
intrinsic network architecture upon comparison with a sample of young 
adults. Thus, the functional brain in late childhood and early adoles-
cence demonstrates network properties that reflected both cognitive 
demands and the continuing neural maturation. 

4.1. Functional network architecture in late childhood 

The current study showed that the functional organization of the 
whole brain network during resting state fMRI in children aged 9–12 
maps well with the same 12 core modules previously identified in adults 
(Power et al., 2011). Also consistent with the adult literature (Cole et al., 
2014), this architecture remained relatively preserved during the sub-
sequent performance of cognitive tasks that involved working memory, 
rewarded decision making, and perception. Such finding adds to the 
growing literature characterizing the maturation of functional neural 
networks from infancy to adulthood. Between the age of 1 month to 2 
years, the brain begins to form core rsFC networks such as the DMN and 

Fig. 4. Flexibility of the functional network modules across states. (A) Five network modules identified by community detection: FPN, DMN, Salience, Visual, and 
Somatomotor. (B) Connectivity variability coefficient showed variability in connectivity strength measured by standard deviation across the four states. (C) Nodal 
membership change showed the probability of nodes switching their module membership when transitioning from resting to task states. (D) Partition similarity 
showed the similarity in module architecture between resting and task states. Abbreviation: DMN – default mode network, FPN – frontoparietal network, SMN – 
somatomotor network. 
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dorsal attention network (Gao et al., 2013; Lee et al., 2013) and exhibits 
progressively modular organization and efficient connectivity patterns 
(Fan et al., 2011). By age 7, the intrinsic whole-brain network archi-
tecture in children is comparable to that in adults, as reflected by sim-
ilarity in measures including path length, clustering coefficient, 
small-worldness, and global efficiency between the two age groups 
(Cao et al., 2017). Nevertheless, a recent diffusion tensor imaging study 
found that the structural brain networks continue to show greater 
segregation and efficiency between the age of 8 and 22 (Baum et al., 
2017), suggesting ongoing structural changes from late childhood into 
early adulthood. 

Our findings show complementary functional evidence of age- 
dependent functional network organization in late childhood and 
early adolescence. At the whole-brain level, we observed significantly 
lower architectural similarity between the child and CB samples than 
that between the two adult groups and a positive correlation between 
the children’s age and architectural similarity to the CB sample. At the 
module level, FPN was the least similar to that in adults while visual and 
motor modules were the most similar, indicating different maturation 
trajectories for different networks. While reorganization of association 
and sensory cortical functional connectivity is recently reported in post- 
adolescence (Váša et al., 2020), our findings are in agreement with both 
rsFC (de Bie et al., 2012) and morphometric (Gogtay et al., 2004; Len-
root and Giedd, 2006; Shaw et al., 2008) evidence of the protracted 
maturation of the frontal lobe relative to visual and motor cortices. More 
specifically, during adolescence, the frontal regions have been found to 

show accelerated gray matter density loss, indicating synaptic pruning, 
later than brain structures supporting visuospatial functions (Sowell 
et al., 2001, 1999). Such findings are in line with behavioral observa-
tions of early development of sensory capacity relative to executive 
functions (Simmering, 2012; Weil et al., 2013). Thus, although the 
functional intrinsic network architecture is well defined by late child-
hood, it likely continues to refine in the years toward adulthood. 

Another adult-like characteristic of the intrinsic whole-brain 
network in children is its preservation of the 12-community architec-
ture across the working memory, reward, and perception tasks. Previous 
investigations have found minimal changes in network organization 
across multiple cognitive tasks in adults (Cole et al., 2014; Krienen et al., 
2014). Our findings thus suggest that fundamental functional network 
architecture underlying both resting and complex cognitive states also 
exists in children. The presence of such intrinsic architecture may reflect 
constraints from anatomical connections (Krienen et al., 2014). It is also 
possible that the stability of network configurations may have been 
partially attributable to the acquisition of all task data in a single scan 
session (Krienen et al., 2014). Nevertheless, previous research showed 
moderate to high test-retest reliability in rsFC connectivity patterns 
including network clustering in 3 scans acquired at least 5 months apart 
(Shehzad et al., 2009), indicating stable network organization over time. 

4.2. Shift toward global functional integration during cognitive processing 

While the intrinsic functional networks in children showed both 

Fig. 5. Relationship between network properties and behavioral performance across children. For the working memory task, smaller load effect (closer to 0 in L3-L1 
accuracy difference) was associated with the smaller number of connector hubs during the task state (A) and higher whole-brain partition similarity between resting 
and task state (i.e., less changes in network architecture) (B). For the perception task, better performance was associated with higher global efficiency during the task 
state (C) and lower partition similarity between resting and task states across the 5 functional modules (D). Abbreviation: Acc – accuracy, L1/3: working memory 
load 1/3, RS – resting state, WM – working memory. * p < .05, ** p < .01. 
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adult-like and age-related characteristics, it was unclear whether they 
respond to cognitive demands in manners similar to those previously 
observed in adults. One well-replicated finding in the literature is the 
enhanced integration in network connectivity during cognitively 
demanding tasks such as working memory, decision making, attention, 
and rule learning relative to rest (Cohen and D’Esposito, 2016; Cole 
et al., 2013; Davison et al., 2015; Shine et al., 2016). Indeed, we found 
that most measures of integration including global efficiency, connector 
hubs, and participation coefficient were significantly higher during task 
states than resting in our child sample. Functional integration is pro-
posed to reflect the convergence and joint processing of specialized in-
formation across distributed circuits collectively involved in task 
completion (Sporns, 2013). In support, visual working memory has been 
shown to involve enhanced connectivity among distributed regions 
including visual association, parietal, frontal, and subcortical areas 
(Gazzaley et al., 2004). Similarly, face perception engages connectivity 
not only in core visual regions (e.g., fusiform gyrus) but also regions 
implicated in control and valence processing such as the amygdala, 
orbitofrontal cortex, and inferior frontal gyrus (Fairhall and Ishai, 
2007). These findings corroborate the notion that transient and flexible 
increases in distributed cortical coordination are necessary for effortful 
cognitive processing (Bressler and Kelso, 2001; Fries, 2005). In the 
developmental literature, widespread brain activations were observed in 
children, likely reflecting involvement from multiple brain networks in 
tasks including working memory (Güler and Thomas, 2013; O’Hare 
et al., 2008), tracking stop (Rubia et al., 2007), go/no-go (Mostofsky 
et al., 2007), and flanker (Zalecki et al., 2005). Nevertheless, to the best 
of our knowledge, our study is the first to provide evidence that the child 
brain exhibits task-induced integration across large scale functional 
networks. 

While the brain during late childhood and early adolescence 
demonstrated enhanced integration by most measures following 
increased cognitive demand, we found the lack of modularity reduction, 
seemingly inconsistent with the adult literature (Cao et al., 2014; Cohen 
and D’Esposito, 2016). Modularity, a crucial feature of complex neural 
systems (Sporns and Betzel, 2016), is observed early in development and 
increasing with age as shown in structural (Fan et al., 2011) and rsFC 
(Betzel et al., 2014) investigations. However, the degree of modularity 
continue to change between adolescence and adulthood, as demon-
strated by the sparser long-range connections but denser short-range 
connections during this stage of development (Betzel et al., 2014; Ste-
vens, 2016). Such differences likely impact the functional brain prop-
erties during cognitive processing. Indeed, we found a negative 
association between task-state modularity and participants’ age, sug-
gesting that task-evoked modularity may represent a marker for brain 
maturation. Taken together, the child brain shows the capability to shift 
toward functional integration in response to cognitive demand but this 
shift is still constrained by the ongoing fine-tuning process during neural 
circuitry maturation. 

4.3. Executive control, visual, and motor networks show different patterns 
of flexibility 

A notable characteristic of the complex functional neural system is its 
flexibility in reorganizing connectivity patterns in response to changing 
cognitive demands (Bassett et al., 2015b, 2010). It has been suggested 
that flexibility may represent an indirect measurement of the transitions 
between cognitive processes (Braun et al., 2015; Deco et al., 2009; 
McIntosh et al., 2008). In late childhood, we found that the brain also 
exhibited a high degree of variability in network architecture, nodal 
membership switches, and connectivity strength, especially in modules 
associated with executive control including the frontoparietal and 
salience networks. A similar finding was previously reported in adults 
who showed greatest connectivity variability in the FPN, compared with 
other networks, during the performance of a variety of tasks (Cole et al., 
2013). The variability in FPN connectivity may have been related to the 

coding of distinct information associated with different cognitive states 
(Cole et al., 2013). In a study of visuomotor learning, connectivity 
patterns in the motor and visual networks changed little over time 
whereas multimodal association regions exhibited significantly greater 
flexibility (Bassett et al., 2013). High FPN variability may be related to 
the network’s recruitment across diverse cognitive domains (Crittenden 
et al., 2016; Niendam et al., 2012) and involvement in the processing 
(Duncan, 2010) and switching (Kim et al., 2012) of sequential task in-
formation. Reports from non-human primate research further corrobo-
rates the FPN flexibility account. Different cognitive demands have been 
associated with different activity patterns of prefrontal neurons as 
demonstrated by electrophysiological recordings in monkeys perform-
ing a cue–target association task (Sigala et al., 2008). The transitions 
between tasks elicited changes not only in cellular firing rates but also in 
patterns of correlation between cells of the frontal cortex (Tishby et al., 
1999; Vaadia et al., 1995). 

Our findings expand on previous research by showing that variability 
in network connectivity across task states is present in early childhood 
despite the slow maturation rate of the FPN. For example, variability of 
the neurocognitive network rsFC has been shown in positive correlation 
with age in children between age 7 and 16 (Marusak et al., 2017). 
Variability in multiscale entropy of EEG and MEG signals during visual 
perception in various brain regions including the visual and parietal 
cortices was also found to increase with age starting from infancy and 
early childhood (Lippe et al., 2009) to adolescence (McIntosh et al., 
2008) and adulthood (Mǐsić et al., 2010). As neural flexibility has been 
associated with intelligence and executive function in adults (Duncan, 
2010; Nomi et al., 2017), evidence of the FPN’s flexibility in connec-
tivity patterns across tasks may offer implications for cognitive devel-
opment in children. The ability to switch between different cognitive 
demands is of particular relevance in late childhood/early adolescence 
as this skill (Dick, 2014), along with executive function (Anderson, 
2002), undergoes a sharp increase in proficiency during this stage. Such 
milestone in cognitive development coincides with the frontal and pa-
rietal gray matter reaching maximal volume (Giedd et al., 1999). These 
findings indicate a possible relationship between structural and func-
tional maturation of the FPN and the development of cognitive flexi-
bility in this age group. 

4.4. Relationship between behavioral performance and functional 
network connectivity patterns 

Our exploratory analysis showed a potential relationship between 
behavioral performance and the degree of functional integration and 
flexibility. In the perception task, better performance was associated 
with greater global efficiency and dissimilarity between resting-task 
architecture, suggesting perceptual performance may benefit from a 
connectivity profile of enhanced network integration and flexible con-
nectivity. Previous work in young adults showed widespread activation 
(Oh and Leung, 2009) and connectivity (Le et al., 2017) involving 
temporo-occipital and frontoparietal systems during the processing of 
face and scene information. In children, while the fine-tuning of neural 
selectivity continue to occur into adolescence (Cohen Kadosh and 
Johnson, 2007), similar activation patterns during face and scene 
perception (Scherf et al., 2007) have been observed. Thus, integration 
and flexible functional connectivity may better support processing of 
new sensory information and respond to constant changes in the sensory 
environment (Irwin and Wynn, 2015; Prime et al., 2011). 

In the working memory task, the connectivity profile suggests some 
degree of functional segregation and stability may have helped behav-
ioral performance or reduce load effect. This finding seemingly differs 
from a previous report showing a relationship between enhanced 
working memory performance and increased functional integration in 
healthy adults (Cohen and D’Esposito, 2016). However, while modu-
larity decreases in adults during cognitively demanding tasks (Cohen 
and D’Esposito, 2016; Liang et al., 2016), the measure was not 
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significantly lower during task states in our child sample. Past research 
has indicated stable activation during working memory may be benefi-
cial (Hampson et al., 2006; Otten and Rugg, 2001) whereas abnormally 
high variability during working memory can be detrimental to perfor-
mance as shown in the case of distractors (Armbruster-Genc et al., 2016) 
or individuals with schizophrenia (Manoach, 2003; Meyer-Lindenberg 
et al., 2001). During working memory, relevant information may benefit 
from protection against interference (Jonides and Nee, 2006; Kane and 
Engle, 2000; Le et al., 2017; Lustig et al., 2001). Thus, it is plausible that 
a moderate degree of flexibility and modularity may have been advan-
tageous in the current sample. 

5. Limitations and conclusions 

As our child participants were recruited from a community popula-
tion with and without parental history of depression, hereditary factors 
associated with the disorder may have influenced neural network 
configuration changes across states. Previous research has indeed found 
depression-specific alterations in functional connectivity (Connolly 
et al., 2013; Zeng et al., 2012). However, we used measures of negative 
and positive emotionality collected from our child sample and found no 
significant relationship between these measures and the network indices 
(data not shown). Nevertheless, the potential effects of family history of 
mood disorders on functional network architecture in children remain 
unknown and thus require further research. 

In sum, the current study shows that the intrinsic neural network 
architecture in late childhood and early adolescence is similar to that in 
young adults. The degree of similarity was closely related to age, indi-
cating the fine-tuning of the network architecture during this stage of 
development. During various task states, although the network archi-
tecture largely retained its basic configuration as previously shown in 
adults, network connectivity patterns exhibited greater integration with 
increased cognitive demand. At the module level, the FPN and SN were 
more flexible and variable whereas the sensory and motor modules 
remained relatively stable across the task states. These findings add to 
the understanding of the spatiotemporal patterns of cortical network 
organization in the youth brain during various cognitive states and how 
they may help explain brain, cognitive, and behavioral development. 
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Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.N., Sporns, O., 2014. Changes in structural 
and functional connectivity among resting-state networks across the human lifespan. 
Neuroimage 102, 345–357. https://doi.org/10.1016/j.neuroimage.2014.07.067. 

Biswal, B.B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F., 
Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.-M., Ernst, M., Fair, D., 
Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Kotter, R., Li, S.-J., Lin, C.- 
P., Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., 
Mayberg, H.S., McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., 
Peltier, S.J., Petersen, S.E., Riedl, V., Rombouts, S.A.R.B., Rypma, B., Schlaggar, B.L., 
Schmidt, S., Seidler, R.D., Siegle, G.J., Sorg, C., Teng, G.-J., Veijola, J., Villringer, A., 
Walter, M., Wang, L., Weng, X.-C., Whitfield-Gabrieli, S., Williamson, P., 
Windischberger, C., Zang, Y.-F., Zhang, H.-Y., Castellanos, F.X., Milham, M.P., 2010. 
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107, 
4734–4739. https://doi.org/10.1073/pnas.0911855107. 
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