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ABSTRACT

Predicting responsible transcription regulators on
the basis of transcriptome data is one of the most
promising computational approaches to understand-
ing cellular processes and characteristics. Here, we
present a novel method employing vast amounts of
chromatin immunoprecipitation (ChIP) experimental
data to address this issue. Global high-throughput
ChIP data was collected to construct a comprehen-
sive database, containing 8 578 738 binding inter-
actions of 454 transcription regulators. To incorpo-
rate information about heterogeneous frequencies
of transcription factor (TF)-binding events, we de-
veloped a flexible framework for gene set analy-
sis employing the weighted t-test procedure, namely
weighted parametric gene set analysis (wPGSA). Us-
ing transcriptome data as an input, wPGSA predicts
the activities of transcription regulators responsible
for observed gene expression. Validation of wPGSA
with published transcriptome data, including that
from over-expressed TFs, showed that the method
can predict activities of various TFs, regardless of
cell type and conditions, with results totally consis-
tent with biological observations. We also applied
wPGSA to other published transcriptome data and
identified potential key regulators of cell reprogram-
ming and influenza virus pathogenesis, generating
compelling hypotheses regarding underlying regula-
tory mechanisms. This flexible framework will con-
tribute to uncovering the dynamic and robust ar-
chitectures of biological regulation, by incorporat-

ing high-throughput experimental data in the form of
weights.

INTRODUCTION

Most cellular processes and characteristics, such as
metabolism, the cell cycle, differentiation and stress re-
sponses result from gene expression. Under the influence
of environmental factors, cells change the expression of
thousands of genes to synthesize appropriate amounts of
functional proteins. The regulation of gene expression is
mainly through transcription factors (TFs), which bind
to specific DNA sequences and control the rate of RNA
transcription. In addition, other proteins, including chro-
matin and DNA modifiers and co-regulators, influence the
accessibility of binding sites by TFs. These combinations of
transcription regulators provide elaborate control of gene
expression and enable homeostatic reactions of cells in
response to internal and external perturbations. Recently,
it became clear that mature cells can be reprogrammed
to achieve pluripotency by introducing only a few TFs
(1). Thus, identifying responsible transcription regulators
is an important first step in understanding regulatory
mechanisms of both healthy and pathologic cellular states,
as well as in manipulating cell differentiation.

Despite extensive research on TFs, it is still difficult to
comprehensively ascertain the activation state of each TF
because of the complicated layers of regulation involved in
these systems. Multiple post-translational modifications, in-
cluding phosphorylation, glycosylation, acetylation, ubiq-
uitination and sumoylation, are necessary for TF function
(2). Furthermore, TF binding to target sequences is af-
fected by chromatin state and combinatorial interactions
with other TFs and cofactors. Given that these states of
TFs and chromatin are only measurable using antibodies,
it is not practical to perform experiments to determine the
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TFs responsible for observed gene expression. On the other
hand, we can now measure genome-wide mRNA expression
levels using microarray or RNA-seq technology. Therefore,
one of the most promising computational approaches is to
predict which TFs are responsible for the mRNA expression
using high-throughput transcriptome data.

To predict which TFs are responsible for a given set of
transcriptome data, we first need to reconstruct relation-
ships between TFs and their target genes, that is, a gene reg-
ulatory network (GRN). Recently, a method was proposed
to model gene regulatory relationships based on predicted
binding motifs of TFs (3). The authors constructed a lin-
ear model to explain expression of each gene in terms of
predicted TF binding sites in proximal promoters. An alter-
native method uses chromatin immunoprecipitation (ChIP)
data to link TFs to their target genes (4,5). By constructing
sets of target genes for each TF based on ChIP data, the
method can estimate transcription regulators likely respon-
sible for observed gene expression patterns. Compared to
motif-based methods, models based on ChIP data have the
advantage of considering actual TF binding sites in a spe-
cific cellular state. At the same time, the use of such exper-
imental data can also be a limitation of the method, since
binding sites occupied by a given TF can differ markedly
depending on the cell types or states in which they are mea-
sured.

Here, we present a novel approach for the prediction of
TFs responsible for gene expression patterns, which incor-
porates data from vast numbers of mouse ChIP experi-
ments, performed in various cell types and under a wide
range of conditions. The method uses a weighted t-test in
gene set analysis (GSA) to consider condition-dependent
relationships between TFs and their target genes. Activi-
ties of mouse TFs predicted using this method were com-
pletely consistent with biological observations, regardless of
cell type or conditions. Using case studies, we demonstrate
the value of the method in capturing the dynamic and com-
plex nature of gene regulation.

MATERIALS AND METHODS

ChIP-seq data analysis

Raw mouse ChIP-seq data files in SRA format were
obtained from the GEO database and were converted to
FASTQ format using the fastq-dump function of SRA
Toolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?
view=toolkit doc&f=fastq-dump). Quality assessment
of sequence reads was performed using FastQC (http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Each sequence read was aligned to the mouse
mm9/NCBI37 genome using Bowtie2 version 2.2.5
with default parameters. To align sequences generated
using the SOLiD sequencing system in colorspace, Bowtie
version 1.1.2 was used with the colorspace indices built
for mm9/NCBI37. Peaks were called using Model-based
Analysis of ChIP-Seq (MACS) version 2.1 with default
settings (q < 0.01).

ChIP-array data analysis

Raw mouse ChIP-array data files were obtained from the
GEO database. For Agilent and Nimblegen arrays, median-
centering, quantile normalization and linear smoothing
were performed using the Bioconductor packages Ringo
and limma. Next, we identified ChIP-enriched regions using
Ringo with estimated threshold y0 arising from the null dis-
tribution. For Affymetrix arrays, the Bioconductor package
rMAT was used for normalization and smoothing. Then,
enriched regions were identified with rMAT using a false
discovery rate (FDR) threshold of 0.5.

Annotation of ChIP peaks

Where original peak data (in narrowPeak, bed, wig or big-
wig format) was available from the GEO database, peaks
were converted into bed format. All binding peaks were
converted to mm9 assembly by using the UCSC LiftOver
Tool (6). The Bioconductor package ChIPpeakAnno was
used to map the peaks and the regions surrounding tran-
scription start sites (TSSs) (−5 to +2 kb) using TSS anno-
tation data, ‘TSS.mouse.NCBIM37’.

Nomenclature of TFs and target genes

Throughout this manuscript, we used Uniprot entry names
(e.g. STAT3 and PO5F1) for representing TFs to distinguish
them from the target gene name indicated by the Entrez
gene symbol.

Retrieving TF binding motifs

The Bioconductor package MotifDB was used to obtain
DNA sequence motifs from JASPAR and UniPROBE
databases. DNA sequences with >90% overlap of the motif
were mapped to the proximal promoter region surrounding
TSSs (−5 to +2 kb).

Correlation analysis

Overlap of binding targets between different ChIP exper-
iments of a TF was evaluated using Jaccard’s coefficient.
Spearman’s rank correlation coefficient was employed for
the evaluation of similarity in binding frequencies between
pairs of TFs. Ward’s method was employed for hierarchical
clustering.

Algorithmic details of wPGSA

We first evaluated the probability of a regulation based on
the frequency of ChIP binding data. The probability of reg-
ulation was estimated by maximum-likelihood estimation.
The likelihood function of a binomial distribution where k
time bindings were observed in n ChIP experiments is de-
noted as:

L(p; k) = n!
k!(n − k)!

pk(1 − p)n−k;

therefore, the binomial loglikelihood function is:

l(p; k) = K + klog p + (n − k)log(1 − p)
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where K is a constant that does not involve the parameter
p. We can find the maximum of the likelihood function by
setting the derivative of the loglikelihood function to zero
and solving the equation for p:

∂l(p; k)
∂p

= k
p

− n − k
1 − p

= 0

p̂ = k
n

Here, p̂ denotes the maximum-likelihood estimate of the
probability of regulation.

To evaluate whether a TF significantly changes the activ-
ity of a regulation, we compared the mean fold changes of
gene expression of target genes of the TF against that of the
background. We used weighted statistics for a two-sample
t-test. Briefly, the weighted mean ĒT of the fold changes E
for a TF T was calculated using the formula:

ĒT =
∑

Ei pi∑
pi

where Ei is the fold change for gene i and pi is the esti-
mated probability of the regulation of the gene by a TF. Fold
changes for all genes were used without applying any thresh-
old. The standard deviation of the weighted mean was cal-
culated as:

σT =
√∑

(Ei − ĒT)
2 ∑

pi∑
pi

Together with the mean Ēall and the standard deviation
σall for all of the genes in the dataset, the weighted t-statistic
for the TF is then:

tT = ĒT − Ēall√
σ 2

T
n + σ 2

all
n

where n is the total number of target genes. The degree of
freedom (df) for this two-sample t-test with unequal vari-
ance is calculated as follows:

d f = (n − 1)

(
σ 2

T + σ 2
all

)2

σ 4
T + σ 4

all

Since the total number of target genes n is usually large
enough, the t-statistic will have an approximately normal
distribution and the df will have little effect on the P-value.

To correct the P-values for entire gene sets for multiple
hypothesis testing, we calculated FDR q values using the
Benjamini–Hochberg procedure (7).

The python code and the network between TFs and their
targets for the wPGSA analysis used in this paper are avail-
able at https://github.com/eiryo-kawakami/wPGSA. The
wPGSA web application and datasets are available at http:
//wpgsa.org. Users can use their own log fold change (LFC)
data as an input to estimate the relative activities of TFs.

Comparing enrichment methods

For the comparison, gsea2-2.2.2.jar was downloaded
from the GSEA website (http://software.broadinstitute.org/

gsea/) and GAGE was implemented in python based on the
description of the authors (8).

RNA-seq data analysis

RNA-seq data from myeloid cells stimulated with
Lipopolysaccharide (LPS) and/or IL-10 (9) was ob-
tained from the NCBI GEO database, using the GEO
Series accession number GSE55385. Raw data files in
SRA format were converted into FASTQ format using the
fastq-dump function of SRA Toolkit. Each sequence read
was aligned to the mouse mm9/NCBI37 genome using
Tophat2 version 2.0.13 and Bowtie2 version 2.2.5 (10,11).
Read counts for the genes annotated in UCSC mm9 were
assembled using featureCounts (12), and differential gene
expression was determined using DESeq2 version 1.8.1.

Microarray data analysis

Microarray data were obtained from GEO Series ac-
cession numbers; GSE16375 and GSE31381 for the TF
over-expression experiments in mESCs (13,14); GSE40728
for the experiments investigating CDK8-mediated STAT1
phosphorylation (15); GSE25044 for the IFN-� treated
mouse embryonic fibroblasts (MEFs) (16); GSE10246 for
the gene expression profiles across 91 murine cell and tis-
sues types (17); GSE63786 for the time-course data from the
lungs of influenza virus-infected mice (18). The Bioconduc-
tor package limma was used for median-centering, quantile
normalization, linear smoothing and calculation of differ-
ential gene expression.

Network construction of ES-specific TF interaction

We applied wPGSA to LFCs in embryonic stem cells
(ESCs) compared with MEFs using the gene expression
profiles obtained from GSE10246 datasets and calculated
the Enrichment Score and FDR. Among 279 TFs with an
FDR of <0.05, we further selected the ES-specific TFs that
exhibited a marked Enrichment Score of >10 or ←10, and
consequently obtained 37 TFs. The transcriptional regu-
latory network of TFs was constructed based on the fre-
quency of ChIP binding of a TF to other TF genes. The
network is a weighted directed network using the probabil-
ities of TF binding as weights.

RESULTS

Reconstruction of GRNs by collecting global public ChIP
data

To build a comprehensive picture of transcription regula-
tion, we first collected all high-throughput experimental
data evaluating mouse TF binding, including those from
ChIP-seq and ChIP-chip experiments, from NCBI Gene
Expression Omnibus database (GEO; www.ncbi.nlm.nih.
gov/geo). Although an attempt was previously made to con-
struct a similar mammalian ChIP database (ChEA2; http://
amp.pharm.mssm.edu/ChEA2/index.html) (19), the recent
dramatic decrease in the cost of high-throughput assays has
led to a rapid increase in ChIP experiments, covering hun-
dreds of TFs. We integrated additional data obtained from

https://github.com/eiryo-kawakami/wPGSA
http://wpgsa.org
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
http://www.ncbi.nlm.nih.gov/geo
http://amp.pharm.mssm.edu/ChEA2/index.html
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the GEO database with the ChEA2 database to construct a
ChIP database containing a total of 8 578 738 binding inter-
actions for 454 transcription regulators from 87 ChIP-chip
and 530 ChIP-seq publications comprising 273 ChIP-chip
and 2924 ChIP-seq individual experiments (Supplementary
Table S1). This database is four times larger than the ChEA2
database, although it currently contains only mouse ChIP
data. The data also includes ChIP-seq data from the mouse
ENCODE project (20) as the ChEA2 database. The de-
tailed TF binding peak data, including the locations of the
peaks and the distances to the nearest TSSs, are available at
http://wpgsa.org/download/.

To evaluate the overlap of binding targets between differ-
ent ChIP experiments, we calculated the Jaccard’s similarity
between each pair of individual ChIP experiments for a TF
and hierarchically clustered them (Figure 1A and B). Un-
expectedly, we observed rather large differences between ex-
periments, even where both the same antibody and the same
cell type were used. For both STAT1 and MYC TFs, the ma-
jority of experiments demonstrated <50% overlap in shared
binding targets. This likely reflects the complicated condi-
tion dependency of TF binding, which involves not only cell
type, but also culture conditions and environmental stimuli.
The multistep procedures of ChIP experiments, in each of
which, optimization of conditions is required, might also
lead to inconsistency between the experiments undertaken
by different labs. Although we found limited overlaps be-
tween different experiments, there were a few genes bound
by a TF throughout most of the experiments (Figure 1C
and D). Thus, we found rather large differences in bind-
ing frequency of a TF between target genes, suggesting that
some genes are controlled by the TF regardless of condi-
tions, while others are more conditional.

Next, we examined the similarity in binding targets be-
tween each pair of TFs to unravel cooperative relationships
between TFs. We identified some characteristic clusters in
the heat map (Figure 2 and Supplementary Table S2). One
of them was the Polycomb-group (PcG), a family of proteins
that modify histones and/or mediate interactions of distant
regulatory elements to silence mostly target genes by form-
ing Polycomb repressive complexes (21,22). In addition to
the dense interactions within the cluster, PcG proteins also
shared binding targets with many other TFs, indicating
their wide range of counteracting roles in transcriptional
suppression. Other characteristic clusters corresponded to
known protein families or complexes with cooperative reg-
ulatory functions, including Methyl-CpG binding proteins,
cohesion complex proteins and TFs related to the control of
circadian rhythm (23–25). Notably, we found dense protein–
protein interactions (PPIs) between TFs within those clus-
ters (Figure 2). In addition, the ratio of high confidence PPI
in the STRING database (26) (experimental score > 0.5)
was significantly higher between TFs with high similarities
in binding (Spearman’s rank correlation coefficient > 0.5)
than between TF pairs with low similarities (odds ratio =
7.23, P = 3.31 × 10−101; Fisher’s exact test, Supplementary
Table S3). These results indicate that similarities in binding
targets partially reflect physical interactions between TFs. A
giant cluster containing many TFs was found in the lower
left of the heat map (Figure 2, red line). Components of the
cluster shared many binding targets with each other, and

also with transcription suppressors such as PcG proteins.
This suggests an underlying architecture of transcription
regulation where some genes are redundantly controlled by
various TFs.

Finally, we evaluated the correlation between ChIP bind-
ing sites and the sites for the corresponding DNA sequence
motif obtained from JASPAR and UniPROBE databases
(27,28). For ∼60% of motifs, we found a significantly higher
frequency of ChIP binding peaks for the TF in gene promot-
ers containing at least one copy of the motif sequence (Sup-
plementary Table S4; P < 0.05, Mann–Whitney U-test), in-
dicating that the motifs do represent ChIP binding sites. In-
terestingly, TFs demonstrating inconsistency between ChIP
binding sites and locations of the corresponding motif had
been investigated in a significantly smaller number of ChIP
experiments (P = 4.54 × 10−6; Welch’s t-test). This indicates
that prediction of TF targets or motifs based on such small
numbers of ChIP experiments can place a disproportionate
emphasis on a limited number of experimental conditions.
In addition, the correlation between frequencies of ChIP
binding and numbers of motif sites around a TSS was low
(Supplementary Table S4; Pearson correlation coefficient =
−0.003 to 0.36). Thus, although the TF binding events are
basically defined by promoter sequences, the frequencies of
binding events are strongly influenced by other factors.

Overall, our integrated ChIP database provides a com-
prehensive picture of transcription regulation, including
condition dependency of TF binding and cooperative rela-
tionships between TFs. Although we observed inconsisten-
cies between individual ChIP experiments, combining the
data from many observations masked technical variations,
and revealed the control exerted by transcription regulators.

Overview of the weighted parametric gene set analysis
(wPGSA) method

GSA has been widely used for the detection of biologically
relevant gene categories (29,30). Recently, GSA methods
employing the t-test were proposed to compare a parametric
distribution of gene sets against a background distribution
of all genes (8,31–32). Parametric GSA methods have ad-
vantages in terms of sensitivity and computational effort,
compared with other GSA methods based on Hypergeo-
metric or rank tests (31). To utilize information regarding
heterogeneous frequencies of TF binding events, we intro-
duced a weighted t-test procedure (33) into a parametric
GSA for the prediction of TFs responsible for a specific gene
expression pattern.

The wPGSA for TF prediction comprises three steps:
Step 1: evaluation of the probability of regulation. We eval-

uate the probability of regulation based on the frequency
of ChIP binding of a TF. The probability of a TF regulat-
ing a gene, where k times binding events were observed in
n ChIP experiments, can be readily estimated as k/n using
the maximum-likelihood method (Figure 3A).

Step 2: calculation of an Enrichment Score based on a
weighted t-test. We tested whether the mean LFCs in ex-
pression of target genes of a TF are significantly differ-
ent from that of the whole genes Since the traditional fold
change, calculated simply as a ratio of expression values, is
sometimes inappropriate for the evaluation of differential

http://wpgsa.org/download/


5014 Nucleic Acids Research, 2016, Vol. 44, No. 11

0.00

0.25

0.50

0.75

1.00

Jaccard’s
Coefficient

40000 
30000 

10000 
20000 

0 

Number
of peaks

Cell type
T cell
Fibroblast
Macrophage
Dendritic cell

0 
20000 
40000 
60000 
80000 

Cell type

T cell
B cell

ESC, iPSC
Fibroblast

Others

Number
of peaks

0.00

0.25

0.50

0.75

1.00

Jaccard’s
Coefficient

30 

32 

34 

36 

38 

40 

42 

Irf
9 

R
tp

4 
Tr

im
30

a 
Ifi

27
 

O
gf

r 
O

as
l2

 
H

2-
T2

4 
S

lfn
5 

S
ta

t2
 

G
bp

9 
G

ad
d4

5b
 

Tr
im

12
c 

P
np

t1
 

R
an

bp
2 

Nu
m

be
r o

f p
ea

k-
po

si
tiv

e 
Ch

IP
 

ex
pe

rim
en

ts
 in

 to
ta

l 4
2 

ex
pe

rim
en

ts

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Nu
m

be
r o

f p
ea

k-
po

si
tiv

e 
Ch

IP
 

ex
pe

rim
en

ts
 in

 to
ta

l 4
2 

ex
pe

rim
en

ts

11738 binding target genes of Stat1

Top binding target genes of Stat1

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 

39 

40 

41 

42 

43 

44 

Tr
m

t1
0a

 
In

o8
0 

Tb
rg

4 
P

sm
e3

 
P

cb
p1

 
M

tg
1 

S
ph

k2
 

P
tm

a 
P

la
2g

6 
U

sp
l1

 
R

rp
1b

 

Nu
m

be
r o

f p
ea

k-
po

si
tiv

e 
Ch

IP
 

ex
pe

rim
en

ts
 in

 to
ta

l 4
7 

ex
pe

rim
en

ts
15186 binding target genes of Myc

Top binding target genes of Myc

Nu
m

be
r o

f p
ea

k-
po

si
tiv

e 
Ch

IP
 

ex
pe

rim
en

ts
 in

 to
ta

l 4
7 

ex
pe

rim
en

ts

A
B

DC

Figure 1. Overlap of binding targets between different ChIP experiments. Hierarchically clustered similarity heatmaps of binding targets between pairs of
individual ChIP experiments investigating (A) STAT1 and (B) MYC. Jaccard’s coefficient was used to evaluate the degree of overlap between individual
experiments. Over the heatmap, the number of peaks detected in the experiment is indicated as a bar chart and the cell types used in the experiment are
shown in color boxes. Binding frequencies for potential target genes observed in various ChIP experiments investigating the TFs (C) STAT1 and (D) MYC.
Target genes with a high frequency of TF binding are presented in additional panels at high magnification.

expression, especially in the case of low expression genes,
we recommend the use of the ‘moderated’ fold change cal-
culated by limma (34) or DESeq2 (35). To put more em-
phasis on those genes with high frequencies of TF binding,
we employ a weighted two-sample t-test, using the proba-
bilities of regulation as weights. For the weighted t-test, we
use the weighted mean and variance statistics to calculate
a weighted t-statistic (Figure 3B). As the t-statistic denotes
how many standard errors the weighted mean of the LFCs
in expression of the selected gene set are away from that of
the background, we use the weighted t-statistic as an enrich-
ment score indicating the relative activity of a TF.

Step 3: determining the significance level of Enrichment
Scores, taking into account multiple hypothesis testing. The
weighted t-statistic follows the t-distribution as described
in the ‘Materials and Methods’ section. We first calculated
a P-value for the null hypothesis that the weighted mean
LFCs in expression of target genes of the TF are equal to
that of the background, using the weighted t-statistic and

the t-distribution. To correct the P-values computed for
individual TFs for multiple testing issue, the FDR is cal-
culated using the Benjamini–Hochberg procedure (7). The
FDR is the estimated probability that the Enrichment Score
is falsely judged as significant. In this study, TFs with FDRs
of <0.05 are considered to significantly change their activi-
ties.

The detailed implementation is described in the Methods
section. The wPGSA will be applicable for the prediction of
other responsible factors where incorporating the strength
of the relationship as a weighting factor is desirable.

Validation of the wPGSA method for TF prediction

To validate the TF activities predicted by wPGSA using bi-
ological observations, we first applied the method to tran-
scriptome data from mouse embryonic stem cells (mESCs)
over-expressing various TFs (13,14). Among the 65 TFs
evaluated, 34 were estimated to be significantly activating
in data from samples where they were over-expressed, while
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Figure 3. A schematic overview of the wPGSA algorithm. (A) Evaluation
of the probability of regulation based on the frequency of TF ChIP bind-
ing. When k times bindings are observed in n ChIP experiments, the like-
lihood function of probability of regulation has a maximum value at k/n.
(B) Weighted two-sample t-tests using the probabilities of regulation as
weights. In the weighted t-test procedure, weighted statistics were used to
place more emphasis on samples with high frequencies of TF binding. For
example, TF A binds more frequently to those genes with low expression,
while TF B has frequent binding peaks on highly expressed genes. In such
cases, the weighted mean of the fold changes is low for TF A and high for
TF B.

7 exhibited significant negative Enrichment Scores, indicat-
ing repressive effects on their target genes (Figure 4A and
Supplementary Table S5). The majority of TFs with signif-
icant positive Enrichment Scores are known transcription
activators. We also confirmed that the 6 of 7 TFs with sig-
nificantly negative Enrichment Scores mainly act as tran-
scription repressors. Thus, the activities of over-expressed
TFs predicted by wPGSA were in excellent agreement with
those expected from their known biological roles. Three
TFs, NELFA, MBD3 and STAT3, which exhibited Enrich-
ment Scores opposite to those expected were reported to
have relatively little effect on the transcriptome in the source
studies (13,14), indicating insufficient over-expression (Fig-
ure 4A, gray line). Prediction based on such subtle gene ex-
pression changes can lead to inappropriate results affected
by background noise.

We then compared the performance of wPGSA with
those of other enrichment methods based on unweighted
statistical tests. GSEA with the gene labels permutation op-
tion (30), which is based on the rank test, and GAGE (8),
a parametric enrichment method based on two sample t-
tests, were applied to TF over-expression datasets as control
methods. To this end, the weighted gene sets used in wPGSA
were converted into conventional unweighted gene sets by

http://string-db.org
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enrichment procedures. Colored boxes indicate the FDR levels, in which deeper red colors indicate a smaller FDR with a positive Enrichment Score and
deeper blue colors indicate a smaller FDR with a negative Enrichment Score. (C) STAT1 activities of wild-type or S727A MEFs estimated by wPGSA.
MEFs treated with the siRNAs, siCdk8 or siCtrl, were either stimulated with IFN-� or unstimulated. (D) STAT3 activities of mouse myeloid cells treated
with IL-10 and/or LPS. (E) Activities of STAT family proteins of WT or STAT3 KO MEFs stimulated with IFN-�.
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setting discrete thresholds of 0–90%. For instance, when we
set a 30% threshold, those genes with a 30% or more fre-
quency of ChIP binding of a TF were considered as reg-
ulatory targets of the TF. We used these ChIP-based gene
sets instead of the C3 TF motif gene set in MSigDB (http://
software.broadinstitute.org/gsea/msigdb/collections.jsp) to
compare the methods in the same condition as much as
possible. The TF regulations estimated by the three meth-
ods overlapped substantially, but the predictions made by
GSEA and GAGE were affected by the thresholds for the
gene sets (Figure 4B). With a low threshold, too many
genes with low frequencies of TF binding in a gene set
might present obstacles to obtaining an accurate predic-
tion, while too high a threshold could lead to inappropri-
ate predictions by excluding important target genes. Al-
though the sensitivity of wPGSA was globally higher than
that of GSEA and GAGE, we observed some TFs, such
as KLF4, BRAC, BCL6 and ATF3, for which the predic-
tions by GSEA and/or GAGE were more consistent with
their known biological roles. This indicates that sometimes
it might be better to ignore completely the low frequency,
possibly non-specific, bindings of a TF to predict its regu-
lation.

Next, we compared TF prediction based on ChIP bind-
ing data to DNA sequence motif-based prediction. Sites
for a motif around a TSS, rather than ChIP binding sites,
were used to associate TFs with genes. When the motif-
based enrichment method was applied to the transcriptome
data from over-expressed TFs, we obtained smaller abso-
lute Enrichment Scores for both activators and repressors,
to those based on ChIP data (Figure 4B and Supplemen-
tary Table S6). Moreover, some TFs, such as GATA2 and
EOMES, which were predicted by ChIP-based wPGSA to
have significantly altered activities under conditions of over-
expression, gave insignificant results using the motif-based
method. Even when we used the number of DNA sequence
motif sites around a TSS as a weight for wPGSA, the En-
richment Scores scarcely improved (Figure 4B and Supple-
mentary Table S6). Overall, wPGSA incorporating ChIP
binding data as weights more clearly estimated the relative
activities of TFs than the motif-based method.

Some TFs are constitutively expressed and only acti-
vated by phosphorylation in response to specific stimuli.
We examined whether our wPGSA method can predict
such post-translational activation of TFs. To this end, mi-
croarray data from MEFs treated with interferon-� (IFN-
� ), which induces phosphorylation of STAT1 at Y701 and
S727 leading to increased transcriptional activity, was used
(15). As shown in Figure 4C, wPGSA predicted STAT1
activity to be significantly increased under conditions of
IFN-� stimulation. Silencing of CDK8, which is reported
to reduce S727 phosphorylation of STAT1 without affect-
ing Y701 phosphorylation, partially reduced the predicted
STAT1 activity. In addition, the S727A mutant of STAT1
exhibited a lower Enrichment Score using wPGSA than
that under CDK8 silencing, reflecting complete absence of
S727 phosphorylation. The fact that STAT1 activity re-
mained even in the S727A mutant indicates that STAT1 ac-
tivity is determined by both Y701 and S727 phosphoryla-
tion. Thus, wPGSA elaborately predicted phosphorylation-
mediated STAT1 activities, depending on several regula-

tory conditions. For validation of estimations of STAT3
activity, we applied the method to RNA-seq data from
myeloid cells stimulated with LPS and/or IL-10 (9). LPS
stimulation induces MAPK-driven Y705 phosphorylation
of STAT3, whereas IL-10 induces canonical S727 phos-
phorylation (15,36–37). We found greatly elevated STAT3
activity in all myeloid cells under IL-10 stimulation (Fig-
ure 4D). Simultaneous treatment with both LPS and IL-10
showed comparable levels of STAT3 activation, while rel-
atively lower but significant Enrichment Scores were ob-
served under LPS stimulation alone. These results suggest
that canonical S727 phosphorylation and non-canonical
Y705 phosphorylation work independently and are not cu-
mulative.

We also checked whether our method could distinguish
between TFs with highly similar binding motifs, such as
those of the STAT family. In wild-type MEFs treated with
interferon-� (IFN-�) (16), STAT1, STAT2 and STAT3
were all predicted to be highly active (Figure 4E). STAT3
knockout drastically decreased only the STAT3 Enrichment
Score, while the activity of other STATs remained relatively
unaffected. The expression level and phosphorylation status
of STAT1 and STAT2 are reported to remain comparable
when STAT3 expression is knocked down (16), suggesting
that our method could clearly discriminate the activities of
the different STAT TFs, despite their highly similar binding
motifs.

In summary, these results demonstrate that wPGSA
based on ChIP data can predict activities of various TFs,
regardless of cell types and conditions, with results that are
completely consistent with biological observations.

Creating comprehensive pictures of TF activity using ChIP-
based wPGSA

To illustrate the utility of wPGSA for capturing the dy-
namic and complex nature of gene regulation, we applied
the method to gene expression profiles from 91 murine cell
types and tissues (17). LFCs, compared to the median ex-
pression across all cell types, were used to estimate the rel-
ative activities of TFs in each cell type. Our results revealed
activations and repressions of TFs that characterize cell
types and tissues (Figure 5A and Supplementary Table S7).
For instance, inflammatory TFs, including IRF2, SPIB and
IRF8, were activated in myeloid cells, while they were re-
pressed in other tissues. In addition, a characteristic acti-
vation of BRDT was observed in testis, which is consistent
with the central role of this TF in the regulation of sper-
matogenesis (38). Interestingly, we also found high similar-
ity between the TF activation patterns of ESCs and those of
embryonic blast cells, including MEFs. This result explains
why MEFs can be reprogrammed into induced pluripotent
stem cells (iPSCs) through forced expression of a few TFs
(1). The four TFs required for reprogramming of MEFs,
PO5F1, SOX2, KLF4 and MYC, showed high levels of acti-
vation in ESCs and targeted extensively those TFs highly ac-
tivated or repressed specifically in ESCs (Enrichment Score
of >10 or ←10) and were also extensively targeted by those
TFs (Figure 5B). Thus, these four factors might interact
closely with other ES-specific TFs to maintain pluripotency.

http://software.broadinstitute.org/gsea/msigdb/collections.jsp
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Figure 5. Activities of TFs characterizing cell types and tissues. (A) Relative TF activities across 91 murine cell types and tissues estimated using wPGSA.
The vertical axis of the histogram denotes 486 TFs and the horizontal axis 91 cell types and tissues. Enrichment Scores for both vertical and horizontal
axes were hierarchically clustered using Ward’s method. The Pearson’s correlation coefficient was used to evaluate similarities. Characteristic groups of cell
types and tissues are labeled under the horizontal axis. HPC: hematopoietic stem cell; DC: dendritic cell; M�: macrophage; ESC: embryonic stem cell. (B)
Transcriptional regulatory network of TFs specific for mESCs (Enrichment Score of >10 or ←10). Those nodes with more out-degrees (regulate many
other TFs) were placed in a higher position and those with high in-degrees (regulated by many other TFs) were placed to the right. The node sizes indicate
the LFCs of the TF gene in mESC compared with MEFs as the input and the node colors indicate the Enrichment Scores of TFs estimated with wPGSA
using the LFCs of all genes. The width of the directed line represents the probability of transcriptional regulation of a TF over other TF gene.
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Next, we applied the method to compare the time-
course transcriptome data of mouse lungs infected with in-
fluenza viruses with those of mock-infected lungs, includ-
ing the low pathogenicity seasonal H1N1 virus, the mildly
pathogenic virus from the 2009 pandemic season, and the
highly pathogenic H5N1 avian virus (18). Although these
influenza A viruses exhibit significant differences in virus
titers and inflammatory responses during the infection, the
gene regulatory mechanisms that account for the different
profiles have not been elucidated. We observed activation
of various TFs at the early phase of seasonal H1N1 infec-

tion, whereas these TFs were less active early in the 2009
pandemic and H5N1 infections (Figure 6A and Supple-
mentary Table S8a–c). By contrast, inflammatory TFs, in-
cluding the IRF and STAT families were highly activated
18 h post-infection especially with the H5N1 virus (Figure
6A, indicated in red). These temporal changes in TF activ-
ities did not appear to correlate with lung virus titers, since
H5N1 virus produced the highest lung titers throughout
the infection (18). This indicates a potential mechanism of
the pathogenic virus that grows silently, inhibiting early im-
mune responses and causing late acute inflammation. When
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we compared the H5N1 virus to the seasonal H1N1 virus,
the TF CDK9 exhibited high repressive effects from 0 to
12 h post-infection, coincident with overall repression of in-
flammatory TFs (Figure 6B and Supplementary Table S8d).
CDK9 is a catalytic subunit of the positive transcriptional
elongation factor b (P-TEFb), which consists of CDK9 and
cyclin T, and RNA polymerase II (39). Moreover, CDK9
targeted the majority of TFs predicted to be highly activated
(average Enrichment Score of >10) in the late phase of in-
fection (after 8 h post infection) (Figure 6C). Taken together
with a previous report that P-TEFb interacts with influenza
A virus polymerase (40), we hypothesize that pathogenic in-
fluenza viruses strongly inhibit CDK9-dependent activation
of inflammatory TFs to escape from the early immune re-
sponse.

Thus, wPGSA incorporating ChIP data clearly captured
comprehensive pictures of gene regulation that characteris-
tically and dynamically change among cell types and dur-
ing disease progression. Moreover, we identified some po-
tential key regulators of cell reprogramming and influenza
virus pathogenesis, generating compelling hypotheses about
underlying regulatory mechanisms.

DISCUSSION

A major goal of molecular biology is to identify the key
regulators and elucidate regulatory mechanisms of gene
expression responsible for healthy and pathologic cellu-
lar states. Although high-throughput technologies now al-
low us to comprehensively measure genome-wide changes
in mRNA expression, uncovering underlying regulatory
mechanisms is an ongoing challenge due to their complex
and condition-dependent nature.

In this study, we developed a novel framework for GSA
based on the weighted t-test, namely wPGSA, which can
incorporate vast ChIP datasets in the form of weights.
Compared with motif-based estimation, wPGSA based on
ChIP data has several advantages. First, it can consider the
strength of a relationship as a weight. Although TF-binding
motifs determined by SELEX or ChIP experiments repre-
sent consensus sequences to which TFs are likely to bind,
information relating to the frequency of actual TF bind-
ing is not included in the motif. By putting more emphasis
on those genes with high frequencies of actual TF binding,
wPGSA can predict which TFs are responsible for a gene
expression pattern with more sensitivity and reliability. Sec-
ond, we can assess the activities of a larger number of TFs
with wPGSA based on ChIP data, because limited numbers
of TF-binding sites have been converted into motifs; only
202 non-redundant motifs for all vertebrates TFs were con-
tained in the JASPAR CORE database in 2014 (27). More-
over, using the motif-based method, TFs with similar bind-
ing motifs, such as the STAT family, are barely distinguish-
able, despite the fact that each TF can be activated indepen-
dently under different conditions. Our method can assess
the activity of any TFs for which high-throughput ChIP ex-
periments have been performed, and distinguish them from
one another. Therefore, while binding motifs are useful in
investigation of the DNA-binding properties of TFs, for the
prediction of TF activity, it is more efficient and effective to
use direct ChIP binding data.

Finally, we would like to discuss the limitations and
the extensibility of wPGSA. In this study, we considered
only proximal TF binding sites, although most mammalian
genes are regulated by a complex array of enhancers. TF
binding to proximal sites dominantly contributes to gene
regulation (41), which is one of the reasons why our method
could reasonably predict the regulation for most of the
TFs evaluated in this study. By contrast, promoter-distal
enhancers have an important role in the control of cell-
type specificity (42). Recently a genome-wide atlas of en-
hancers was constructed covering the majority of tissues
and cell types of human and mouse (43,44). We are currently
developing methodology for the evaluation of enhancer-
mediated gene regulation by integrating high-throughput
experimental data capturing genome conformation such as
Hi-C into the enhancer atlas. In addition, other biological
regulatory mechanisms, such as post-transcriptional regu-
lation by microRNAs and metabolic control by enzymes,
are also highly condition-dependent and vary in strength.
To obtain a holistic view of biological systems, we should in-
tegrate multiple types of omics data corresponding to differ-
ent layers of the biological network (45). wPGSA will also
be applicable to the integration of different types of high-
throughput experimental data in the form of weights. The
wPGSA framework will help uncover the dynamic and ro-
bust architectures of biological regulatory systems respon-
sible for cellular states in health and disease.
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Supplementary Data are available at NAR Online.
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