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Intestinal epithelial cells (IECs) are non-hematopoietic cells that form a physical barrier

against external antigens. Recent studies indicate that IECs have pleiotropic functions in

the regulation of luminal microbiota and the host immune system. IECs produce various

immune modulatory cytokines and chemokines in response to commensal bacteria

and contribute to developing the intestinal immune system. In contrast, IECs receive

cytokine signals from immune cells and produce various immunological factors against

luminal bacteria. This bidirectional function of IECs is critical to regulate homeostasis

of microbiota and the host immune system. Disruption of the epithelial barrier leads

to detrimental host diseases such as inflammatory bowel disease, colonic cancer, and

pathogenic infection. This review provides an overview of the functions and physiology

of IECs and highlights their bidirectional functions against luminal bacteria and immune

cells, which contribute to maintaining gut homeostasis.
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INTRODUCTION

The gastrointestinal (GI) tract is derived from progenitors in the foregut endoderm. It is a mucosal
tissue covered by mucus and the major site for digestion and absorption of nutrients and water.
The GI tract is therefore a unique organ that is constitutively exposed to various foreign antigens.
Intestinal epithelial cells (IECs) covering the GI tract are non-hematopoietic cells that have a role
in anatomical segregation of these innumerable luminal antigens such as food-derived materials
and commensal microorganisms, as well as pathogens from host intestinal tissues (1). Because
IECs form a protective wall against luminal antigens, the epithelial barrier is critical to maintain
homeostasis of the GI tract. Indeed, disruption of the epithelial barrier by genotoxic irritants
and endogenous genetic dysfunction leads to abnormal infiltration of luminal antigens and the
development of inflammatory bowel diseases (IBDs) and infectious diseases (2).

In addition to the physical barrier function, IECs produce immunological molecules, such as
mucus, antimicrobial molecules, and carbohydrate moieties, as well as secretory immunoglobulin
A (SIgA) derived from plasma cells into the lumen (3). These chemical modulators prevent aberrant
attachment and infiltration of luminal antigens into intestinal tissues. IECs also produce cytokines
and chemokines as well as hormones that serve as modulators to fine tune the immune and nervous
systems in the gut (3, 4). Therefore, IECs function as a bidirectional modulator of luminal antigens
and the host.

Important environmental factors that modulate host metabolic and immune homeostasis are
commensal microorganisms including bacteria, fungi, parasites, and viruses (5). In particular,
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commensal bacteria are well-recognized as a booster of mucosal
immune responses such as IgA production, T cell development
and activation, and production of antimicrobial peptides by IECs
(6, 7). Perturbation of commensal microbiota, which is termed
as dysbiosis, and subsequent abnormal immune responses are
pre-dispositions for the development of a range of local and
systemic diseases such as IBDs, obesity, diabetes, cancer, and
even autism (6). Recent studies have shown that IECs are
important to recognize stimulation by commensal bacteria and
direct induction and regulation of immune responses in the
intestines. In contrast, immune cells underlining IECs direct
production of immunological factors that influence luminal
microbiota (8, 9). In this context, IECs coordinate crosstalk
between luminal commensal bacteria and gut immune cells.
This review highlights recent advances in understanding the
unique features of IECs accompanied by luminal microbes and
adjacent immune cells, and discusses unique functions of IECs
as a bidirectional modulator of luminal bacteria and the immune
system to maintain gut homeostasis.

EPITHELIAL SUBSETS AND PHENOTYPES
IN THE INTESTINES

The small intestine has unique protrusion structures called
villi that contribute to extending the mucosal surface area to
absorbing nutrients. In contrast, colon defects of villi have
a relatively flat structure to prevent potential damage caused
by intestinal contents in the event of transition from the
upper to lower portion. IECs covering the intestinal tract
are morphologically and functionally heterogeneous and have
pleiotropic roles as a surface barrier system. Each epithelial cell
subset, including enterocytes, goblet cells, Paneth cells, tuft cells,
enteroendocrine cells, microfold (M) cells, and epithelial stem
cells, have unique and specialized gene expression and functions,
which cooperatively form a sophisticated epithelial layer against
numerous antigens in the lumen. Disruption of the epithelial
barrier allows abnormal intrusion of luminal antigens, including
commensal bacteria, which causes detrimental inflammatory
diseases such as IBDs, infection, and sepsis.

Epithelial cells (ECs) in the intestine are categorized
into various subsets. The most prominent type of ECs are
enterocytes that constitutively form tight junction structures
and create the first line of the physical barrier against luminal
antigens at the mucosal surface (1). In addition to physical
barrier formation, enterocytes have the potential to produce
antimicrobial molecules, such as regenerating islet-derived 3
(RegIII) γ and Ly6/PLAUR domain containing 8 (Lypd8), and
generate various carbohydrate chains (8, 10, 11). In the context
of immunological functions, enterocytes express polymeric
immunoglobulin receptor (pIgR) at the basolateral side of the
cell membrane. After binding to pIgR, dimeric IgA produced by
lamina propria plasma cells transcytoses to the apical surface and
is subsequently released as SIgA into the lumen.

Goblet cells are well-characterized as mucus-producing cells.
The epithelial layer is covered by two mucus layers in the
intestines, specifically thick inner and thin outer mucus layers

(12). Mucin encoded by the Muc2 gene is a major component
of intestinal mucus. Because deletion of the Muc2 gene leads
to a defect of the inner mucus layer, commensal microbes can
access the epithelial surface. The constitutive and abnormal
bacterial stimulation observed in Muc2-deficient mice induces
pathological inflammation and tumorigenesis in the colon (13,
14). Recently, sentinel goblet cells have been characterized
in the colon. These cells produce mucin in response to
bacterial signals, and NOD-like family pyrin domain containing
6 (NLRP6)/inflammasomes govern exocytosis of mucin into
the lumen (15). Goblet cells also produce anti-inflammatory
molecules such as trefoil factor 3, a tissue-protective factor that
repairs the epithelial layer by inhibiting apoptosis, and resistin-
like molecule (RELM) β (16, 17).

Paneth cells reside in the crypt basal region and intercalate
with epithelial stem cells. They are specialized to produce anti-
microbial molecules such as lysozyme, α-defensins, secretory
phospholipase A2 (sPLA2), and RegIIIγ (11, 18). Paneth cells
also express epidermal growth factor (EGF), Wnt3, and the
Notch ligand delta-like 4 (Dll4) to maintain homeostasis of
epithelial stem cells (19). Therefore, disruption of Paneth cell
functions caused by aberrant endoplasmic reticulum stress and
autophagy signals leads to pathogenic infection and IBDs (20,
21). Because Paneth cells are observed in the small intestine, but
not in the colon, the anatomical location of typical epithelial
cell subsets governs intestinal functions. Antimicrobial peptides
specifically expressed in the colon may compensate for the
function of Paneth cells in the small intestine (10). A recent
single cell study of intestinal epithelial cell subsets provided
evidence that each subset is functionally heterogeneous and ECs
isolated from distinct intestinal regions have different phenotypes
even in the same subsets (22). For example, Paneth cells, a
secretor of antibacterial molecules, can be classified into two
types: Paneth-1 and-2. Paneth-1 cells, which highly express
α-defensin, are abundant in the ileum. In contrast, Paneth-
2 cells, which preferentially express RNase1, are enriched in
the duodenum. Although it is unclear why there is such a
regional distribution of the subsets of each IEC type, several
reports suggest that region-specific environmental stimuli may
affect epithelial physiology in the gut. In particular, specific
commensal bacteria colonizing a specific region of the intestinal
tract direct IECs to express specific antibacterial peptides,
carbohydrate moieties, and immune modulatory molecules that
induce immune responses in situ.

Another unique epithelial subset—Tuft cells—sense luminal
helminths, such as Tritrichomonas muris, through their GTP-
binding protein, α-gustducin (23). Tuft cells produce IL-25 and
thymic stromal lymphopoietin (TSLP) in response to helminths
to induce Th2-type immune responses and protect against
infection by a helminth (24).

M cells reside in the follicle-associated epithelium (FAE)
covering secondary lymphoid tissues such as Peyer’s patch and
isolated lymphoid follicles. They have unique morphological
characteristics such as irregular microvilli and pocket structures
containing lymphocytes and dendritic cells (DCs). M cells take
up antigens from the lumen as well as serve as an entrance
for pathogenic and non-pathogenic microorganisms. A recent
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report showed that allograft inflammatory factor 1 (Aif1) is
a critical molecule for uptake of antigens such as those of
Salmonella typhimurium (25). Receptor activator of nuclear
factor-κB ligand (RANKL) and TNF receptor-associated factor 6
(TRAF6)-mediated NF-κB signaling regulate differentiation of M
cells. Mesenchymal cells residing under the FAE produce RANKL
that is critical for the differentiation of M cells via epithelial
RANK (26, 27). All IECs derived from stem cells expressing
leucine-rich repeat-containing G protein-coupled receptor 5
(Lgr5) reside at the base of the crypt. These stem cells become
transient proliferative cells that differentiate into each mature
epithelial subset.

MICROBIOTA DIRECTLY AFFECTS
EPITHELIAL PHYSIOLOGY

More than 1 × 1013 bacteria symbiotically colonize the
human intestines (28). Each bacterial species adapts to the
specific intestinal environment for colonization, such as oxygen
concentration, pH, redox potential, nutrient supplies, host
secretions, and intestinal motility. Therefore, each bacterial
species colonize at different sections along the intestines (29,
30). Mice are usually maintained under specific pathogen-free
(SPF) conditions with sterile chow and water. Even under this
condition, inter-mouse variations are observed from the phylum
to the operational taxonomic unit (OTU) levels, especially in
gastric and small intestinal samples. Fecal microbiota has a
relatively similar bacterial population as the large intestine (30).
A community of bacteria resides in each GI tract region of
wildtype (WT) mice. At the family level, anaerobes including
Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae,
and Ruminococcaceae were enriched in the large intestine and
feces, while Lactobacillaceae predominantly colonized the small
intestine and stomach in a murine model (30). At the genus
level, the large intestine and feces had a higher percentage of
Bacteroides, Prevotella, and Alistipes, while Lactobacillus had a
higher proportion in the stomach and small intestine (30). In
the stomach and upper part of the small intestine, the number of
bacteria is low compared with the lower part of the GI tract (31).
It is difficult to discriminate “transient” bacteria that pass through
the intestines and “colonized” bacteria that proliferate and are
stably observed in the intestines. Mice usually feed on feces that
may pass through the stomach and small intestine, which may
also affect the bacterial population.

Importantly, the functions of IECs are affected by stimulation
of luminal antigens including commensal bacteria. As reported
previously, commensal bacteria influence epithelial physiology
and subsequent intestinal lymphoid structures and can cause
abnormal villous morphology and epithelial cell proliferation
(32). The mucus layer is thick in the distal colon in concert
with the abundance of goblet cells. This gradient is parallel
to the load of commensal bacteria. It has been reported that
Toll-like receptor (TLR) and NLRP6 signaling in IECs control
differentiation of goblet cells in response to microbial stimulation
(33, 34). Therefore, germ-free (GF) mice and antibiotic-treated
mice have a thin mucus layer. Production of antimicrobial

peptides such as RegIIIγ in GF mice diminishes compared with
WT mice (35). In addition, replication of epithelial stem cells
is disrupted, and thus, antibiotic-treated mice are susceptible
to colitis induced by physical and chemical disruption of IECs
(36). TLR2, TLR4, and Myd88, a downstream signaling molecule
of these receptors, are responsible for detection of commensal
bacteria. Epithelial cell proliferation is abnormal in mice lacking
TLR2, TLR4, and Myd88, and these mice are susceptible to
dextran sulfate sodium (DSS)-induced colitis (36). Furthermore,
TLR-commensal bacterium interactions are important to form an
epithelial barrier by maintaining tight junction proteins in IECs
(36, 37). Deficiency of such TLR signaling in IECs exacerbates
colitis induced by pathogenic bacteria such as Citrobacter
rodentium (38).

Intestinal bacteria synthesize a variety of materials derived
from foods as well as carbohydrates secreted from host IECs as
a consequence of their metabolism. These metabolites have been
reported to stimulate IECs and modulate epithelial physiology.
Important metabolites produced by commensal bacteria are
short chain fatty acids (SCFAs) such as acetate, propionate, and
butyrate. These SCFAs are usually generated from the process
of fermentation of dietary fibers. Bifidobacterium longum, an
obligate anaerobe, produces acetate that protects IECs against
apoptosis induced by O157 toxin (39). Acetate also induces
goblet cell differentiation, secretion of mucin, and decoration
of mucin glycans with sialic acid (40). Because of their lack of
commensal bacteria, GF mice have shorter Muc2 O-glycans and
express several glycosyltransferases at a low level in IECs (40).
Other anaerobic bacteria, such asClostridium clusters IV and IXa,
Faecalibacterium prausnitzii, and Bacteroides thetaiotaomicron,
produce butyrate. Although butyrate is an important SCFA to
establish the gut immune system, as discussed later, butyrate
represses the proliferation of intestinal stem cells during DSS
treatment (41). This may prevent abnormal transformation of
IECs under exogenous stress from the luminal environment.
Butyrate diminishes proliferative activity by inhibiting histone
deacetylase (HDAC) enzymes and inducing Forkhead box O3
(Foxo3) expression in epithelial stem cells (41). The colonic
crypt architecture is suggested to protect against exposure of
a high concentration of butyrate to these epithelial stem cells
(41). Furthermore, butyrate from commensal bacteria promotes
colonic oxygen consumption by stabilizing the transcription
factor Hypoxia-inducible factor (HIF), which augments epithelial
barrier functions (42).

In addition to SCFAs, other metabolites from bacteria
such as lactate induce hyperproliferation of colonic ECs (43).
Because lactate is an energy source, epithelial stem cells use
lactate produced by adjacent Paneth cells, which promotes
differentiation and proliferation (44). Despite these accumulating
data, it is still controversial whether lactate-producing bacteria
such as Lactobacillus influence epithelial stem cell homeostasis in
vivo, especially in humans. Taken together, commensal bacteria
and commensal-derived metabolites are important to maintain
homeostasis of the epithelial barrier. Dysbiosis observed in IBD
patients and colitis mouse models, such as an expansion of
Enterobacteriaceae, may presumably reduce these metabolites,
leading to disruption of the epithelial barrier system (45, 46).
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In the intestines, fungi and bacteria compete for niches,
and these microbes influence each other. Although the number
of fungi is relatively low compared with bacteria, fungi
are a major microbial population in the gut. For example,
Candida, Saccharomyces, Aspergillus, Cryptococcus, Malassezia,
Cladosporium, Galactomyces, and Trichosporon have been
reported to colonize human intestines (47–49). In contrast to
humans, fungi colonization in the intestines of experimental mice
is dependent on the animal facility. Whereas, fungi are observed
in the gut ofWTmice, termed asmycobiota, laboratorymice bred
in some facilities are resistant to fungal colonization in the steady
state. This could be because the composition of commensal
bacteria colonizing mice is distinct between animal facilities.
Indeed, depletion of gut microbiota by antibiotic treatment
allows colonization of Candida and Saccharomyces in the gut
(50, 51). Among commensal microbiota, Blautia producta and B.
thetaiotamicron have been identified as the bacteria responsible
for colonization resistance against C. albicans. These bacteria
induce production of cathelicidin-related antimicrobial peptide
(CRAMP) from IECs, which is mediated by the transcription
factor hypoxia-inducible factor-1α, resulting in the inhibition
of colonization of the gut by C. albicans (50). Interestingly,
colonization of Candida and Saccharomyces ameliorates DSS-
induced colitis, although the detailed mechanism is still
unclear (51). Therefore, luminal microorganisms, including
bacteria and fungi, are closely associated with the intestinal
epithelial physiology.

“OUTSIDE-IN SIGNALS” FROM
MICROBIOTA MODULATE IMMUNE
RESPONSES

A difficulty of research related to commensal bacteria is that the
environment of the animal facility, especially food and water,
affects commensal microbiota. For example, the numbers of
segmented filamentous bacteria (SFB) and Lactobacillus murinus
are dramatically reduced in C57BL/6 mice bred in Jackson
laboratory, but not in Taconic farm, which is closely associated
with the development of host mucosal immune systems such as
the development of T helper 17 (Th17) cells (35). Antibiotic-
treated and GF mice are widely used to investigate the effect
of commensal bacteria on host physiological and pathological
functions. In addition, researchers have established GF mice
colonized with specific bacteria, termed gnotobiotic mice, using a
vinyl isolator under sterile conditions to uncover the role of each
bacterial species. It has been reported that colonization of specific
bacteria triggers the development of immune cells in the gut
(6). The intestinal immune system has tolerance for commensal
bacteria. However, this tolerance does not mean no response, but
a response to commensal bacteria without pathogenic symptoms,
which is also considered as “physiological inflammation.” Indeed,
the numbers of T cells and IgA+ cells are strikingly reduced and
secondary lymphoid organs are immature in GF mice compared
with WT mice. Whereas, commensal bacteria directly stimulate
immune cells in lamina propria in some cases, IECs stimulated
by commensal bacteria also initiate immune responses. This

review terms this cascade from commensal bacteria to immune
cells through IECs as “outside-in signals.” IECs recognize signals
from various commensal species and transmit these outside-
in signals to immune cells. Therefore, IECs play a central role
in the establishment of the gut immune system in response to
commensal bacteria.

Intestinal epithelial cells (IECs) recognize luminal bacterial
signals by a variety of pattern recognition receptors including
TLRs and nod-like receptors (NLRs). Enterocytes express TLR2,
TLR3, TLR4, TLR5, and TLR9 (52, 53). Unlike immune cells,
IECs have the unique feature of cellular polarization that
facilitates the anatomical distribution of TLRs. Although IECs
usually express TLRs at the basolateral membrane to circumvent
the induction of detrimental inflammatory responses, TLR2
and TLR9 are also expressed on the apical side of IECs (54).
TLR signaling in IECs leads to the expression of inflammatory
cytokines and chemokines such as IL1β, IL-6, IL-18, and CCL20.
In contrast, apical stimulation of TLR9 induces an immune
inhibitory effect through stabilization of IκB, demonstrating the
unique ability of IECs to differentially respond to microbial
signals using the same receptors expressed at apical and
basolateral positions (55). In addition to TLRs, IECs express
NLRs to detect bacterial components and danger signals. The
expression and functions of NLR in IECs are summarized in
another review (56).

Commensal bacteria induce development and maturation of
secondary lymphoid organs such as Peyer’s patch and isolated
lymphoid follicles (ILFs). Indeed, Peyer’s patches are hypoplastic
and ILFs are hardly observed in GF and antibiotic-treated
mice. The FAE covering Peyer’s patch and ILFs recognizes
luminal bacteria and initiates and organizes these secondary
lymphoid organs. Antigen-presenting cells located under FAEs
are mostly DCs. These DCs take up luminal antigens from
M cells in FAEs and prime T cells and subsequent activation
of B cells to initiate antigen-specific immune responses. FAE
induces structural organization of Peyer’s patch and ILFs by
producing chemokines such as CCL20 and CCL9 in mice and
CCL20 and CCL23 in humans (57, 58). DCs localized in the
subepithelial dome region are recruited by chemokines such
as macrophage inflammatory protein (MIP) 3α (59). CCL20
expressed by FAEs also recruits CCR6+ B cells into ILFs and
Peyer’s patch follicles (60). Although the bacterial recognition
system in FAE of Peyer’s patch is still mostly unclear, a set
of TLRs expressed in the FAE may affect such chemokine
expression (61). In the context of ILF development, nucleotide-
binding oligomerization domain containing 1 (NOD1) expressed
in FAEs recognizes peptidoglycans (PGNs) derived from Gram-
negative bacteria and induces CCL20 expression and subsequent
recruitment of CCR6+ DCs and group 3 innate lymphoid cells
(ILC3) (62) (Figure 1A).

Intraepithelial lymphocytes (IELs) are a T cell subset spatially
distributed between IECs. Homeostasis of IELs, especially
TCRαβ, but not TCRγδ IELs, is maintained by signals from
commensal bacteria. In GF mice, the number of IELs is
dramatically reduced compared with WT mice (63). Several
reports have shown that specific commensal bacterial species
are involved in the development of IELs. For example, SFB and
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FIGURE 1 | Intestinal epithelial cells (IECs) modulate the gut immune system in response to commensal bacteria (outside-in signals). (A) Diverse microbiota provides

the ligands of NOD1 expressed in IECs. These ligands induce production of epithelial CCL20 as well as recruitment of CCR6+ dendritic cells (DCs) and group 3 innate

lymphoid cells (ILC3) that initiate the development of isolated lymphoid follicles (ILFs). (B) Specific commensal bacteria, such as segmented filamentous bacteria (SFB)

and Clostridium, induce differentiation of Th17 cells and Tregs, respectively. SFB induce production of IL-22 from ILC3. IL-22 elicits epithelial SAA1/2 and subsequent

Th17 cell differentiation. IECs produce IL-10 in response to Clostridia and induce Treg differentiation. Epithelial IL-25 limits the production of IL-22 from ILC3. IECs

condition dendritic cells (DCs) to a tolerogenic phenotype through the production of TSLP. Tuft cells recognize helminth signals and produce IL-25 and TSLP that skew

Th2 immune responses. (C) Epithelial IL-18 production is mediated by activation of NLRP6 in response to taurine produced by commensal bacteria. Epithelial IL-18

induces the production of IL-22 from ILC3 and antimicrobial peptides (AMP) from epithelial cells in an autocrine manner. (D) Commensal bacteria elicit production of

APRIL and BAFF by IECs and IgA class switching of B cells.

Lactobacillus reuteri induce IEL subsets such as CD4+ CD8αα+

IELs (63, 64). Although metabolites produced by commensal
bacteria directly affect IEL development, IECs also mediate IEL
development and functions. IL-15 expressed by IECs participates
in IEL maintenance through trans-presentation of IL-15 to IL-
15Ra expressed on IELs (65). Although the mechanism is still
unknown, IL-15 is induced following exposure to commensal
bacteria (66). In addition, secretion of IL-15 by IECs is dependent
on MyD88. Therefore, the numbers of IELs are reduced in
MyD88-deficient mice, which can be restored upon transgenic
expression of IL-15 (67). This suggests that commensal signals
regulate IEL numbers through induction of IL-15 production
by IECs.

In the lamina propria region, differentiation of T helper
cells, especially Th1, Th17, Tregs, and CD8T cells, is controlled
by various commensal microbes (35, 46, 68–72) (Figure 1B).
Among these T cells, IL-17-producing Th17 cells positive for the
transcription factor RORγt are induced by SFB and a mixture of
20 species of human commensal bacteria (35, 72) (Figure 1A).
SFB specifically colonize at the epithelial layer in the ileum
and are closely associated with IECs. This association between
bacteria and IECs is critical to induce Th17 cells (71). Rat-derived

SFB, which are not able to attach to murine IECs, do not induce
Th17 cells in mice (71). In addition, C. rodentium expressing
structural protein intimin interact with IECs and induce Th17
cells. However, Th17 cells are not induced in mice infected
with an intimin-deficient strain (71). In addition to bacteria,
pathogenic fungus C. albicans colonize the epithelial surface and
induce Th17 cells (71). Epithelium-associated Escherichia coli
and Bifidobacteria adolescentis isolated from humans also induce
inflammatory Th17 cells (73). In addition to these pathogenic and
non-pathogenic microorganisms, Acinetobacter spp., Bacteroides
fragilis, and Proteobacteria have been reported as epithelium-
associated bacteria (74). However, it is still unknown whether
these bacteria have the potential to induce Th17 cells.

In the process of Th17 cell development, production of IL-
22 by ILC3 in response to SFB attachment to microvilli of IECs
elicits serum amyloid A proteins 1 and 2 (SAA1/2) from ileal
ECs, which augment Th17 cell development (75) (Figure 1A).
Importantly, IL-22 produced by ILC3 trigger activation of
signal transducer and activator of transcription 3 (STAT3), a
transcription factor downstream of the IL-22 receptor, in IECs.
SAAs derived from ileal ECs are critical for the development
of Th17 cells (75). Although the mechanism of how the
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association of SFB with IECs induces IL-22 production by
ILC3 is still unclear, reports suggest that IECs have a role
in the initiation and enhancement of Th17 cell development.
Th17 cells and IL-22 production by ILC3 are important to
prevent infection by C. rodentium (35). In addition to bacteria,
T. musculis, a previously unrecognized commensal protozoan,
activates NLRP6 in IECs and subsequent IL-18 production.
Microbiota-derived metabolites, such as taurine, histamine, and
spermine, regulate secretion of IL-18 and anti-microbial peptides
bymodulatingNLRP6 inflammasome signaling (15) (Figure 1C).
Taurine derived from microbiota enhances IL-18 production in
IECs (Figure 1C). In contrast, histamine and spermine inhibit
this IL-18 production (15) (Figure 1C). Defects in epithelial
NLRP6 reduce cleavage of caspase-1 and subsequent IL-18
secretion as well as the expression of antimicrobial peptides
that predispose to the development of dysbiosis and colonic
inflammation (15, 76). These microbiota-derived metabolites,
epithelial IL-18 production, and the anti-microbial peptide
production cascade are important to maintain microbiota
diversity and colonic homeostasis. Indeed, NLRP6-deficient
mice have spontaneous intestinal hyperplasia, inflammatory cell
recruitment, and exacerbated experimental colitis caused by
pathobiont colonization (76). In contrast to this report, other
groups have recently shown that NLRP6 deficiency has no
effect on the community of gut microbiota (77, 78). These
reports indicate the importance of performing experiments with
littermates when addressing the function of gut microbiota.
Several factors including mouse facilities and experimental
designs may also account for the discrepancies in the results.
Therefore, the role of NLRP6 in IECs against microbiota is still
controversial. Epithelial IL-18 also enhances the production of
IL-22 from ILC3 in the steady state (79) (Figure 1C). Because IL-
18 secreted from IECs augments inflammatory Th1 and Th17 cell
differentiation, mice infected with T. musculis are susceptible to
T cell-induced colitis and sporadic colorectal tumors compared
with uninfected mice (80, 81). In contrast, T. musculis-infected
mice are resistant to mucosal infection by S. typhimurium (80).
These studies indicate that IECsmodulate intestinal pathogenesis
as well as homeostasis in response to commensal bacteria.

In addition to the development of Th17 cells, IECs coordinate
anti-inflammatory Th cell responses. Clostridium class IV, class
XIVa, and cluster XVIII and B. fragilis have been reported
to induce Tregs in the colon (68, 69, 71) (Figure 1B). In
particular, colonization ofClostridium elicits production of IL-10,
a potent anti-inflammatory cytokine, from IECs, which enhances
differentiation of colonic Tregs (68) (Figure 1B). IECs also direct
anti-inflammatory Treg and Th2 cell differentiation by producing
TSLP after bacterial stimulation (Figure 1B). Expression of TSLP
is elevated in IECs treated with non-invasive bacteria in vitro
(82). TSLP from IECs conditions DCs to an anti-inflammatory
status and promotes polarization of T cells toward Tregs and
Th2 cells (82) (Figure 1B). TSLP derived from IECs prevents IL-
12-stimulated induction of DCs and enhances the production
of IL-6 and IL-10. Expression of IL-12, a Th1-prone cytokine,
from DCs is therefore augmented under a TSLPR-deficient
condition (83). IEC-intrinsic IKKβ controls TSLP induction.
Thus, both IKKβ- and TSLPR-deficient mice have defects in Th2

responses and are susceptible to parasitic Trichuris infection (83).
IECs also induce anti-inflammatory Th2 cytokine IL-25 (IL-17E)
in response to commensal bacteria. Thus, IL-25 expression is
defective in GF mice. IL-25 from IECs inhibits IL-22 production
from ILC3 (84, 85) (Figure 1B). Because IL-22 from ILC3 is
important for epithelial cell proliferation, IL-25 inhibits epithelial
tissue repair and exaggerates DSS-induced colitis (84). Taken
together, intestinal ECs transmit signals from luminal bacteria to
immune cells and trigger positive and negative T cell responses
to maintain gut homeostasis.

Commensal bacteria are also important to induce intestinal
immunoglobulin A (IgA). IgA production is impaired in GF
mice, which is correlated with immature secondary lymphoid
tissues (32). The IgA induction by commensal bacteria may
depend on anatomical colonization of specific commensal
bacteria. For example, SFB induce IgA in the ileum, but a
mixture of 46 Clostridia and Bacteroides acidifaciens induce
IgA in the colon (86, 87). In addition to SFB, epithelium-
associated commensal bacteria, such as Mucispirillum, activate
T cell-dependent IgA production (88). In the lamina propria
region, IgA is induced in a T cell-independent manner (89). In
this context, IEC-derived cytokines, especially TNF superfamily
members, B cell-activating factor of the tumor necrosis factor
family (BAFF), and proliferation-inducing ligand (APRIL),
induce class switching to IgA2, the main mucosal IgA class in
humans (Figure 1D). TSLP produced from IECs triggers APRIL
production by DCs in response to TLR-mediated signals from
commensal bacteria (90). Ectopic expression of TLR4 in IECs
augments the expression of CCL20, CCL28, and APRIL that
recruit and activate lamina propria (LP) CCR6+ B cells and IgA
class switching (91). These data support a model in which IECs
stimulated by commensal bacteria initiate T cell-independent
IgA production.

“INSIDE-OUT SIGNALS” MODULATE
MICROBIOTA

Because of the development of experimental tools to analyze
bacterial DNA, such as next-generation sequencing with
bioinformatics and quantitative PCR, the number, diversity,
population, and gene expression of the microbiota have been
investigated comprehensively. Using these powerful tools, it is
possible to analyze microbiota isolated from specific patients and
genetically modified murine models. Based on the accumulated
studies, it has been reported that intestinal immune cells
together with IECs affect luminal microbiota. Because of the
anatomical features of IECs exposed to the luminal environment,
immunological factors are usually produced by IECs. However,
intestinal immune cells express various bacterial recognition
receptors. Therefore, immune cells underlying IECs detect
bacterial signals and transfer the signal to IECs to produce
immunological factors. The cascade from immune cells to
commensal bacteria through IECs is termed as “inside-out
signals” in this review. In addition to signals from the luminal
environment, resident immune cells adjacent to IECs calibrate
epithelial physiology and luminal microbiota.
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Dimeric IgA produced by plasma cells in the LP binds
to pIgR expressed on the basolateral side of IECs. After
binding to pIgR, IgA is transcytosed to the apical surface
and subsequently released as SIgA into the lumen (Figure 2A).
SIgA is important to neutralize bacterial toxins, virus infection,
and invasion of pathogenic and non-pathogenic bacteria into
IECs. Recent elegant studies employing IgA-seq analysis have
revealed that IgA-coated microbiota has the characteristic
of immunogenic commensal bacteria (88, 92, 93). IgA-seq
is a method that combines IgA+ bacterial cell sorting and
16S rRNA gene sequencing of sorted bacteria to characterize
intestinal microbiota coated with IgA. Using this method, SFB,
Bacteroidales, Lactobacillus, and unclassified Erysipelotrichaceae
were identified to be highly coated with IgA in SPF mice
(Figure 2A). Under an inflammasome-deficient condition, mice
have aberrant commensal microbiota with a colitogenic feature.
In these mice, the Prevotellaceae family and Helicobacter sp.
flexispira, in addition to Lactobacillus and SFB, are coated
with IgA (93). Although it is still controversial whether
SIgA regulates homeostasis of commensal bacteria, activation-
induced cytidine deaminase (AID)-deficient mice with defects
in immunoglobulin class switch recombination (CSR) and
somatic hypermutation (SHM) have aberrant microbiota and
hyperplasia of germinal center B cells (94). In particular, SHM
rather than CSR is important to maintain homeostasis of gut
microbiota (95). SIgA also affects bacterial gene expression.
SIgA downregulates the expression of capsular polysaccharide
synthesis 4 (CPS4) and enhances CPS5 expression, both of which
are epitopes of B. thetaiotaomicron for adaptation to the intestinal
environment (96).

As described above, bacterial components and metabolites
directly stimulate IECs and maintain homeostasis of the
epithelial barrier. However, disruption of epithelial homeostasis
leads to pathogenic intestinal inflammation caused by the
production of proinflammatory cytokines, such as TNF, IL-
22, and IL17a, by innate and acquired immune cells. For
example, IEC-specific deletion of components that activate
nuclear factor-κB (NF-κB), especially the inhibitor of NF-κB
(IκB) kinase (IKK) complex and NF-κB essential modulator
(NEMO), results in spontaneous colitis caused by elevation of
epithelial apoptosis and exaggerated DSS-induced colitis (97, 98).
Commensal bacteria stimulate colonic DCs and/or macrophages
through MyD88 signaling and induce aberrant TNF production,
accelerating epithelial apoptosis, and inflammation (97)
(Figure 2B). This inflammation is impaired in TNFRI-deficient
IECs (97). These data indicate that epithelial NF-κB signals
contribute to maintaining homeostasis of the epithelial barrier
and inhibit excess production of inflammatory cytokines and
pathogenic inflammation. In contrast to NEMO, deletion of
IKKα in IECs results in TSLP overproduction and inhibition
of IL-22 production by ILC3 (99). Because of the disruption of
epithelial homeostasis, IKKα-deficient mice are susceptible to
colitis and pathogenic infection (98).

An important and well-characterized cytokine from immune
cells, which stimulates IECs is IL-22. IL-22 is a member of the
IL-10 cytokine family usually produced by Th17/Th22 and ILC3
under stimulation by IL-23. Because IL-22R is constitutively and

specifically expressed in IECs (100), IL-22 contributes to affecting
epithelial cell proliferation, differentiation, glycosylation, and
production of antimicrobial peptides. In particular, IL-22-
mediated epithelial stem cell regeneration is critical to maintain
gut homeostasis after genotoxic treatment and pathogenic
infection (101, 102). Indeed, IL-22 induces expression of
antimicrobial molecules RegIIIβ and RegIIIγ in IECs for
exclusion of pathogenic bacteria such as C. rodentium (100)
(Figure 2C). In addition to such immunological features, IL-
22 production by ILC3 creates a host-commensal symbiotic
platform in the gut. IECs express various carbohydrate moieties
on the apical surface of their cell membrane. Fucosylated
glycans are synthesized by addition of an L-fucose residue
via an α1-2 linkage to the terminal β-D-galactose of glycan
in a process catalyzed by fucosyltransferase (Fut), especially
Fut2 expressed in IECs. This epithelial α1, 2-fucosylation is
initiated by colonization of SFB and stimulation of DCs by
lipopolysaccharide (LPS). After such stimulation, IL-22 from
ILC3 induces Fut2 expression and α1, 2-fucosylation in IECs
(8, 9) (Figure 2C). Importantly, epithelial α1, 2-fucosylation
prevents infection and contributes to maintaining commensal
microbiota and gut homeostasis (8, 9, 103). In contrast to
the positive effect of ILC3, IL-10-producing T cells negatively
regulate the induction of ectopic epithelial α1, 2-fucosylation
(104). Interestingly, high numbers of α1, 2-fucose+ IECs and
Th17 cells are observed in the ileum, but not in the duodenum
(8, 105). The regional gradients of epithelial α1, 2-fucose and
the number of Th17 cells correspond to the colonization of
SFB. Therefore, colonization of specific microbes affects both
the localization and activation/differentiation state of immune
and ECs. In addition to α1, 2-fucose, expression of RegIIIγ and
nitric oxide synthase 2 (NOS2), and SAA production in ileal ECs
is controlled by SFB colonization (35). Although the detailed
mechanism is unclear, attachment of bacteria to intestinal ECs
triggers the subsequent unique development of immune cells
in the gut (72). Another report has shown that IL-23 produced
by CD103+ CD11c+ TLR5+ cells induces IL-22 from ILC3 in
response to bacterial flagellin (106) (Figure 2C).

Among the members of the IL-17 cytokine family, IL-
17a is mainly produced by γδ T cells and Th17 cells. IL-
17a induces epithelial NF-kB signaling and maintains tight
junctions (107, 108). IL17a-deficient mice are susceptible to
DSS-induced colitis. Therefore, IL17a is also important to
maintain the epithelial barrier function and homeostasis of the
intestines (109). IL17a and IL-17R signaling in IECs elicits the
expression of immunological factors, such as α-defensin, Nox1,
and pIgR, which regulate SFB colonization in the intestines
(110) (Figure 2C). As mentioned above, intestinal Th17 cells
are induced by commensal bacteria, especially SFB, and mice
colonized with SFB are resistant to infection by C. rodentium
(35). Therefore, SFB colonization regulates homeostasis of itself
and prevents infectious diseases mediated by IL-17a.

In the stomach, Lactobacillus produce the metabolite dietary
tryptophan, a ligand of aryl hydrocarbon receptor (AHR),
which also promotes differentiation of IL-22-producing ILC3.
IL-22 induces secretion of antimicrobial peptides from gastric
ECs, which prevent colonization by C. albicans (111). It has
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FIGURE 2 | Intestinal epithelial cells (IECs) stimulated by immune cells affect gut microbiota (inside-out signals). (A) Dimeric IgA antibodies produced by plasma cells

in the lamina propria bind to pIgR expressed on the basolateral membrane of IECs, undergo transcytosis, and are secreted into the lumen as SigA. SIgA binds to

commensal bacteria and maintains their homeostasis. (B) NEMO deficiency in IECs allows bacterial infiltration that leads to aberrant production of TNF from

macrophages/DCs and further apoptosis of IECs. (C) Lamina propria DCs produce IL-23 in response to bacterial flagellin and LPS. IL-23 induces production of IL-22

from group 3 innate lymphoid cells (ILC3) and Th17 cells, leading to expression of epithelial anti-microbial molecules, such as RegIIIγ and α1,2-fucose. RegIIIγ and

α1,2-fucose, which regulate the luminal microbial population. (D) Tuft cells produce IL-25 in response to helminth infection. Epithelial IL-25 promotes IL-13 production

from ILC2 and Th2 cells, and subsequent production of mucus from goblet cells.

been reported that dysbiosis, which is an altered Lactobacillus
population, is observed in caspase-associated recruitment
domain 9 (CARD9)-deficient mice (112). Dysbiosis observed
in mice lacking Card9 affects tryptophan metabolism and
impairs stimulation of AHR, leading to impairment of IL-22
production and expression of epithelial RegIIIβ and RegIIIγ
(112). In addition to the induction of IL-22, AHR activation
induces epithelial cytochrome P4501 (CYP1) enzymes that
oxygenate AHR ligands. The numbers of Th17 cells and ILC3
are dramatically reduced in mice with IEC-specific depletion of
Cyp1a1, resulting in increased susceptibility to infection by C.
rodentium (113).

In the context of helminth infection, the aforementioned

IL-25-secreting Tuft cells condition Th2 immune responses
as described above. ILC2 and Th2 cells activated by IL-

25 produce IL-13 and IL-33. Notably, IL-13 enhances the
production of mucus and antimicrobial peptide resistin-like

molecule β (RELMβ) by goblet cells, which mediate worm
expulsion (Figure 2D). In this manner, commensal bacteria,

IECs, and immune cells interact with each other and create a
network system at the mucosal surface, and IECs serve as key
players in this interplay. The triangular regulatory machinery
consisting of commensal bacteria, IECs, and immune cells is an
important and representative model for understanding intestinal
homeostasis (Figure 2).

CONCLUDING REMARKS

Commensal bacteria naturally co-inhabit the intestines of their
host. Because IECs encounter luminal antigens including those
of these symbionts, IECs produce symbiotic factors, such as
carbohydrate moieties and mucus, as well as immunological
mediators including antimicrobial peptides (11, 114). In addition
to SIgA, immune cells direct IECs to produce symbiotic
and immunological factors, and influence the microbiota and
gut homeostasis.

As discussed above, immune cells produce cytokines in
response to signals from commensal bacteria. How these immune
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cells detect commensal bacteria is an important question that
remains to be answered. One possibility is that CX3CR1+ cells
extending their dendrites into the lumen directly detect bacterial
stimulation (115). A recent study showed that lactate from
commensal bacteria induces the extension of dendrites from
these cells (116) and another report has shown that metabolites
produced by butyrate directly stimulate T cells in the lamina
propria (117). Future studies are required to identify the
mechanism by which metabolites produced by bacteria in the
lumen reach immune cells through IECs. Reports have shown
that commensal bacteria induce Th17 cell development and IL-
22+ ILC3 in the steady state (8, 35, 72, 75). DCs, which present
bacterial antigens to T cells, are critical for the induction of
Th17 cells (118, 119). In addition, IL-23 produced by TLR5+

DCs, which detect bacterial flagellin, induce IL-22 expression in
ILC3 (106). These data suggest that bacterial antigens reach and
stimulate LP DCs. How these bacterial antigens and metabolites
stimulate LP immune cells and the roles of IECs in this process
are still unknown. IECs may fill such an anatomical gap between
commensal bacteria and immune cells. For example, goblet cells
take up antigens from the lumen into LP CD11c+ DCs (120).
Further analysis is needed to reveal the detailed mechanism by
which luminal bacteria stimulate immune cells underneath IECs.

Recent single cell analysis of IECs has uncovered
heterogeneous gene expression, even in each subset of IECs
(22). As discussed in this review, IECs are located at the interface
between the luminal environment and host immune cells, which
are stimulated by both of them. In addition, IECs transmit
inside-out signals to luminal bacteria and outside-in signals to
immune cells. This bidirectional stimulation of IECs may be
one reason that each subset of IECs displays complicated gene
expression patterns. In particular, specific commensal bacteria
colonize their appropriate areas of the intestines and modulate
epithelial physiology and immune responses. The gnotobiote
system in vivo and development of commensal bacteria and

organoid coculture and/or organ culture systems in vitro may
provide useful information regarding how IECs respond to these
luminal bacteria. Identification of these mechanisms is essential
to better understand the host-microbiota interface and functional
diversity of intestinal ECs. Furthermore, understanding of the
role of IECs as a transmitter of luminal and immune signals
is important for development of strategies to prevent bowel
diseases including IBD, colonic cancer, and infection.
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