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Abstract: Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancers with
poor prognosis. The etiology of triple-negative breast cancer (TNBC) is involved in various bio-
logical signal cascades and multifactorial aberrations of genetic, epigenetic and microenvironment.
New therapeutic for TNBC is urgently needed because surgery and chemotherapy are the only
available modalities nowadays. A better understanding of the molecular mechanisms would be a
great challenge because they are triggered by cascade signaling pathways, genetic and epigenetic
regulations, and drug–target interactions. This would allow the design of multi-molecule drugs
for the TNBC and non-TNBC. In this study, in terms of systems biology approaches, we proposed
a systematic procedure for systems medicine design toward TNBC and non-TNBC. For systems
biology approaches, we constructed a candidate genome-wide genetic and epigenetic network (GW-
GEN) by big databases mining and identified real GWGENs of TNBC and non-TNBC assisting
with corresponding microarray data by system identification and model order selection methods.
After that, we applied the principal network projection (PNP) approach to obtain the core signaling
pathways denoted by KEGG pathway of TNBC and non-TNBC. Comparing core signaling pathways
of TNBC and non-TNBC, essential carcinogenic biomarkers resulting in multiple cellular dysfunc-
tions including cell proliferation, autophagy, immune response, apoptosis, metastasis, angiogenesis,
epithelial-mesenchymal transition (EMT), and cell differentiation could be found. In order to propose
potential candidate drugs for the selected biomarkers, we designed filters considering toxicity and
regulation ability. With the proposed systematic procedure, we not only shed a light on the differences
between carcinogenetic molecular mechanisms of TNBC and non-TNBC but also efficiently proposed
candidate multi-molecule drugs including resveratrol, sirolimus, and prednisolone for TNBC and
resveratrol, sirolimus, carbamazepine, and verapamil for non-TNBC.

Keywords: Triple-negative breast cancer (TNBC); non-TNBC; genome-wide genetic and epigenetic
network (GWGEN); systems medicine design; multi-molecule drugs

1. Introduction

Breast cancer is one of the most frequently diagnosed malignancies and the leading
cause of cancer death in women worldwide [1]. Among all the breast cancers, triple-
negative breast cancer (TNBC), with the absence of targeted therapy, is a more heteroge-
neous subtype of breast cancer immunohistochemically defined by lack of the expression
of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor-2 (HER2) [2,3]. TNBC not only constitutes approximately 10–15% of all breast
cancers, but also tends to be more common in young women than other subtypes of
breast cancer [4]. Patients with TNBC have the worst prognosis and mortality risk in
five years than other subtypes of breast cancer and cannot benefit from hormone- or
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trastuzumab-based therapy because of the loss of target receptors such as ER, PR, and HER-
2 [5]. Chemotherapy is the standard therapeutic approach for patients in both the early
and advanced stages of TNBC. It is noted that polypharmacology not only provides great
opportunities for drug repurposing to exploit off-target effects in a new single-target indi-
cation, but also offers exciting opportunities to slow, overcome, or even prevent inherent or
adaptive drug resistance through the simultaneous blockade of multiple targets or path-
ways [6]. Therefore, developing systematic procedure in a computational framework to
discover the potential combinations of multi-molecule drugs for new therapeutic treatment
of TNBC and non-TNBC is indispensable.

TNBC has a more biologically aggressive behavior, higher recurrence rate, higher
frequency of metastases and worse survival than other subtypes of breast cancers. The car-
cinogenic molecular mechanism of cancer is often caused by aberrations of gene, microRNA
(miRNA), long non-coding RNA (lncRNA), epigenetic modification, and microenviron-
ment factors. The miRNAs are small non-coding region in RNAs of 20–22 nucleotides,
which take part in all biological pathways in multicellular organisms including mam-
mals [7]. It is known that miRNAs participate in the progression of cancers by modulating
cell development, differentiation, proliferation, and apoptosis. Extensive studies have
demonstrated that miRNAs are dysregulated at all stages of breast cancer and have the
potential to be prognostic and predictive biomarkers [8–10]. Moreover, the other type of
non-coding RNAs that exceed 200 nucleotides in length is lncRNAs. They are now accepted
as important regulators in cancer development and different biological processes, such as
chromatin remodeling and transcriptional and posttranscriptional regulation [11]. Recent
evidences show that microenvironment-mediated epigenetic modification, which is the
process of heritable and reversible change in gene expression that occurs without a change
in the DNA sequence, plays an essential role in cancer [12,13].

Over the past decade, many researchers have been dedicated to analyzing protein–
protein interactions (PPIs) combined with functional information with different algorithms.
It not only improves the accuracy of protein complex detection but also broaden our
understanding of biological processes mediated through protein interactions. Based on
topological features of the PPI network and Gene Ontology (GO) annotations, the likeli-
hood of a gene involving in cancer is predicted by well-known classifiers, support vector
machines (SVMs) [14]. Carried out by walking on the fingerprints similarity network
randomly, a multi-level protein-protein interaction network (PPIN) reconstruction method
(MLPR) was proposed [15]. The clustering based on maximal cliques (CMC) algorithm
with the iterative scoring method has shown to be more robust toward random noise and
to achieve better performance of protein complex prediction. By applying the shortest
path algorithm in PPI networks, candidate genes which are associated with formation
and development of gastric cancer could be found [16]. The surge of public next genera-
tion sequencing (NGS) data availability has facilitated the application of systems biology
integrating heterogeneous data to investigate various human diseases with computa-
tional modeling approaches. Based on constructing the pathway logic symbolic systems
model via genomic, transcriptional, and proteomic profiles, the subnetworks within the
EgfR-MAPK pathway are identified [17]. Bayesian networks, which could describe direct
molecular interaction as well as indirect influences that proceed through additional unob-
served components, have demonstrated to be useful for understanding the operation of
cell signaling networks [18]. Moreover, one study proposed a mathematical model of the
plant clock using biological hypotheses and parameters solved by optimization methods
to gain insights into the clock components within core mechanisms [19]. Systems biology
approaches with modeling techniques enable us to elucidate the pathways, which are criti-
cally involved in tumor formation and progression, consequences of altered cell behavior
in tissue environment and effects of molecular therapeutics [20].
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On average, for traditional drug discovery, the pipelines take 12 to 16 years from
inception to market and cost one to two billion dollars [21]. However, drug repurposing,
which is a strategy for identifying new uses for approved or investigational drugs differing
from their original objective and purpose, could be done in less than half the time at a
quarter of the cost [22]. The general approaches used in drug repurposing are novel data
sources, retrospective clinical analysis, pathway mapping, genetics association, molecular
docking and signature matching [23]. For signature matching, the connectivity map
(CMap), which was established by the Broad Institute, consists of gene expression profiles
generated by the dosing of more than 1300 compounds in a number of cultivated cell
lines. It has widely been applied in several human disease investigations, including colon
cancer, prostate cancer, breast cancer, diet-induced obesity, and Alzheimer’s disease [24–27].
Along with the drug resistance found in oncology, the need for more effective combination
therapies to overcome this issue is increasing. One study has proposed a strategy to provide
a testable hypothesis for combination therapies based on gene expression signatures
between chemical perturbation and disease statuses [28].

In this study, we propose a systems medicine design procedure, which uses systems
biology approaches for finding essential biomarkers as drug targets and propose potential
candidate drugs by designing two filters considering drug regulation ability and toxicity.
For systems biology approaches, firstly, a candidate protein–protein interaction network
(PPIN) and a gene regulatory network (GRN) are constructed, respectively, by big database
mining. Secondly, with the help of microarray data of TNBC and non-TNBC, we apply
systems identification and model selection methods to obtain real GWGENs. Thirdly,
the principal network projection (PNP) approach is used to extract the core GWGENs
from the real GWGENs. Based on the analyses of the core signaling pathways denoted
by KEGG pathway, the carcinogenic molecular mechanisms for TNBC and non-TNBC
could be found as well as essential biomarkers which could be drug targets. In order to
recommend candidate drugs for the selected biomarkers, we take drug regulation ability
and toxicity into account.

Nowadays, few studies propose a procedure of systems medicine design from identi-
fying potential biomarkers as drug targets for one disease to recommending its candidate
drugs by designing filters. Systems medicine design procedure, an interdisciplinary ap-
proach on interpretation of heterogeneous data, gives an alternative way for drug discovery
to find new therapeutic treatment of TNBC and non-TNBC.

2. Results

By big database mining, we built a candidate GWGEN represented by a Boolean matrix
(e.g., 0 or 1 if interaction is nonexistent or existent between two nodes). The candidate
GWGEN is composed of candidate PPIN and candidate GRN. The TNBC and non-TNBC
share the same candidate GWGEN. After doing systems modeling with the help of TNBC
and non-TNBC microarray datasets, we evaluated system models’ parameters by system
identification. Due to various experimental conditions, which might lead to error within
data coming from different database, we used a system order detection scheme to prune
false positives of regulations and interactions in candidate GWGEN for obtaining real
GWGENs for TNBC and non-TNBC shown in Figures S1 and S2. The total number of
nodes containing transcription factors (TFs), lncRNAs, miRNAs, receptors and proteins
and edges of their interactions in candidate GWGEN and real GWGENs of TNBC and
non-TNBC are in Table 1. It is noted that the nodes and edges decrease a lot comparing real
GWGENs to candidate GWGEN. This phenomenon demonstrated that the false-positives
caused by datasets coming from various experimental conditions were eliminated by
system order detection approach. However, the real GWGENs of TNBC and non-TNBC are
still too complicated to be analyzed. We utilized PNP method to extract the core GWGENs,
which are shown in Figures 1 and 2, from the real GWGENs. The higher the projection
value is, the greater contribution would be made by the corresponding component in the
real GWGENs. Here, we selected the top-ranked 2000 nodes with significant projection
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values that could reflect 85% of the real GWGENs to be our core GWGENs of TNBS and non-
TNBC. Moreover, the enrichment analyses by The Database for Annotation, Visualization
and Integrated Discovery (DAVID) showing related pathways of the core GWGENs in
TNBC and non-TNBC are in Tables 2 and 3, respectively. To be convenient for analyzing
the distinctive and common pathogenesis of TNBC and non-TNBC, we denoted their core
signaling pathways in Figures 3 and 4 with respect to the KEGG pathways. The overlap
of core signaling pathways of TNBC and non-TNBC, which are common core signaling
pathways, could be found in Figure 5. In this study, first, we will discuss the distinctive
core signaling pathways shown in Figures 3 and 4 with red lines for TNBC and blues
lines for non-TNBC, respectively. After that, we will discuss the common core signaling
pathways shown in Figure 5 with black lines. For the common core signaling pathways,
there are 58.8% overlap proteins and 63.6% overlap genes for TNBC; there are 70% overlap
proteins and 70% overlap genes for non-TNBC. Considering the microenvironment and the
epigenetic modifications which could be judged by the basal level term in system modeling,
we investigated carcinogenic molecular mechanisms of TNBC and non-TNBC triggered by
the ligands going through core signaling proteins, core TFs, and their corresponding core
target genes in the nucleus. Based on our analytic results of the core signaling pathways,
we could select two pools of essential biomarkers, which are AKT1, BRCA1, FOXC1, MMP2,
ETS1, and STAT3 for TNBC and AKT1, BRCA1, FOXC1, MMP2, and NFE2L1 for non-TNBC.
Consequently, we designed two filters considering regulation ability and toxicity with the
help of CMap and the predicted values of LD50 to propose potential multi-molecule drugs
for TNBC and non-TNBC, respectively.

Figure 1. The core genome-wide genetic and epigenetic network (GWGEN) of TNBC. The grey lines indicate protein–protein
interactions (PPIs); the blue lines denote transcriptional regulations by TFs and lncRNAs; and the orange lines represent
post-transcriptional regulations by miRNAs. The numbers of receptors, proteins, TFs, miRNAs, and lncRNAs are 183, 1436,
288, 83, and 6, respectively.
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Figure 2. The core genome-wide genetic and epigenetic network (GWGEN) of non-TNBC. The grey lines indicate protein-
protein interactions (PPIs); the blue lines denote transcriptional regulations by TFs and lncRNAs; and the orange lines
represent post-transcriptional regulations by miRNAs. The numbers of receptors, proteins, TFs, miRNAs, and lncRNAs are
199, 1518, 184, 58, and 8, respectively.

Table 1. The total number of nodes and edges in candidate GWGENs and identified real GWGENs
of TNBC and non-TNBC.

Nodes/Edges Candidate GWGEN Real TNBC GWGEN Real Non-TNBC
GWGEN

TF-lncRNA 375 271 276

TF-miRNA 526 500 503

TF-protein 85,782 80,065 79,471

TF-TF 32,600 26,025 25,514

TFs 2567 2033 2108

lncRNA-lncRNA 6 5 5

lncRNA-miRNA 0 0 0

lncRNA-protein 1036 590 717

lncRNA-TF 420 184 220

lncRNAs 425 313 238

miRNA-lncRNA 88 61 64

miRNA-miRNA 1 1 1

miRNA-protein 31,020 20,206 20,861

miRNA-TF 6708 3747 3551

miRNAs 205 143 143

Receptors 2377 2207 2211

PPIs 4,639,077 2,478,528 1,967,333

Proteins 15,361 14,993 15,282

Total nodes 20,355 19,689 19,982

Total edges 4,797,639 2,610,183 2,098,516
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Table 2. The pathway enrichment analysis by applying The Database for Annotation, Visualization
and Integrated Discovery (DAVID) in core GWGEN of triple-negative breast cancer.

Pathway Analysis Numbers p-Value

Pathways in cancer 121 1.47 ×10−10

PI3K-Akt signaling pathway 102 5.30 ×10−8

MicroRNAs in cancer 81 9.38 ×10−6

MAPK signaling pathway 80 1.15 ×10−12

Transcriptional misregulation in cancer 77 2.24 ×10−11

Table 3. The pathway enrichment analysis by applying The Database for Annotation, Visualization
and Integrated Discovery (DAVID) in core GWGEN of non-triple-negative breast cancer.

Pathway Analysis Numbers p-Value

Pathways in cancer 108 3.27 ×10−9

PI3K-Akt signaling pathway 104 1.60 ×10−8

MicroRNAs in cancer 85 3.02 ×10−6

Transcriptional misregulation in cancer 77 5.18 ×10−5

T cell receptor signaling pathway 53 3.80 ×10−4

2.1. Distinctive Core Signaling Pathways for TNBC

For the distinctive core signaling pathways of TNBC in the Figure 3 with red lines,
receptor ERBB2, which was mutated in breast cancer, received microenvironment factor
CCL28 to trigger TF STAT3 through signaling transduction proteins CDC42, ARRDC3,
and MAPK9. The overexpression of TF STAT3 impacted by acetylation could not only
upregulate target genes BCL2, BECN1, and HIF1A to induce autophagy, apoptosis, and an-
giogenesis and inhibit cell proliferation but also suppress CD28 to inhibit the immune
response.

The next pathway, ESR1, which was mutated in breast cancer, received microenviron-
ment factor S100A4 to regulate TF ETS1 and SMAD3 through signaling transduction pro-
teins ZNF516, PIK3R1, IDH1, and AKT1. Both PIK3R1, modified by mutation, and AKT1,
affected by phosphorylation, could deliver the signal from ESR1 to ETS1 and SMAD3
in TNBC. The overexpression of TF ETS1, which is abnormally activated, could upregu-
late miRNA MIR19A and downregulate miRNA MIR497. The overexpression of miRNA
MIR19A awakened by an upstream signal could not only facilitate target genes ZEB1 and
CXCR4, which were modified by phosphorylation and DNA methylation, respectively,
to promote the cellular functions, including cell proliferation, EMT, and metastasis, but also
downregulate target gene CD28 to deactivate the immune response. Inhibition of miRNA
MIR497 caused the regulation of target genes BCL2 and HIF1A to induce autophagy, apop-
tosis, and angiogenesis. Moreover, mutation of TF SMAD3 could promote the cellular
functions, such as autophagy, apoptosis, angiogenesis, and metastasis by the activation
of target genes BECN1 and GLI2 and inhibit the immune response by the suppression
of E4BP4.

On the cell membrane, once receptor ESR1 received ligand S100A4, it could also activate
TF FOXC1 through signaling transduction proteins PRICKLE1, MGAT4A, and HSP90AA1.
The overexpression of FOXC1 could upregulate target genes TP53INP2 and CXCR4 mod-
ified by DNA methylation to trigger autophagy, EMT, and metastasis. To summarize,
the carcinogenic molecular mechanisms in TNBC result in the regulation of autophagy,
inhibition of the immune response, preparation of angiogenesis, mediation of the pro-
gression of metastasis, and the survival of cancer cells in unfavorable microenvironment
at the same time. Thus, based on carcinogenic molecular mechanisms triggered by the
core signaling pathways of TNBC, we selected AKT1, ETS1, STAT3, and FOXC1 to be
biomarkers for TNBC.
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Figure 3. Core signaling pathways of triple negative breast cancer (TNBC). The red line indicates the specific core signaling
pathway of TNBC; the black line indicates the common core signaling pathway of TNBC and non-TNBC; the black arrow
head of the solid line means activation of cellular function; the black circle head of the solid line means inhibition of cellular
function; the red node indicates high expression of protein, receptor, TF, miRNA, and target gene; and the blue node
indicates low expression of protein, receptor, TF, miRNA, and target gene.

2.2. Distinctive Core Signaling Pathways for Non-TNBC

According to Figure 4, the distinctive core signaling pathways of non-TNBC, shown
with blue lines, not only ligand CCL28 received by receptor ERBB2 but also ligand S100A4
received by receptor ESR1 could activate protein AKT1 to upregulate TF MYC by the
signaling pathway derived through transduction protein DCBLD2 modified by the phos-
phorylation and the signaling pathway derived through PRICKLE1, PIK3R1, and IDH1,
respectively. The overexpression of protein DCBLD2 and the mutation of protein PIK3R
could help the process of signaling transduction. The overexpression of TF MYC acti-
vated by two signaling pathways upregulated downstream regulator NFE2L1, FOXC1,
and MIR19A. The activation of TF NFE2L1 could regulate target genes BCL2, MAP2K1,
and RAP2C to induce autophagy, angiogenesis, EMT, and metastasis. In these pathways,
both BCL2 and RAP2C were modified by DNA methylation. Activation of miRNA MIR19A
could not only positively regulate target genes ZEB1 and CXCR4, which were both mod-
ified by phosphorylation and DNA methylation, to promote the carcinogenic molecular
mechanisms, including cell proliferation, EMT, and metastasis, but also negatively regulate
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target gene CD28 to suppress the immune response. The activation of FOXC1 upregulated
target genes TP53INP2 and CXCR4, which were modified by DNA methylation, to trigger
autophagy, EMT, and metastasis.

In the final core signaling pathway, receptor PGR received microenvironment factor
pS2 and transmitted the signal through transduction proteins GABARAPL2 and ARRDC3
to TF BRCA1 and NFE2L1 activating target gene CXCR4 to stimulate EMT and metastasis
in non-TNBC. We found that the core signaling pathways of non-TNBC lead to carcinogenic
molecular mechanisms, including metastasis, angiogenesis, EMT, and cell proliferation.
Thus, AKT1, NFE2L1, and FOXC1 were selected to be the biomarkers for non-TNBC.

Figure 4. Core signaling pathways of non-triple negative breast cancer (non-TNBC). The black arrow head of the solid line
means activation of cellular function; the black circle head of the solid line means inhibition of cellular function; the red
node indicates high expression of protein, receptor, TF, miRNA, and target gene; the blue node indicates low expression
of protein, receptor, TF, miRNA, and target gene; the blue line indicates distinctive core signaling pathway of non-TNBC;
and the black line indicates common core signaling pathway of TNBC and non-TNBC.



Int. J. Mol. Sci. 2021, 22, 3083 9 of 22

Figure 5. The common and distinctive core signaling pathways between triple negative breast cancer (TNBC) and non-triple
negative breast cancer (non-TNBC). This figure summarizes the genetic and epigenetic progression mechanism of TNBC and
non-TNBC. The core signaling pathways with the green background are the common core signaling pathways of TNBC and
non-TNBC. The blue line indicates distinctive core signaling pathway of non-TNBC; the red line indicates distinctive core
signaling pathway of TNBC; the black line indicates common core signaling pathway of TNBC and non-TNBC; the black
arrow head of solid line means activation of cellular function; the black circle head of solid line means inhibition of cellular
function; the red node indicates high expression of protein, receptor, TF, miRNA, and target gene; and the blue node
indicates low expression of protein, receptor, TF, miRNA, and target gene.

2.3. Common Core Signaling Pathways of TNBC and Non-TNBC

Based on the projection values obtained from the PNP method, we investigated the
common core signaling pathways between TNBC and non-TNBC shown in Figure 5 with
black lines. The receptor ILDR2 received microenvironment factor CD274, known as PD-L1
(a regulation signaling of the immune response), to silence miRNA MIR17 through sig-
naling transduction protein EP300 in TNBC and non-TNBC. The mutative protein EP300
in breast cancer, which was affected by acetylation, could promote the transmission of
upstream signals to its downstream regulator. MiRNA MIR17 with low expression could
negatively regulate target genes BECN1 and CD28 to promote the proliferation of cancer
cells and inhibit autophagy, apoptosis, and the immune response. Moreover, receptor
ILDR2 also regulated TF AR, TF BRCA1, and miRNA MIR497 via signaling transduction
proteins GABAPAL1 and ARRDC3. Suppression of ARRDC3 expression in breast cancer
cells involving the epigenetic silencing caused by the deacetylases directly impacted signal-
ing to downstream TFs. TF AR not only activated target gene MMP2, which was modified
by DNA methylation, to trigger cell proliferation, epithelial-mesenchymal transition (EMT),
and metastasis, but also transmitted the signal from protein ARRDC3 to miRNA MIR20A.
Mir20A silenced target gene TP53INP2 to inhibit autophagy, apoptosis, and promotes cell
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proliferation. MiRNA MIR497 with low expression silenced target genes BECN1, MTDH,
and BCL2 to indulge cancer cell differentiation, angiogenesis, and metastasis.

For the next common core signaling pathway, the receptor ERBB2, which was mu-
tated in breast cancer, received microenvironment factor CCL28 to activate TF BRCA1
through signaling transduction proteins CDC42 and ARRDC3 in TNBC and non-TNBC.
Overexpression of protein CDC42 in breast cancer could induce the signaling to TF BRCA1.
Mutative TF BRCA1 with abnormal overexpression in breast cancer could not only inhibit
miRNA MIR20A to actuate target gene TP53INP2 to trigger autophagy and apoptosis,
but also galvanize miRNA MIR19A to drive target genes CXCR4 and ZEB1, which were
modified by DNA methylation and phosphorylation, respectively, to promote cell prolif-
eration, angiogenesis, and metastasis. MiRNA MIR19A also downregulated the target
gene CD28 to inhibit the immune response. In conclusion, the common core signaling
pathways contribute to increasing genomic damage, escaping the immune checkpoint,
promoting metastasis, enhancing the survival of cancer cells by carcinogenic molecular
mechanisms, including autophagy, apoptosis, cell proliferation, immune response, angio-
genesis, and metastasis in the extremely worst microenvironment. Therefore, we propose
BRCA1 and MMP2 to be our common biomarkers in the TNBC and non-TNBC.

3. Discussion
3.1. The Carcinogenic Molecular Mechanisms in TNBC

In the core signaling pathways of TNBC, as shown in Figure 3 with red lines, ligand
CCL28 binding to receptor ERBB2 transmits significant signals via transduction proteins
CDC42, ARRDC3, and MAPK9 to upregulate TF STAT3, which not only facilitates au-
tophagy, apoptosis, cell differentiation, angiogenesis, epithelial-mesenchymal transition
(EMT), and metastasis, but also avoid the immune response in TNBC. It has been shown
that TF STAT3 plays a crucial role of mediating tumor-induced immune suppression in
various microenvironment conditions [29]. The overexpression of STAT3 modified by
acetylation regulates target genes BECN1 and CD28 to trigger autophagy and the inhibi-
tion of the immune response. Here, in the core signaling pathway of TNBC, autophagy
has the ability to regulate T-cell functions, which inhibit the immune response, and cell
proliferation to reduce the consumption and accumulate abundant energy for angiogenesis.

In the next core signaling pathway in TNBC, ligand S100A4 binding to receptor ESR1
transmits signals through cascade proteins ZNF516, PIK3R1, IDH1, AKT1 to TF ETS1 and
SMAD3, facilitating autophagy, cell differentiation, angiogenesis, epithelial-mesenchymal
transition (EMT), metastasis, and the inhibition of the immune response. One study has
shown that the mutation of ESR1 and ER frequently occurred in metastatic breast cancer,
which would influence the response to hormone therapy [30]. Notably, the upstream
signaling transmitted from receptor ESR1 results in the phosphorylation of protein AKT1 to
activate TF ETS1 and SMAD3, triggering downstream carcinogenic molecular mechanisms.
Moreover, TF ETS1 could activate target genes CXCR4 and ZEB1 to trigger metastasis
mediated by downstream core signaling cascades through the suppression of tumor in-
hibitor, miRNA MIR497. On the other side, TF SMAD3 was identified to involve in cancer
progression by regulating its target genes BECN1, GLI2, and E4BP4. Its target genes BECN1
would induce autophagy and E4BP4 suppressed by TF SMAD3 could promote cancer
progression by reducing NK cell development [31]. Obviously, the activation of AKT1
modified by phosphorylation in the core signaling pathway leads to worse prognosis.

In the final core signaling pathway, the signaling transduction starting from ESR1 to
TF FOXC1 through signaling transduction proteins PRICKLE1, MGAT4A, and HSP90AA1
could mediate carcinogenic molecular mechanisms containing autophagy and epithelial
mesenchymal transition (EMT). Some literature suggested that TF FOXC1 plays an im-
portant role in tumor development and metastasis [32,33]. Clinical studies have also
demonstrated that the elevated expression of FOXC1 was associated with poor prognosis
in many kinds of cancers [34,35].
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3.2. The Carcinogenic Molecular Mechanisms in Non-TNBC

In the core signaling pathways of non-TNBC, shown in Figure 4 with blue lines, ligand
CCL28 binding to receptor ERBB2 and ligand S100A4 binding to ESR1 could transmit
signaling through proteins DCBLD2, PRICKLE1, PIK3R1, IDH1, and AKT1 to upregulate
the same TF MYC. The aberrant activation of receptor ERBB2 in human cancers promotes
tumorigenesis through the stimulation of AKT signaling [36]. The overexpression of protein
DCBLD2 modified by phosphorylation not only increases the expression level of AKT1,
but also makes AKT1 modify by phosphorylation. This phenomenon activates TF MYC to
interact with miRNA MIR19A and TFs NFE2L1 and FOXC1, regulating their corresponding
target genes to trigger several carcinogenic molecular mechanisms, including autophagy,
apoptosis, cell proliferation, angiogenesis, EMT, metastasis, and the inhibition of the
immune response.

In the next core signaling pathway, ligand pS2 binding to receptor PGR passes sig-
naling through signaling cascade proteins GABARAPL2 and ARRDC3 to TFs BRCA1
and NFE2L1. TF NFE2L1 interacting with mutative TF BRCA1 could upregulate target
genes MAP2K1 and RAP2C to facilitate cell differentiation, angiogenesis, and metastasis.
Moreover, the overexpression of TF NFE2L1 has been suggested to protect tumor cells by
decreasing the toxicity of treatment [37]. Activated target gene RAP2C modified by DNA
methylation could induce angiogenesis and metastasis to promote migration and invasion
in non-TNBC [38].

3.3. The Common Carcinogenic Molecular Mechanisms between TNBC and Non-TNBC

In the first common core signaling pathway in both TNBC and non-TNBC, as shown
in Figure 5 with black lines, microenvironment factor CD274, known as programmed
death-ligand 1 (PD-L1), can not only simulate cancer cells proliferation, angiogenesis,
epithelial-mesenchymal transition (EMT), and metastasis, but also inhibit autophagy, apop-
tosis, and the immune response through receptor ILDR2. The crucial signals are transmitted
through signal transduction proteins EP300, GABARAPL1, and ARRDC3 to regulate TF AR,
miRNA MIR20A, MIR17, and MIR497 in both TNBC and non-TNBC. Furthermore, the lig-
and PD-L1 is speculated to play a major role in suppressing the adaptive arm of immune
system in many diseases. It is shown that the upregulation of PD-L1 may allow cancers
to evade the host immune system [39]. According to a recent research, receptor ILDR2
has been identified as a novel B7-like protein with robust T cell inhibitory activity [40].
The role of transduction signaling protein EP300 mutated in cancer has been evidenced
that it activated miRNA MIR17 to negatively regulate target genes BECN1 and CD28
to promote cell proliferation and escape the immune checkpoint [41–43]. Some studies
have shown that protein ARRDC3 was implicated in tumor suppression by modulating
the levels of carcinogenic genes [44,45]. In contrast, ARRDC3, with a low expression
level, silenced by deacetylation, resulting in downstream regulators, could neither activate
miRNA MIR497 to regulate target genes to inhibit tumor progression nor suppress TF AR
and miRNA MIR20A to avoid cell proliferation and accumulation of genomic damage
and instability [46]. Furthermore, target gene CD28 has been shown to be involved in
immune checkpoint pathway [47]. The inhibition of target gene BECN1 attributes the loss
of autophagy and apoptosis in this pathway [48–50]. Hence, this core signaling pathway
worsens the conditions of patients with breast cancer via increasing genomic damage and
escaping the immune checkpoint.

In the next common core signaling pathway, the microenvironment factor CCL28 bind-
ing to receptor ERBB2 starts to transmit through signaling transduction proteins CDC42
and ARRDC3 to TFs AR and BRCA1 and miRNA MIR497, facilitating autophagy, apop-
tosis, cell differentiation, angiogenesis, EMT, and metastasis, and inhibiting the immune
response. Simultaneously, the TF BRCA1 with mutation regulates miRNAs MIR20A and
MIR19A in both TNBC and non-TNBC. Furthermore, CCL28, mucosa-associated epithelial
chemokine (MEC), has been suggested to have something to do with tumor progression and
the involvement in inflammation [51,52]. Moreover, the mutation of receptor ERBB2 fre-
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quently appeared in breast cancer and participated in the migration of cancer cells [53–55].
The overexpression of protein CDC42 has been shown to enhance cell differentiation and
metastasis [56]. The mutation of TF BRCA1 caused by the abnormal upstream signaling
cascades coming from receptor ERBB2 can positively regulate target genes TP53INP2, ZEB1,
and CXCR4, negatively regulate target gene CD28, and suppress miRNA MIR20A to induce
autophagy, cell proliferation, and metastasis. It is worth noting that mutative TF BRCA1
could regulate target gene TP53INP2 to mediate autophagy and apoptosis simultaneously.
Substantial evidences have demonstrated that autophagy, a double-edge sword on cancer
development, was a tumor suppression mechanism, yet in most contexts, it facilitated
tumorigenesis in stress [57–59].

3.4. Exploring Multi-Molecule Drugs for TNBC and Non-TNBC Based on Drug Regulation
Ability and Toxicity

The systems biology approaches we proposed in this study helped us identify essential
biomarkers with specific gene expression signature efficiently for TNBC and non-TNBC,
respectively. Moreover, the biomarkers we found not only have higher projection values
but also express abnormally. The goal of finding potential multi-molecule drugs is to
explore compounds which could reverse the identified gene expression signature. In CMap,
the connectivity score, which is in the range of −1 to 1, reflects the closeness or connection
between the expression profiles. A positive correlation denotes the degree of similarity
and a negative correlation emphasizes an inverse similarity between a query signature and
an individual chemical perturbation. Therefore, if the selected biomarkers (drug targets)
have an abnormal upregulated gene signature, we would choose the drugs with negative
correlation for the reversed mapping. In contrast, if we found that the selected biomarkers
(drug targets) are downregulated abnormally, the drugs with positive correlation would
be considered. Moreover, we also provide the predicted LD50 computed by admetSAT
tool [60], as reference for each potential compound.

In Table S1, with the help of proposed systems medicine design procedure, the top
candidate drugs for each drug target are shown. Notably, resveratrol is identified to be a po-
tential drug for five drug targets, which include BRCA1, ETS1, FOXC1, STAT3, and NFE2L1.
Resveratrol is a nutraceutical drug with several therapeutic effects. It is thought to act
as a chemopreventative agent by attenuating autophagy, cell growth, and proliferation,
which are associated with cancer initiation and progression [61]. In addition, patients
often occur drug resistance due to the activation of the oncogenic Akt signaling and the
upregulation of autophagy, which protects cancer cells from apoptosis. There was research
demonstrating that the combination therapy of rapamycin together with resveratrol main-
tains the inhibition of mTORC1 signaling, which could prevent the upregulation of Akt
activation and autophagy to induce the apoptosis of breast cancer cells [62]. Interestingly,
rapamycin, known as sirolimus, is also identified to be a potential drug for targets, such as
AKT1, ETS1, STAT3, and NFE2L1. Sirolimus is a promising therapeutic agent with both
immunosuppressant and anti-tumor properties [63]. It could inhibit the translation of criti-
cal mRNAs that are involved in the cell cycle progression and cell proliferation, which are
hallmarks of carcinogenesis [64]. Moreover, both carbamazepine and prednisolone are
identified to be potential drugs for four targets, including FOXC1, MMP2, ETS1, and STAT3.
A phase II trial has demonstrated that prednisone treatment was advantageous for breast
cancer [65]. Carbamazepine (CBZ) is a well-known anti-epileptic drug that has been
used in clinical practice for more than four decades. However, a recent study revealed
that CBZ has similar function to histone deacetylase (HDAC) inhibitor, which has been
confirmed as an anti-cancer drug [66]. One study has shown that CBZ could synergize
with trastuzumab to further downregulate Her-2 protein and inhibit breast cancer cell
proliferation [67]. Furthermore, verapamil is identified to be a potential drug for targets
FOXC1 and NFE2L1. It is capable of suppressing tumor progression by the inhibition of
tumor cell growth and metastasis, enhancement of tumor apoptosis, and reduction in mi-
crovascular density [68]. In summary, by the proposed systems medicine design procedure,
we suggested two multi-molecule drugs: resveratrol, sirolimus, and prednisolone for TNBC
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and resveratrol, sirolimus, carbamazepine, and verapamil for non-TNBC, which are shown
in Tables 4 and 5.

Table 4. Potential multi-molecule drugs and their corresponding target genes for TNBC. •: The targets
of the potential multi-molecule drugs.

Drugs
Targets

BRCA1 AKT1 FOXC1 MMP2 ETS1 STAT3

Resveratrol • • • •
Sirolimus •

Prednisolone • • • •

Table 5. Potential multiple-molecular drugs and their corresponding target genes for non-TNBC. •:
The targets of the potential multi-molecule drugs.

Drugs
Targets

BRCA1 AKT1 FOXC1 MMP2 NFE2L1

Resveratrol • • •
Sirolimus •

Carbamazepine • •
Verapamil • •

4. Materials and Methods
4.1. Overview of the Systems Medicine Design Procedure

To find the essential biomarkers based on carcinogenic molecular mechanisms and
propose potential multi-molecule drugs for TNBC and non-TNBC, a flowchart is given
in Figure 6. In the viewpoint of the systems biology approaches, we could separate our
systems medicine design procedure into five steps: (1) Using big database mining technique
to construct a candidate GWGEN consisting of candidate PPIN and GRN; (2) Doing system
modeling on proteins, genes, miRNAs, and lncRNAs; (3) Applying systems identification
and systems order detection approaches assisting with the microarray data of TNBC and
non-TNNC to obtain real GWGENs; (4) Applying the principal network projection method
on the real GWGENs to get the core GWGENs and core signaling pathways denoted by
KEGG pathways; (5) Designing filters of drug regulation ability and toxicity to obtain
potential multi-molecule drugs. The detailed information of each step in Figure 6 are
elucidated in the following section.

4.2. Construction Candidate Genome-Wide Genetic and Epigenetic Network (GWGEN) by
Microarray Data of TNBC and Non-TNBC

In this study, we used three microarray datasets of breast cancer with accession
numbers GSE41998, GSE32646, and GSE25066, obtained from the NCBI gene expression
omnibus (GEO) [69–71]. Their corresponding platforms are GPL571, GPL570, and GPL96,
respectively. There were 284 samples for the TNBC and 544 samples for the non-TNBC.
To avoid the overfitting problem in the network construction, the maximum degree of each
component in the PPIN and GRN should be less than the sample number. The candidate
GWGEN consists of candidate PPIN and candidate GRN, which were represented in a
Boolean matrix, respectively. If there was an interaction between two elements, we would
give one; if there was no interaction, we would give zero on their corresponding position.
With the big database mining, for the candidate PPIN, having protein–protein interac-
tions (PPIs), information was mined from DIP [72], IntAct [73], BioGRID [74], BIND [75],
and MINT [76]; the candidate GRN containing the interaction information within the TFs
to genes, lncRNAs, and miRNAs was available at HTRIdb [77], IFTP [78], TargetScan [79],
and CircuirtsDB 2 [80].
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Figure 6. Flowchart of systems medicine procedure for finding essential biomarkers (drug targets)
and proposing potential multi-molecule drugs for TNBC and non-TNBC.
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4.3. Systems Modeling for Candidate Genome-Wide Genetic and Epigenetic Network (GWGEN)

In order to identify the real GWGENs for TNBC and non-TNBC, we have to formulate
proteins, genes, miRNAs, and lncRNAs considering the basal level and stochastic noise
caused by model residue and data measurement noise. For the protein interaction model,
the i-th protein for sample n is given in the following equation:

pi[n] =
Ii
∑

j = 1
j 6= i

λij pi[n]pj[n] + ψi,PPIs + θi,PPI [n],

for i = 1, . . . , I, n = 1, . . . , N

(1)

where λij denotes the interaction ability between the i-th protein and the j-th protein;
pi[n] and pj[n] represent the expression level of the i-th and j-th protein for the sample
n; Ii indicates the total number of proteins interacting with the i-th protein; I is the total
number of proteins in candidate PPIN; N is the total number of samples (patient); ψi,PPI
represents the basal level of the i-th protein expression; and θi,PPI [n] is the stochastic noise of
the i-th protein for the sample n caused by model uncertainty and data measurement noise.

For the gene regulation model, the x-th gene in sample n could be described by the
following equation:

gx[n] =
Ux
∑

u = 1
u 6= x

αxutu[n] +
Kx
∑

k=1
βxklk[n]−

Vx
∑

v=1
γxvmv[n]gx[n] + ψx + θx[n],

for x = 1, . . . , X, n = 1, . . . , N

(2)

where gx[n] represents the expression level of the x-th gene; Ux indicates the total number
of TFs binding to the x-th gene; Kx denotes the total number of lncRNAs binding to the
x-th gene; Vx is the total number of miRNAs inhibiting the x-th gene; αxu and βxk denote
the transcription regulatory ability of the u-th TF and the k-th lncRNA on the x-th gene;
γxv, which is larger than zero and (γxv ≥ 0) is the post-transcriptional regulation ability
inhibiting the x-th gene; tu[n], lk[n], and mv[n] indicate the expression level of the u-th TF,
the k-th lncRNA, and v-th miRNA, respectively; X is the total number of genes; N is the
total number of samples (patients); ψx represents the basal level of the x-th gene expression;
and θx[n] is the stochastic noise including model uncertainty and data noise. The same
concept of systems modeling on miRNAs and lncRNAs are shown in Supplementary
Material 1.1.

4.4. Systems Identification and Systems Model Order Selection for Obtaining Real GWGEN of
TNBC and Non-TNBC

In the previous section, we have described systems modeling for proteins, genes,
miRNAs, and lncRNAs in the candidate GWGEN. In order to identify parameters in the
candidate PPIN and candidate GRN, we have to solve constraint least-square problems.
Here, we rewrite PPI interactive Equation (1) in the linear regression form as below:

pi[n] =
[
pi[n]p1[n] · · · pi[n]pIi [n]1

]
×


λi1

...
λiIi
ψi

+ θi[n]

= Φi,P[n] ·ωi,P + θi[n], for i = 1, . . . , I.

(3)

where Φi,p[n] denotes the regression vector which can be obtained from the microarray data
and θi[n] represents the unknown parameter vector for the i-th protein in PPIN. Equation (3)
of the i-th protein can be augmented for N samples, shown in the following:
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pi[1]
pi[2]

...
pi[N]

 =


Φi,P[1]
Φi,P[2]

...
Φi,P[N]

 ·ωi,P +


θi[1]
θi[2]

...
θi[N]

, for i = 1, . . . , I, n = 1, . . . N. (4)

Equation (4) could be simply shown as:

Pi = Ωi,P ·ωi,P + ϑi (5)

where:

Pi =


pi[1]
pi[2]

...
pi[N]

, Ωi,p =


Φi,P[1]
Φi,P[2]

...
Φi,P[N]

, ϑi =


θi[1]
θi[2]

...
θi[N]

 (6)

Therefore, the estimated vector ω̂i,p can be obtained by solving the following linear
least-square problem via MATLAB optimization toolbox:

ω̂i,P = min
ωi,P

1
2
‖Ωi,P ·ωi,P − Pi‖2

2 (7)

The linear regression form of the gene regulatory Equation (2) in GRN could be
described as below:

gx[n] = [t1[n] · · · tUx [n]l1[n] · · · lKx [n]gx[n]m1[n] · · · gx[n]mVx [n]1]×



αx1
...

αxUx

βx1
...

βxKx

−γx1
...

−γxVx

ψx



+ θx[n]

= Φx,G[n] ·ωx,G + θx[n], for x = 1, . . . , X.

(8)

where Φx,G[n] indicates the regression vector, which can be obtained from the microar-
ray data, and ωx,G represents the unknown parameter vector for the x-th gene in GRN.
Equation (8) of the x-th gene could be augmented for N samples in the following form:

gx[1]
gx[2]

...
gx[N]

 =


Φx,G[1]
Φx,G[2]

...
Φx,G[N]

 ·ωx,G +


θx[1]
θx[2]

...
θx[N]

, x = 1, . . . , X, n = 1, . . . , N. (9)

Equation (9) could be simply described as:

Gx = Ωx,G ·ωx,G + ϑx (10)

where:

Gx =


gx[1]
gx[2]

...
gx[N]

, Ωx,G =


Φx,G[1]
Φx,G[2]

...
Φx,G[N]

, ϑx =


θx[1]
θx[2]

...
θx[N]

 (11)
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Hence, by solving the constrained linear least-square problem in (12), the estimated
vector ω̂x,G could be obtained via MATLAB optimization toolbox. Moreover, the miRNA
repression parameters −γx,v are guaranteed to be non-positive, i.e., −γx,v ≤ 0 for v =
1, . . . , Vx.

ω̂x,G = min
ωx,G

1
2‖Ωx,G ·ωx,G −Gx‖2

2,

subject to


0 · · · · · · 0 0 · · · · · · 0 1 0 · · · 0 0
...

. . .
...

...
. . .

... 0
. . . . . .

...
...

...
. . .

...
...

. . .
...

...
. . . . . . 0

...
0 · · · · · · 0 0 · · · · · · 0 0 · · · 0 1 0

ωx,G ≤


0
...
...
0

.

Ux Kx Vx

(12)

As a matter of fact, various experimental conditions might lead to error within data
coming from different databases; thus, we applied the Akaike Information Criterion (AIC)
to help us prune the false positives and detect the system order of real GWGENs. For the
PPI interaction model in (5), we used AIC to detect the number of interactions of the i-th
protein. The corresponding equation is defined as below:

AIC(Ii) = log(ε̂2
i,P) +

2(∆i,P)
N ,

where ε̂i,P =

√
(Pi−(Ωi,P ·ω̂i,P)

T(Pi−(Ωi,P ·ω̂i,P))
N , ∆i,P = Ii + 1.

(13)

where ε̂2
i,P and ∆i,P represent the estimated residual error and number (order) of parameters

of the i-th protein in (13) of the PPIN and ω̂i,P denotes the estimated vector of the i-th
protein in (7). According to the AIC theory, the real system order I∗i would minimize
AIC(I∗i ). The insignificant protein interactions, which are out of real system order I∗i ,
would be pruned away to get the real PPI interaction model.

The AIC equation for the gene regulatory model is defined as below:

AIC(Ux, Kx, Vx) = log(ε̂2
x,G) +

2(∆x,G)
N ,

were ε̂x,G =

√
(Gx−(Ωx,G ·ω̂x,G)

T(Gx−(Ωx,G ·ω̂x,G))
N , ∆x,G = Ux + Kx + Vx + 1.

(14)

where ε̂2
x,G and ∆x,G represent the estimated residual error and the number (order) of

parameters for the x-th gene in the GRN, respectively and ω̂x,G is the estimated vector of
the x-th gene in (12). The real system order U∗x , K∗x , V∗x would minimize AIC(Ux

∗, Kx
∗, Vx

∗).
We apply the same system identification and system model selection approaches on the
miRNAs regulatory model and lncRNAs regulatory model, shown in Supplementary
Materials 1.2. Based on the methods mentioned above, we obtain real GEGWNs for TNBC
and non-TNBC, which are shown in Figures S1 and S2 of the Supplementary Materials.

4.5. Principal Network Projection (PNP) Method to Extract Core GWGENs of TNBC and
Non-TNBC from Their Corresponding Real GWGENs

The real GWGENs of TNBC and non-TNBC are still too complicated, and it is not easy
to further investigate their carcinogenic molecular mechanisms directly. In order to extract
the core GWGENs from the real GWGENs, we propose the principal network projection
(PNP) method. To prepare for applying PNP method to extract the core network, we have
to construct a combined network matrix W that contains all the estimated parameters in
the real GWGENs as follows:

W =


wprotein↔protein 0 0

wTF→gene wlncRNA→gene wmiRNA→gene
wTF→lncRNA wlncRNA→ lncRNA wmiRNA→lncRNA
wTF→miRNA wlncRNA→miRNA wmiRNA→miRNA

 (15)
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where the sub-network matrix wprotein↔protein consists of interaction abilities of proteins;
the sub-network matrices wTF→gene, wlncRNA→gene, and wmiRNA→gene contain the esti-
mated TFs transcriptional regulatory abilities, lncRNAs transcriptional regulatory abilities,
and miRNAs post-transcriptional regulatory abilities on genes, respectively; the sub-
network matrices wTF→lncRNA, wlncRNA→ lncRNA, and wmiRNA→lncRNA include the esti-
mated TFs transcriptional regulatory abilities, lncRNAs transcriptional regulatory abilities,
and miRNAs post-transcriptional regulatory abilities on lncRNAs, respectively; and the
sub-network matrices wTF→miRNA, wlncRNA→miRNA, and wmiRNA→miRNA composed of
the estimated TFs transcriptional regulatory abilities, lncRNAs transcriptional regulatory
abilities, and miRNAs post-transcriptional regulatory abilities on miRNAs, respectively.
The combined network matrix is given in the following:

W =



λ̂11 · · · λ̂1j · · · λ̂1I 0 · · · 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

λ̂i1 · · · λ̂ij · · · λ̂iI 0 · · · 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

λ̂I1 · · · λ̂I j · · · λ̂I I 0 · · · 0 · · · 0 0 · · · 0 · · · 0

α̂11 · · · α̂1u · · · α̂1U β̂11 · · · β̂1k · · · β̂1K −γ̂11 · · · −γ̂1v · · · −γ̂1V

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
α̂x1 · · · α̂xu · · · α̂xU β̂x1 · · · β̂xk · · · β̂xK −γ̂x1 · · · −γ̂xv · · · −γ̂xV

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
α̂X1 · · · α̂Xu · · · α̂XU β̂X1 · · · β̂Xk · · · β̂XK −γX1 · · · −γ̂Xv · · · −γ̂XV

δ̂11 · · · δ̂1u · · · δ̂1U Γ̂11 · · · Γ̂1k · · · Γ̂1K −τ̂11 · · · −τ̂1v · · · −τ̂1V

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
δ̂y1 · · · δ̂yu · · · δ̂yU Γ̂y1 · · · Γ̂yk · · · Γ̂yK −τ̂y1 · · · −τ̂yv · · · −τ̂yV

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
δ̂Y1 · · · δ̂Yu · · · δ̂YU Γ̂Y1 · · · Γ̂Yk · · · Γ̂YK −τ̂Y1 · · · −τ̂Yv · · · −τ̂YV

υ̂11 · · · υ̂1u · · · υ̂1U σ̂11 · · · σ̂1k · · · σ̂1K −ζ̂11 · · · −ζ̂1k · · · −ζ̂1K

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
υ̂z1 · · · υ̂zu · · · υ̂zU σ̂z1 · · · σ̂zk · · · σ̂zK −ζ̂z1 · · · −ζ̂zk · · · −ζ̂zK

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
υ̂Z1 · · · υ̂Zu · · · υ̂ZU σ̂Z1 · · · σ̂Zk · · · σ̂ZK −ζ̂Z1 · · · −ζ̂Zk · · · −ζ̂ZK



∈ <(I∗+X∗+Y∗+Z∗)×(U∗+K∗+V∗) (16)

The PNP method is based on singular value decomposition of W in (16) as follows:

W = TDHT (17)

where T ∈ <(I∗+X∗+Y∗+Z∗)×(U∗+K∗+V∗) and H ∈ <(I∗+X∗+Y∗+Z∗)×(U∗+K∗+V∗) are the
unitary matrix and D = diag(d1, · · · , ds, · · · , dU+K+V) ∈ <(U∗+K∗+V∗)×(U∗+K∗+V∗) repre-
sents the diagonal matrix, which is composed of U ∗+K ∗+V∗ singular values of W in
descending order (i.e., d1 ≥ · · · ≥ ds ≥ · · · ≥ dU+K+V ≥ 0).

The fraction of eigenexpression {Es} is calculated from the eigenexpression levels
{ds} which are listed in the diagonal of D. The eigenexpression fraction Es is defined
as below:

Es =
d2

s
U+K+V

∑
s=1

d2
s

(18)

In terms of energy, we chose minimum S singular vectors of T and H with energy

(i.e.,
S
∑

m=1
Es) satisfying

S
∑

m=1
Es ≥ 0.85. The top S principal singular vectors construct 85%

of the principal network structure of the GWGEN. Next, here we define the projection of
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W to the top S right singular vectors of H for extracting important downstream nodes in
the following:

H(c, r) = hT
r,: · w:,c ,

for c = 1, . . . (U + K + V), r = 1, . . . S.
(19)

where w:,c is the c-th column vector of W and hT
r,: is the r-th row vector of HT . Afterward,

we defined the 2-norm projection value of each downstream node in the real GWGENs to
the top S right-singular vectors, which stands for 85% of the principal network structure as
follows:

Q(c) =

√
S
∑

r=1
H2(c, r) ,

for c = 1, . . . (U + K + V), r = 1, . . . S.
(20)

where Q(c) is the 2-norm projection value of each downstream c-th node on the top S right-
singular vectors. If the projection value Q(c) is close to zero, the corresponding c-th node
is insignificant and nearly independent to the principal network structure. Conversely,
the larger the projection value of a node in real GWGEN, the higher the possibility that the
node is an essential component of the principal network structure. Similarly, we could use
the same method to calculate the projection values of the upstream nodes through taking
each row vector of combined network matrix W to project on the top S left-singular vectors.
In conclusion, the core GWGENs of TNBC and non-TNBC shown in Figures 1 and 2 could
be extracted from the real GWGENs based on the projection values of the downstream
nodes and upstream nodes.
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