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Bone changes have always been the focus of research on osteoarthritis, but the

number of studies on synovitis has increased only over the last 10 years. Our current

understanding is that the mechanism of osteoarthritis involves all the tissues that make

up the joints, including nerve sprouting, pannus formation, and extracellular matrix

environmental changes in the synovium. These factors together determine synovial

fibrosis and may be closely associated with the clinical symptoms of pain, hyperalgesia,

and stiffness in osteoarthritis. In this review, we summarize the consensus of clinical

work, the potential pathological mechanisms, the possible therapeutic targets, and the

available therapeutic strategies for synovial fibrosis in osteoarthritis to gain insight and

provide a foundation for further study.
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RHEUMATOLOGY KEY MESSAGES

Synovial fibrosis is closely associated with joint pain, hyperalgesia, and stiffness in osteoarthritis.
Sounder diagnostic criteria should be established for OA-related synovial fibrosis.
The mechanism of synovial fibrosis is being investigated, and available therapeutic strategies

require further study.

INTRODUCTION

Osteoarthritis (OA) is the most common degenerative joint disease and is characterized by pain,
stiffness, and limited function in the clinic (1). In 2017, OA affected nearly 303 million people
worldwide, including ∼263 million people with knee OA and 40 million people with hip OA (2).
Bone changes, such as the progressive loss and destruction of articular cartilage, thickening of the
subchondral bone, and the formation of osteophytes, reflect the pathogenesis of OA, so the study
of cartilage and subchondral bone in OA has always been a priority (3). Such studies are highly
consistent with the etiology of OA, which involves aging, mechanical stress, and environmental
changes in the joints. Bone changes may be the determining factor for the eventual use of surgical
treatment for OA; unexpectedly, the consistency of the bone structure with clinical symptoms
remains unclear, at least in terms of pain (4, 5). This implies that further efforts are needed to
discover the pathological mechanisms of OA, especially those related to OA symptoms.

As OA involves chronic low-grade inflammation, the presence of an inflammatory
microenvironment is likely to affect all tissues constituting the joint (6). It is widely accepted
that synovitis can occur in the early stage of OA, promoting the development of OA throughout
the whole pathologic process. Therefore, non-steroidal anti-inflammatory drugs (NSAIDs) are

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.684389
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.684389&domain=pdf&date_stamp=2021-05-26
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:drwpm@163.com
https://doi.org/10.3389/fmed.2021.684389
https://www.frontiersin.org/articles/10.3389/fmed.2021.684389/full


Zhang et al. Synovial Fibrosis Involvement in Osteoarthriti

strongly recommended for clinical treatment, and OA is
considered to be a highly prevalent rheumatic musculoskeletal
disorder (7, 8). As cartilage destruction partly depends on the
effect of inflammation, which disrupts the balance between
synthesis and degradation in the extracellular matrix (ECM)
(7), it may also be valuable to evaluate the damage caused by
inflammation in the synovium. Overall, one major outcome of
inflammation or inflammatory exudation is fibrosis, especially in
the lung, liver, and kidney. In OA, synovial fibrosis (SF) is an
imbalance caused by fibroblast proliferation and the disturbance
of collagen synthesis and degradation, ultimately leading to
excessive collagen deposition in the ECM (9, 10).

Recent research has also revealed that the ECM plays multiple
roles in OA (11, 12). This may indicate that SF is not only a
pathological outcome but also a likely pathogenic factor. SF is
often accompanied by angiogenesis in both OA and rheumatoid
arthritis (RA) (13). Recent studies have also found evidence for
increased sensory innervation in the synovium in knee OA, but
there is still no direct evidence on whether SF is associated with
pain (14, 15). Does joint stiffness due to fibrosis associate with
OA pain? Is SF associated with increased sensory innervation?
Can the progression of SF be blocked when synovitis is alleviated?
Obtaining a narrative review of SF in OA is an interesting
research direction; thus, we searched PubMed with the keywords
“fibrosis,” “OA,” and “RA.” We reviewed the pertinent literature
to answer the following questions: What do we know about SF
in osteoarthritis?

Synovial Fibrosis and Synovitis
Synovitis is a typical chronic aseptic inflammation. Common
symptoms caused by synovitis include pain, local temperature
rise, swelling, joint movement limitation, and the severity of these
symptoms is related to the degree of joint effusion (16). Synovitis
is also known to produce a large number of pro-inflammatory
factors, such as tumor necrosis factor (TNF), interleukin-1β (IL-
1β), IL-6, IL-8, IL-15, IL-17, IL-21, inflammatory mediators,
including PGE2, NO, adipokines, and matrix metalloproteinases
(MMP-1, MMP-3, MMP-9, MMP-13), which lead to cartilage
destruction, amplifying synovitis and ultimately creating a
vicious cycle (17, 18). Besides, synovitis promotes the production
of pain neurotransmitters, such as nerve growth factor and
bradykinin (19). At the same time, synovitis promotes synovial
angiogenesis, which in turn accelerates inflammation and leads
to SF directly (20).

Usually, SF appears in the later stages of OA, which is different
from synovitis. But in a study examining the effects of the
intra-articular application of bupivacaine and levobupivacaine,
inflammation and late fibrosis were found shortly after injection,
suggesting that synovitis promotes fibrosis (21). On the other
hand, as an aseptic chronic inflammatory disease, SF may be
the inevitable outcome of “damage-repair,” and thus it can be
emphasized that synovial inflammation drives the development
of fibrosis. Notably, current studies cannot conclude that SF
can cause synovitis independently, and whether synovial fibrosis
can exist independently of synovitis, remains a topic of great
interest to OA research. As for the relationship between synovitis
and SF, maybe it is not well-understood what is the hen and

what the egg, but this question is the one to inspire researchers’
in-depth research.

Synovial Fibrosis in Osteoarthritis
Clinical Status of Synovial Fibrosis
Much evidence has shown that SF is one of the most important
causes of joint stiffness, synovial hyperplasia, and limited
function, which are common symptoms in moderate and severe
OA; other evidence also confirmed that a higher SF score is
correlated with lower scores for KL grade, which indicates that
SF may be negatively associated with clinical symptoms of OA
(22, 23). This is because generalized pain is a major claim in OA
patients, while independent joint stiffness does not occur very
often. When joint stiffness begins to bother OA patients and joint
movement is limited, loss of function becomes a reality.

Surgical treatments for OA, such as total knee arthroplasty
(TKA), can cause arthrofibrosis, a fibrosing pathology of the
synovial membrane, and the infrapatellar fat pad (24). In
contrast to moderate and severe OA, TKA eliminates the
effects on cartilage and the meniscus, so post-operative pain
and dysfunction derived from SF can be observed more easily.
Kalson et al. attempted to establish criteria for the diagnosis,
classification, and severity grading of soft-tissue fibrosis after
TKA and suggested that the diagnosis of fibrosis after TKA
should be based on the exclusion of other causes of stiffness, the
range of movement of the knee, the pathological anatomy and
histopathology (Table 1) (25). These recommendations may also
be adapted for the diagnosis of SF associated with primary OA.

Recent developments in MRI and ultrasound have made it
possible to investigate SF, but there is currently not enough
evidence for routine use (26, 27). The degree of synovial
thickening, not the volume, has been proven to be correlated with
the level of SF on MRI, but others reported that the correlations
between these factors were very weak (28, 29). This is likely
because theMRI evaluation is based on the synovitis score, which
fluctuates at different stages of OA, while the extent of fibrosis
is relatively fixed. Ultrasound has also been shown to be useful
in detecting and quantifying synovial abnormalities, especially
for synovitis, as Doppler signals indicate active inflammation
and vascularization in synovial arthritis but not fibrosis (30, 31).
Laboratory tests of the synovium may be more advantageous
for SF assessment than imaging evidence, and methods such
as identification of cell phenotypes, quantitative detection of
profibrotic markers, immunohistochemistry of collagen, and
even HE staining can provide some guidance (32). According
to the criteria established by Ruppert et al. for HE staining of
sections, SF can be divided into three levels according to the ratio
of the fibroblast-like synoviocyte (FLSs) length to the distance
between FLSs (33). It seems that the “gold standard” evaluation
for SF in OA is histology, although this requires an invasive
biopsy that may not be applicable or acceptable to all patients.

Pathological Characteristics of Synovial Fibrosis
The normal synovium can be divided into the intima (synovial
lining) and the subintima (outer layer). The intima comprises
one to three layers of specialized columnar FLSs, which are
interspersed with macrophages, while the subintima consists
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TABLE 1 | Criteria for the diagnosis, classification and severity grading of soft-tissue fibrosis after TKA established by Kalson et al.

Category Criteria Exclude

Main diagnostic

criteria

Restricted ROM ① Soft-tissue fibrosis that was not present

preoperation.

② Loss of movement on extension>5◦.

③ Flexion range≤100◦

Problems with implant (malpositioning, cement,

ectopic bone formation, loosening,

malalignment);

ligament reconstruction, infection, pain,

CRPS or other specific causes; wound issues,

incorrect surgical indication

Secondary

diagnostic criteria

Stiffness

Pain

Inflammatory markers CRP, WBCs

Aspiration of the joint Microbiological culture and cell count

Auxiliary diagnosis X-ray,

CT

Component malalignment;

heterotopic ossification;

patella infera

MRI Measurement of perisynovial thickness or

quantification of fibrotic tissue in the

parapatellar gutters

Focal fibroses; scar tissue

Open or arthroscopic

surgery

Direct visualization of fibrosis

Pathological anatomy and

histopathology

Supply evidence of fibrosis, not essential;

characterized by a varying degree of cellularity

of fibroblasts.

of multiple types of connective tissues, such as fibrous dense
collagen, adipose tissue, or loose collagens. This layer is rich
in type I and III collagen and microvascular blood supply,
accompanied by lymphatic vessels and nerve fibers, but is
relatively acellular (34, 35). From histological patterns, the
synovium in OA patients is characterized by intima hyperplasia,
subintima fibrosis, and stromal vascularization (36). In the
latest report, scholars demonstrated increased innervation
of the medial synovium after KOA surgical modeling, and
the medial compartment of OA knees exhibited striking
changes in NaV1.8

+ innervation (7). Oehler et al. subtyped
osteoarthritic synoviopathy and identified four patterns of
OA-associated synoviopathy: hyperplastic, fibrotic, detritus-rich,
and inflammatory synoviopathy (37). Interestingly, excluding
hyperplastic synoviopathy, the remaining three subtypes are
nearly all overlapping, with different emphases and degrees of
inflammation. The fibrotic type has most of the characteristics
of the other three types, but there is no macromolecular cartilage
and bone debris, which is one of the typical features of detritus-
rich cartilage. This indicates that OA induced by different
factors could involve different subtypes of synoviopathy with
varied features, and at least the fibrotic type originates more
from inflammation than from cartilage debris. In summary, SF
associated with OA should be identified as the accumulation of
collagen under pathological conditions, dominated by abnormal
remodeling of collagen types I and III in the subintima, together
with angiogenesis and nerve invasion. Therefore, in the study of
SF, angiogenesis and nerve invasion should also be considered.

The function of the normal synovium is mainly reflected by
FLSs, as they are involved in the production of hyaluronan,
collagens, and fibronectin in the intima and synovial fluid.

This is essential for joint movement and cartilage nutrition
(38). Macrophages make up a minority of cells in the normal
intima, but their numbers increase dramatically in inflammatory
arthritis (36, 38). Both types of cells are involved in SF associated
with osteoarthritis. Surprisingly, these cells not only determine
ECM changes but also dictate the functions of resident cells
within tissues. The ECM supplies cells with proper chemical and
mechanical signals to regulate cell proliferation, migration, and
differentiation to maintain tissue homeostasis (36, 39). In SF,
collagen I exhibit a disorganized structure and enhanced cross-
linking, while collagen III is crucial for appropriate collagen
I fibrillogenesis and tissue functionality (39). Petersen et al.
believed thatmarkers of type I or III collagen turnovermay reflect
the severity of synovitis and SF, which is highly correlated with
OA pain sensitivity. Fragments of type I, II, and III collagens
were then investigated in blood fromOA patients compared with
blood from control individuals, revealing increased degeneration
of type I and II collagen and decreased degeneration of type III
collagen, which was highly correlated with localized hyperalgesia
in response to pressure stimulation (40). In conclusion, abnormal
secretion of synovial cells forms the pathological basis of SF due
to the inherent effects of the ECM as a pathogenic factor and
biomechanical stimuli involved in OA. The subsequent collagen
environment presents a fibrotic state with changes in synovial
permeability and mechanical properties, which may cause pain
and stiffness in OA joints.

Potential Etiology of Synovial Fibrosis
Fibrosis typically originates from abnormal tissue repair in
response to wound healing. Fibroblasts activated by multiple
diverse signals play a central role in this process, differentiate into
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TABLE 2 | Fibrogenic factors in OA.

Protein

(encoding gene)

Risk factors Function Notes References

TGF-β and TGFβR Aging Receptors and ligands,

signaling

Senescence-associated secretory phenotype (41)

Hypoxia Positive feedback cycle between NLRP3

inflammasome activation and TGF-β1 induction

(42)

ECM changes Promotion of terminal differentiation of fibroblasts

and the secretion of ECM components

(43)

Mechanical stress activation and release of TGF-β1 (44)

VEGF (VEGF ) Hypoxia Growth factor Modulated by HIF-1α at transcriptional level (45)

IGF2 (IGF ) Hypoxia Growth factor Modulated by HIF-1α at transcriptional level (45)

Angiotensin II Hypoxia Signaling Modulated by HIF-2α at transcriptional level (45)

NLRP3 Hypoxia Signaling Positive feedback cycle between NLRP3

inflammasome activation and TGF-β1 induction

(42)

IL-1β Hypoxia Cytokine Increases TGF-β1 induction (42)

LOXs and LOXL ECM changes Amine oxidases and LOX

like proteins

Regulation of phosphorylation of Smad2/3 or p65

orERK1/2

(46–48)

LH2 (PLOD2) ECM changes Protease PI3K/Akt signaling transduction; regulated by HIF or

TGF

(49, 50)

CTGF ECM changes Growth factor Reduction of Smad7 and promotion of TGF-β

signaling

(51)

myofibroblasts, and secrete matrix molecules to rebuild the ECM
structure. Any risk factor for primary OA, such as aging, hypoxia,
changes in the ECM environment, and mechanical stress, may
play a similar role in SF (Table 2 and Figure 1). Although existing
studies have not always targeted the synovium, evidence related
to the balance of cartilage matrix degradation or fibrosis of other
tissues can also provide some guidance for the study of SF.

Aging
Directly relevant to aging is the study of cellular senescence,
which refers to a state of cell cycle arrest, increased
expression of cell cycle inhibitors, and enhanced production of
proinflammatory cytokines, chemokines, and growth factors. A
variety of stimuli and stresses, including telomere shortening,
epigenetic changes, metabolic stresses, and mitochondrial
dysfunction, can cause senescence. Markers for cellular
senescence, including p16INK4A and p21, are upregulated
in OA tissues, including cartilage, subchondral bone, and the
synovium (41, 52, 53), suggesting cellular senescence in the
FLSs of OA. Besides, senescence-associated secretory phenotype
(SASP) is a pro-inflammatory secretory phenotype associated
with cell senescence, including pro-inflammatory cytokines
(such as IL-1α, IL-1β, IL-6, and IL-8), Tissue growth factors
(TGF-β), MMPs, tissue inhibitors of metalloproteinases (TIMPs),
and all these cytokines play important roles in SF. As cells in the
synovium become proliferative and activated during SF, they may
themselves become more susceptible to undergoing senescence.
Thus, despite the lack of direct evidence, FLSs senescence is
likely to promote the development of SF during aging.

Hypoxia
Hypoxia refers to a decrease in oxygen tension in tissues, and
the central effector of the hypoxia response is the transcription

factor hypoxia-inducible factor (HIF). In the hypoxic state, the
alpha subunit in HIF is no longer hydroxylated but accumulates
and translocates to the nucleus, where it binds to the beta subunit
of HIF and exerts its function as a transcription factor (54). The
genes encoding VEGF, TGF-β, and IGF-2, which are regulated
by HIF-1α, and angiotensin II, which is modulated by HIF-
2α, are all important profibrotic factors (45). Clinical studies
have shown that HIF-1α levels in the serum, synovial fluid,
and articular cartilage of knee OA patients are associated with
progressive joint damage (55, 56). Hypoxic TGF-β1 induction
increased succinate accumulation due to the reversal of succinate
dehydrogenase activation and induced NLRP3 inflammasome
activation in a manner dependent on HIF-1α induction. In
response to NLRP3 inflammasome activation, the released IL-
1β further increased TGF-β1 induction, suggesting the existence
of a positive feedback cycle between inflammation and fibrosis
in myofibroblast activation; this highlights the importance
of studying SF associated with OA from the perspective
of hypoxia (42).

Extracellular Matrix Changes
Remst et al. analyzed gene expression in TGF-β-stimulated
human OA synovial fibroblasts and the synovium of mice
with TGF-β-induced fibrosis, mice with experimental OA, and
humans with end-stage OA. The genes encoding lysyl oxidase
(LOX), pro-collagen-lysine, 2-oxoglutarate 5-dioxygenase 2
[PLOD2, also known as lysyl hydroxylase 2b (LH2b)], tissue
inhibitor of metalloproteinase 1 (TIMP-1), collagen type I α1
chain (COL1A1), and collagen type V α1 chain (COL5A1)
were upregulated under TGF-β stimulation, indicating that the
signaling cascades of these key fibrotic factors were activated
(57). Moreover, due to the vital role of matrix metalloproteinases,
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FIGURE 1 | Potential etiology of synovial fibrosis in OA.

a disintegrin and metalloprotease (ADAMS) and a disintegrin
and metalloproteinase with thrombospondin motif (ADAMTS)
in ECM remodeling, the contributions of specificmembers in this
family to SF should also be considered.

TGF-β plays a central role in the fibrotic cascade and
is present as three isoforms (TGFβ1-3), all of which are
elevated in OA patients and positively correlated with pain,
loss of function, and radiographic staging (58). TGF-β signaling
is initiated by binding to the TGF receptor, a heterodimer
composed of TGFβR1 and TGFβR2. Further signal transduction
is usually divided into SMAD-dependent classical pathways
and non-classical pathways that are independent of SMAD.
In the classical pathways, a phosphorylated TGFβR1, typically
ALK5, can then transduce the TGF-β signal intracellularly to
activate SMAD2/SMAD3, which complexes with SMAD4 to
regulate gene expression. In contrast, the non-canonical pathway
signals via other kinases, such as extracellular signal-regulated
kinase, mitogen-activated protein kinase, nuclear factor-κB, and
JUN amino-terminal kinase (43). TGF-β pathways promote the
terminal differentiation of fibroblasts and the secretion of ECM
components, especially collagen, fibronectin, and proteoglycans.
A detailed description of the role of the TGF-β signaling
pathway in OA is beyond the scope of this paper, but it is
remarkable that TGF-β and its subfamily, bone morphogenetic
proteins, play multiple roles in maintaining homeostasis of the
cartilage and subchondral bone in OA. The TGF-β-mediated
protective effects on cartilage matrix turnover rely not only
on the production of ECM proteins such as type II collagen

and aggrecan but also on the blockade of ECM protein
degradation via increased production of protease inhibitors such
as TIMP. Broeren et al. developed a 3-dimensional synovial
membrane model involving micromasses made of either human
primary synovial cell suspensions or a mixture of primary
FLSs and CD14+ mononuclear cells. To recreate the synovial
membrane in OA, the micromasses were exposed to TGF-β,
which led to fibrosis-like changes in the membrane, including
increased alpha smooth muscle actin (α-SMA) and increased
expression of the fibrosis-related genes PLOD2 and COL1A1
(59). These results provide a detailed analysis of SF and show
the suitability of this setup as a synovial membrane model
for further research on RA and OA. Consistent with Broeren,
Remst et al found that TGF-β induced PLOD2 expression in
human FLSs via the ALK5/SMAD2/3 signaling pathway, thus
aggravating SF in OA (60). In summary, high expression of
TGF-β in the OA synovium accelerates OA progression, and
inhibition of TGF-β in the synovium seems to be a favorable
therapeutic strategy for SF. However, further research on TGF-
β is still urgently needed due to its possible protective effects
on cartilage.

The LOX family enzymes LOX and four lysyl oxidase-like
proteins (LOXL1-4) are copper-dependent amine oxidases that
catalyze the covalent cross-linking of collagen by oxidatively
deaminating specific lysine and hydroxylysine residues in
the telopeptide domains; this cross-linking increases collagen
stiffness, which stiffens the ECM and promotes tissue fibrosis
in the lung, myocardium, and liver. LOX may be induced
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by TGF-β1/Smad2/3 signaling, and knockdown of LOXL1
suppressed cell proliferation and fibrogenesis in TGF-β1-
stimulated HSCs by regulating the phosphorylation of Smad2/3
(46, 47). Some research suggests that LOX expression was
markedly elevated in OA-damaged regions of human cartilage
and mouse OA cartilage induced by destabilization of the medial
meniscus (DMM) surgery, and this elevated transcription caused
cartilage destruction (61). Others have suggested that LOXL2
expression may be a protective response due to the inhibition
of IL-1β-induced phospho-NF-κB/p65 and TGF-β1-induced
ERK1/2 phosphorylation, although LOXL2 is upregulated in
OA cartilage (48). These different results may be due to the
varied expression of TGF-β and its receptors during different
pathological stages of OA. Signal transduction in different
environments may be a determinant of TGF-β and LOX function.
Therefore, in the study of the OA synovium, researchers have
observed that IL-1β simultaneously promotes LOX expression
but has a depressing effect combined with TNF-α, while
overexpressing LOX in the synovium exacerbates OA-related
fibrosis (62, 63). Overall, LOX is closely related to tissue
fibrosis through TGF signaling pathways, and the potential
association with HIF-2α, mechanical conduction, and other
OA-related factors may be a further direction for the study
of SF.

PLOD2 encodes lysyl hydroxylase 2 (LH2), which catalyzes
the hydroxylation of lysine intracellularly before the collagen
is secreted. Then, LOX binds to hydroxylysine residues in
the extracellular collagen fibers and induces cross-linking, the
final step in the maturation of collagen, which is essential
for the physical and mechanical properties of collagen fibrils
(64). Aberrant lysyl hydroxylation and collagen cross-linking
contribute to the progression of many collagen-related diseases,
such as cancer and fibrosis. Wan et al demonstrated that
PLOD2 expression was increased in endometrial carcinoma
cells under hypoxic conditions and modulated the migration,
invasion, and epithelial-mesenchymal transition of endometrial
carcinoma cells via PI3K/Akt signaling (49). Other tumor
diseases have also been reported to have similar pathological
processes. In addition, PLOD2 is regulated by HIF-1 or TGF1
and mediates ECM remodeling, alignment, and mechanical
properties through a transcriptionally mediated mechanism.
Mia and Bank identified a selective inhibitor of IκB kinase,
suppressed the expression of PLODs in dermal fibroblasts,
and inhibited the TGFβ1-induced transition of fibroblasts into
myofibroblasts, thus relieving excessive ECM synthesis (50).
Gilkes et al. proved that HIF-1 activity in hypoxic fibroblasts
promotes ECM remodeling by inducing the expression of the
collagen hydroxylases P4HA1, P4HA2, and PLOD2 (65). In our
most recent study, we explored the effect of inflammatory cascade
amplification mediated by synovial macrophage pyroptosis on
SF. High expression of TGF-β and PLOD2 in OA animals
and FLSs was positively correlated with the degree of SF.
Interestingly, TGFβ1, TGFβR1, LOX, PLOD1, and PLOD2 in
the glenohumeral capsule of patients with shoulder instability
may play a role in shoulder instability. We speculate that
this correlation is closely related to SF of the shoulder

joint, although the specific pathological mechanism still needs
further study.

MMP1, which is also known as fibroblast collagenase, has
mainly been implicated in mediating the degradation of type
I collagen, which is most often mentioned in fibrosis as
the major constituent of the fibrotic ECM. MMP1 cleaves
collagen only between amino acids 775 and 776; thus, it
is possible that hydroxylysylpyridinoline collagen cross-linked
through aberrant PLOD2 and LOX is more difficult to degrade
(66). It has been proven that ∼0.1 Schiff base of LOX-
mediated cross-linking per collagen molecule results in 2-3-
fold higher resistance to human collagenase compared with
that of un-cross-linked collagen (67). Therefore, despite the
upregulation of both MMP1 and TIMP1 in the synovium
in OA, the pathological changes of the synovial membrane
continue to promote fibrosis, as indicated by not only the
quantity of collagen but also the quality of collagen, as
determined by its post-translationalmodifications, which actively
drive the progression of fibrosis. In addition, MMP13 and
ADAMTS-5 were also validated as drug targets that participate
in the regulation of the ECM in OA, and ADAMTS-5
inhibitors were shown to reduce synovial joint damage in OA
animal models.

Connective tissue growth factor (CTGF) is a well-known
fibrogenic factor that has been shown to induce synovial fibrosis
(60). It has been observed that both FLSs and chondrocytes were
strongly induced to express CTGF after stimulation by TGF-β
(60, 68). The main function of CTGF is to regulate proteoglycans
on the cell surface, which can affect fibroblast proliferation,
chemotaxis and accelerate ECM deposition (69). CTGF is
thought to coordinate some fibrogenic effects through the TGF-β
response element, but CTGFmay also act independently of TGF-
β (69, 70). Smad7, the inhibitory smad of TGF-β signaling, is
reduced by CTGF, which in turn promotes TGF-β signaling, but
the mechanism by which CTGF regulates Smad7 has not been
fully elucidated (51). Therefore, it is valuable to further elucidate
the induction effect of CTGF on synovial fibrosis in OA.

Wnt/β-catenin is closely associated with embryonic skeletal
formation, tissue repair, fibrosis, and joint homeostasis (71).
Wnt mediates several signaling cascades, especially the β-
catenin–dependent (canonical) pathway (72), and β-catenin,
as a transcriptional regulator, its stabilization or degradation
is a central event in the Wnt signaling pathway. Existing
studies show that the Wnt/β-catenin classical pathway has
long been proven to be over-activated in the pathogenesis of
OA (73). To be specific, increased expression of Wnt ligands
and target genes was observed in both articular cartilage and
synovium after injury, indicating Wnt signaling activation (74,
75). A recent study showed that XAV-939, a Wnt inhibitor,
may reduce the proliferation of synovial fibroblasts and type
I collagen levels by inhibiting the Wnt pathway, ultimately
exerting a protective effect on synovial fibrosis (73). In
conclusion, the Wnt/β-catenin signaling pathway may be a
key molecular mechanism in the treatment of synovial fibrosis
in OA, which may provide new ideas for the treatment
of OA.
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Mechanical Stress
Physical activity is one of the most frequently recommended
non-pharmacological therapies for OA, but the duration and
intensity of exercise vary widely. Moderate mechanical stress
may reduce sensitization to the inflammatory response in the
articular cartilage and chondrocytes and be beneficial for OA
(76). However, excessive mechanical stress exacerbates OA
progression by inducing chondrocyte apoptosis and osteophyte
formation (77, 78). This indicates that mechanical stimulation
can regulate the balance of synthesis-degradation in cartilage
and osteogenesis-osteoclastogenesis in the subchondral bone. In
vivo, mechanical stress is transduced into the cell from the sites
at which the cells attach to the ECM. The cells may engage
their ECM both via mechanosensitive adhesion complexes and
via other surface receptors, including those for growth factors
and inflammatory mediators, which cannot act as adhesive
anchors but may modify the mechanical signals transduced at
the cell/ECM interface (79). Under these conditions, activated
mechanosensitive plasma membrane channels allow the inflow
of Ca2+ that can act as a second messenger to regulate gene
expression. TGF-β1 is a typical mechanosensitive gene, and
previous studies have suggested that mechanical stretching
activates and releases latent TGF-β1 in living tissues from
fibrotic lungs (44). In cardiac fibrosis, mechanical stress is a
major factor for cardiac hypertrophy in response to pressure
or volume overload, and angiotensin II seems to be another
mechanosensitive gene that promotes fibrosis (80). As the
FLS response to mechanical stress is critical during the initial
stages of OA, SF caused by excessive mechanical stimulation
is likely to occur (81), and subsequent ECM stiffness may
affect tissue delivery of mechanical signals and exacerbate
OA progression.

Existing and Potential Treatments for
Synovial Fibrosis
Open surgery for SF is undoubtedly the most direct and
effective treatment, but it often requires large incisions with
extensive exploration of the joint and surrounding extracapsular
soft tissues. Unfortunately, the surgery itself induces a fibrotic
process, and the outcomes of post-traumatic surgery are poor,
with most patients unable to return to their presurgery level
of function. Even if satisfactory results are achieved during the
operation, SF is likely to recur within a certain period.

Recently, SF research has made some progress in conservative
drug treatment. Numerous studies have consistently reported
that PRG4 and HA attenuate profibrotic responses to TGF-
β in OA animals or FLSs. Interestingly, FLSs themselves can
synthesize and secrete PRG4 andHA. Correcting the pathological
state of FLSs in OA seems to be of great significance for the
treatment of SF. In this context, Qadri et al concluded that
increasing intracellular cAMP levels in FLSs mitigates SF through
enhanced production of HA and PRG4 (82). Plaas et al. proved
that HA injection blocked all gait changes and protected joints
from femoral cartilage erosion and tissue fibrosis in KOA mice,
and they deduced that HA injection could mimic the protective
effects of ADAMTS-5 ablation (83). Their further findings

supported this hypothesis and demonstrated that ADAMTS-5
was blocked by a CD44-dependent mechanism (84). As PRG4
is a ligand of the CD44 receptor, Qadri et al examined the
role of the PRG4-CD44 interaction in regulating SF in OA and
demonstrated that PRG4 inhibited fibroblast-to-myofibroblast
transition, thus downregulating the expression of fibrotic genes
in the OA synovium (85).

Furthermore, regarding the balance between MMP and TIMP
expression in FLSs from KOA with flexion contracture using
adenovirus-mediated relaxin gene therapy, relaxin could serve
as an alternative therapeutic agent during the initial stage of OA
with flexion contracture by exerting antifibrogenic effects (86). In
addition, methylene blue, NSAIDs, and salmon calcitonin were
also reported to have therapeutic effects on SF, although their
specific mechanisms are still unclear (87–89). TheWnt/β-catenin
signaling pathway and senescent cells are potential targets for
antifibrosis therapy, but the intervention procedure needs further
exploration (73, 90).

CONCLUSION

Evidence from direct research on SF in OA and related
studies suggests the following. (I) Fibrosis is the outcome of
inflammation. It is not clear whether the ongoing process of
SF has a pathogenic effect in OA, especially in relation to
pain. If so, effective intervention to slow the progression of
fibrosis is necessary even if fibrosis is irreversible, as the greatest
advantage is the improvement of joint function and the relief
of OA symptoms. (II) Although we have some understanding
of ECM environmental changes and the mechanism by which
they are involved in the pathological process of SF associated
with OA, our knowledge of this pathological mechanism is still
insufficient. Angiogenesis and nerve invasion are likely to have a
strong correlation with the pathological process of SF and may
be involved in the development of SF, which deserves further
exploration. (III) Existing research on the pharmacodynamic
targets and intervention effects of SF is not sufficient, and
further exploration is still needed in the future. Notably, the
combined use of antifibrotic drugs has high potential during
anti-inflammatory therapy for OA.
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