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Abstract It is unclear whether Gross Domestic Product (GDP) and greenness have additional modifying
effects on the association between air pollution and respiratory system disease. Utilizing a time‐stratified case‐
crossover design with a distributed lag linear model, we analyzed the association between six pollutants (PM2.5,
PM10, NO2, SO2, O3, and CO) and 555,498 respiratory hospital admissions in Beijing from 1st January 2016 to
31st December 2019. We employed conditional logistic regression, adjusting for meteorological conditions,
holidays and influenza, to calculate percent change of hospitalization risk. Subsequently, we performed
subgroup analysis to investigate potential effect modifications using a two‐sample z test. Every 10 μg/m3

increase in PM2.5, PM10, NO2, SO2, and O3 led to increases of 0.26% (95%CI: 0.17%, 0.35%), 0.15% (95%CI:
0.09%, 0.22%), 0.61% (95%CI: 0.44%, 0.77%), 1.72% (95%CI: 1.24%, 2.21%), and 0.32% (95%CI: 0.20%,
0.43%) in admissions, respectively. Also, a 1 mg/m3 increase in CO levels resulted in a 2.50% (95%CI: 1.96%,
3.04%) rise in admissions. The links with NO2 (p < 0.001), SO2 (p < 0.001), O3 (during the warm season,
p < 0.001), and CO (p < 0.001) were significantly weaker among patients residing in areas with higher levels of
greenness. No significant modifying role of GDP was observed. Greenness can help mitigate the effects of air
pollutants, while the role of GDP needs further investigation.

Plain Language Summary Numerous investigations have explored the connection between air
pollution and respiratory disease hospital admissions. Nonetheless, the potential modifying roles of Gross
Domestic Product (GDP) and the presence of green spaces remain inconclusive. To address this issue, our
research utilized a time‐stratified case‐crossover design, analyzing electronic patient records from Beijing,
China’s capital city. Our analysis did not reveal any significant alteration in the relationship between air
pollution and respiratory disease admissions due to sex or GDP. However, the data indicated that the correlation
was amplified for individuals aged over 65, during different seasons, for those with differing marital statuses,
and among those residing in areas with low greenness (Normalized Difference Vegetation Index levels).
Drawing from an extensive data set, these results offer more detailed insight into strategies to mitigate the
effects of air pollution on respiratory disease‐related hospital admissions.

1. Introduction
According to the World Health Organization’s report on the top 10 causes of death in 2019, two of the leading
global causes of death were related to respiratory diseases, imposing a significant disease burden. Chronic
obstructive pulmonary disease (COPD) ranked as the third leading cause of death worldwide, accounting for
approximately 6% of total deaths. Additionally, lower respiratory infections continued to be the most lethal
communicable disease in the world, occupying the fourth position on the list of leading causes of death (World
Health Organization, 2022). Prevalence of respiratory diseases is an important contributor to the disease burden in
low‐ and middle‐income countries (Clark et al., 2022).

The leading risk factors for respiratory diseases include the unhealthy habit (tobacco smoking) and exposure to
air pollution (including indoor air pollution, ambient air pollution, and occupational pollutants) (Adeloye
et al., 2022; Eisner et al., 2010). Air pollution has a significant impact on health (Yee et al., 2021), resulting in
up to 7 million premature deaths and causing a much greater number of hospital admissions annually (Orru
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et al., 2017). Recent studies have shown that air pollutants have a clear association with outpatient visits (Liu
et al., 2017; Ma et al., 2020) hospitalizations (Moore et al., 2016; Renzi et al., 2022) and deaths (Nazar &
Niedoszytko, 2022; Orellano et al., 2020) in respiratory diseases. One study revealed that the highest increases
in total respiratory outpatient visits occurred at lag 05 for both NO2 and SO2. A 10 μg/m3 increase in NO2
corresponded to a 2.50% rise in total respiratory outpatient visits, whereas a similar increase in SO2 was linked
to a 3.50% increase (Ma et al., 2020). An elevation in pediatric respiratory outpatient visits was observed with
every increase in the interquartile range (IQR) of PM2.5, PM10, NO2, CO, and O3 concentrations. Each IQR
increase in PM2.5 (lag 0) was associated with a 1.91% rise, while PM10 (lag 0) showed a 2.46% increase.
Additionally, there was a 1.88% increase for NO2 (lag 0), a 2.00% increase for CO (lag 0), and a 1.91% in-
crease for O3 (lag 4) concentrations (Liu et al., 2017). For the risk of air pollution on hospital admissions for
respiratory diseases, Renzi et al. observed additional risks for total respiratory diseases amounting to 1.20% and
1.22% for every 10 μg/m3 rise in PM10 and PM2.5 at lag 0–5 days, respectively (Renzi et al., 2022). Many
studies have found that greenness may interact with exposure to air pollutants (Ji et al., 2020). Greenness can
reduce the negative effects of air pollution (Bloemsma et al., 2022; Jaafari et al., 2020; Zhang et al., 2022).
Although there is prior research suggesting that greenness may reduce all‐cause mortality (Ji et al., 2020),
there has been little investigation exploring the connection between greenness and respiratory disease
hospitalizations.

Social and environmental determinants play crucial roles in shaping individuals’ health outcomes. Among these
factors, socioeconomic status stands out as a key influence on health and well‐being. The relationship between
socioeconomic status and health is complex, but numerous studies have found that populations with lower so-
cioeconomic backgrounds are more susceptible to Non‐communicable Diseases. This vulnerability is attributed to
factors such as material deprivation, psychosocial stress, unhealthy living conditions, and limited access to high‐
quality healthcare (World Health Organization, 2008; Xue et al., 2021). Many studies have analyzed the effects of
Gross Domestic Product (GDP) on a variety of disease outcomes, including mental health (Xue et al., 2021),
cardiovascular mortality (Sung et al., 2020), and others (Malicka et al., 2022), as well as studies examining the
moderating effects of GDP (Gao et al., 2022). Nonetheless, no previous studies have investigated how GDPmight
influence the relationship between air pollution and respiratory disease hospitalizations. Considering the
increasing significance of comprehending the effects of environmental factors on human health, it is essential to
address these knowledge gaps through further research.

In the process of modern urbanization, greenness has become a crucial issue that cannot be ignored. Greenness not
only plays a vital role in improving the ecological environment but also enhances the physical and mental health
of the population. Therefore, there has been a growing scientific interest in the potential health benefits of
exposure to greenness (Frumkin et al., 2017). A study in the United States found that greenness was positively
associated with hospitalization for respiratory disease (Klompmaker et al., 2022). In a study utilizing data of the
2019 Global Burden of Disease, greenness was significantly negatively associated with the global burden of
disease for lower respiratory infections (Liu et al., 2023). Few studies have examined whether greenness mediate
the association between air pollution and respiratory hospitalization.

The combination of severe air pollution and rapid urbanization has contributed to an increased respiratory
burden in China. Specifically, Beijing, located in the northern part of the North China Plain at 116°20′E and
39°56′N, is particularly affected. As the capital city, it has a high concentration of vehicles and a dense
population, leading to a significant impact of air pollution on public health. In this context, Gao et al. conducted
a study to examine the immediate effects of ambient air pollution on hospitalizations related to COPD in
Beijing. The study found that the cumulative lag effect of a 10 μg/m3 increase in air pollutant levels was most
pronounced for nitrogen dioxide (NO2) at lag 06, with a 3.03% increase. Similarly, short‐term exposure to
various air pollutants had adverse effects on COPD hospitalizations, with varying degrees of impact depending
on the lag days (Gao et al., 2019). Another study conducted in Beijing demonstrated that the relative risks of
various pollutants on hospitalization for acute exacerbations of COPD were greater than 1 (Liang et al., 2019).
The above findings confirmed the negative effects of air pollutants on respiratory diseases. However, previous
studies were based on group exposure with relatively small sample sizes, making it difficult to avoid common
confounding factors in time‐series studies. Currently, few large‐sample studies based on individual exposure
and advanced designs exist.
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The objective of our study was to assess the effects of air pollutants on hospitalized patients with respiratory
diseases using a time‐stratified case crossover design, based on daily air pollutant concentrations. We also
included age, sex, season, GDP, and greenness as moderating factors to compare the effect of air pollution on
respiratory disease hospitalizations within each individual group.

2. Methods
2.1. Study Area and Data on Hospital Admissions

Our study was conducted in Beijing, the capital city of China. Beijing is divided into 16 districts, with a resident
population of 21.536 million in 2019 and an area of 16,410.54 square kilometers.

We obtained admission records from 133 hospitals between 1st January 2016 and 31st December 2019 (a total of
1,461 days), including almost all inpatients in Beijing. These records contain basic information such as sex, age,
address, date of admission, hospitalization diagnosis in Chinese and corresponding International Classification of
Diseases, 10th Revision (ICD‐10) code. We extracted daily inpatient visits with a main diagnosis of respiratory
diseases (ICD‐10 codes J00–J99) from the database. In this study, we considered a wide range of respiratory
diseases, including but not limited to acute upper respiratory tract infections (J00–J06), influenza and pneumonia
(J09–J18), other acute lower respiratory tract infections (J20–J22), other diseases of the upper respiratory tract
(J30–J39), chronic lower respiratory diseases (J40–J47), lung diseases due to external agents (J60–J70), other
respiratory diseases affecting mainly the interstitium (J80–J84), suppurative and necrotic conditions of the lower
respiratory tract (J85–J86), other diseases of the pleura (J90–J94), and other diseases of the respiratory system
(J95–J99). Among these respiratory diseases, influenza and pneumonia (J09–J18) accounted for 28.58% of the
cases, making it the most prevalent category. Other respiratory system diseases (J80–J84) had a proportion of
24.09%, followed by chronic lower respiratory diseases (J40–J47) at 17.34%.

2.2. Environmental Exposure

2.2.1. Air Pollution and Meteorological Data

For our exposure data, we acquired satellite‐derived air pollution data, encompassing daily concentrations of
PM2,5, PM10, NO2, SO2, O3, and CO. In essence, it employed a machine learning technique known as “space–time
extremely randomized trees” to predict daily air pollutant concentrations across China. Specifically, the spatial
resolutions were 1 km for PM2.5, PM10, and O3 and 10 km for NO2, SO2, and O3. Results from the 10‐fold cross‐
validations indicated a high prediction accuracy for each pollutant, with R‐squared values of 0.90 for PM2.5, 0.86
for PM10, 0.84 for NO2, 0.84 for SO2, 0.87 for O3, and 0.80 for CO. Further details about the air pollution data can
be found in previous descriptions (Wei, Li, Lyapustin, et al., 2021; Wei, Li, Xue, et al., 2021; Wei et al., 2022,
2023). Figures S1–S6 in Supporting Information S1 show the distribution of six pollutants and the residential
addresses of hospitalized patients on 1st January 2019 and 1st July 2019.

We also obtained daily meteorological data form 20 weather stations in Beijing, including relative humidity (%),
mean temperature (°C) during the study period from the Institute of Geographic Sciences and Natural Resources
Research. To capture the temperature around each individual’s residential address, we utilized inverse distance
weighted interpolation, incorporating all accessible site data for daily temperature and humidity. Meteorological
data from January 2016 to December 2019 were obtained from Resource and Environment Science and Data
Center.

2.3. GDP Data

The China Grid GDP data set comprehensively considers multiple factors closely related to human economic
activity, such as land use types, night lights brightness, and residential density, based on county‐level GDP
statistical data in China. Using a multi‐factor weighting allocation method, the GDP data of administrative re-
gions is distributed to grid units, achieving the spatialization of GDP (Xu, 2017). The original data consisted of
annual gridded data with a resolution of 1 km × 1 km. We matched GDP data to each patient based on their
residential address. Figure S7 in Supporting Information S1 show the distribution of GDP and the residential
addresses of hospitalized patients in 2019.
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2.4. Greenness

The Normalized Difference Vegetation Index (NDVI) accurately reflects surface vegetation cover by measuring
the differences between surface reflectance in red visible and near‐infrared light, which results in values ranging
from − 1 to +1. Dense vegetation pixels are associated with high positive numbers. In this study, we obtained
China’s annual vegetation index spatial distribution data set from the Resource and Environmental Science and
Data Center website (Xu, 2018). The data set was generated using continuous‐time‐series spot/vegetation NDVI
satellite remote‐sensing data and the maximum synthesis method. The NDVI data has a temporal resolution of
1 month and a spatial resolution of 1 km × 1 km. We matched corresponding NDVI values based on the addresses
of our study subjects. Figure S8 in Supporting Information S1 show the distribution of NDVI and the residential
addresses of hospitalized patients in January 2019 and July 2019.

2.5. Influenza

The influenza information from the influenza weekly of reports from January 2016 to December 2019 were
obtained from the Chinese National Influenza Center.

2.6. Statistical Analysis

We conducted a time‐stratified case‐crossover design to examine the potential associations between air pol-
lutants and hospital outpatient visits for respiratory diseases (ICD10: J00–J99) (Carracedo‐Martínez
et al., 2010). For each individual patient, the levels of air pollution exposures on the day of admission were
compared with those of control periods. Three to four control days were matched to the date of admission by the
same day of the week in the same month of the same year with the patient. For example, if the date of admission
was on Friday, 3rd March 2017, we would define Friday, 3rd March 2017 as the case index day and all other
Fridays in March 2017 (March 10th, 17th, 24th, and 31st) as the control index days. In this study, 1,331,023
control days were selected for the 555,498 hospitalized patients with respiratory diseases. We retrieved daily
mean temperature and relative humidity at each patient's address on each of the corresponding case and control
days. The study also designed each patient as its self‐control to minimize the potential confounding of socio-
economic (e.g., age, sex, etc.) and stratify time to exclude long‐term impact of air pollutant (e.g., secular trend,
seasonality, etc.).

We used conditional logistic regression models combined with distributed lag model (DLM) to quantify the
associations between exposures to air pollutants and the admission of respiratory diseases through the odds ratio
(OR) (Chen et al., 2022; Gasparrini et al., 2010; Guo et al., 2011). The lag effects of air pollutants were modeled
by cross‐basis, a bi‐dimensional space of functions to reflect the exposure‐responses and lag structure of the
association. We plotted the lag structure over 5 days (lag 0–lag 4) to explore the lag structure of health effects of
air pollutants.

Logit(P(case = I in stratumij |Air pollutant, Temp, Humidity, Holiday, Influenze))

= βstratumij
+ cb(Air pollutant) + ns(Temp02,df

= 3) + ns(Humidity02,df = 3) + Holiday + influenza

where stratumij is the fixed time strata i in individual j (the same calendar month for case day and control days for
the individual j), βstratumij

is the intercept of stratum i for individual j, cb(Air pollutant) is the cross basis function, a
linear function was used for the air pollutant‐response dimension and a natural cubic spline with two internal
knots was selected at equally log values of lags to allow for more flexibility at shorter delays (Guo et al., 2011),
Holiday is a binary variable indicating whether the date was a public holiday, Influenza is a binary variable
indicating whether the date was influenza epidemic, ns(Temp02, df = 3) and ns(Humidity02, df = 3) are the
natural cubic spline function to fit non‐linear exposure‐response relationship of temperature and relative humidity
(Chen et al., 2022).

Because O3 concentrations were much lower in the cold season (see Figure S9 in Supporting Information S1), the
association of O3 with the admission of respiratory diseases was evaluated in all year, the warm season (April–
September) and the cold season (October–March) (Chen et al., 2022).
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To explore the possibility of nonlinear concentration‐response curves of air pollutants with the admission of
respiratory diseases, the cross‐basis functions for all air pollutants were rebuilt using the distributed lag nonlinear
model (DLNM), where a natural cubic spline with two internal spline knots at equally spaced percentiles of
concentrations was fitted to account for potential nonlinear relationships between pollutants and the admission of
respiratory diseases, and a natural cubic spline with two internal knots placed at equally spaced log values of lags
was used for the lag‐structure. The relationship between ozone exposure and hospitalization in cold, warm and
overall seasons can be seen in Supporting Information S1 (see Figure S10), in which we found the adverse effect
of O3 in the warm season under DLM assumption.

We also conducted stratified analyses by sex (male vs. female), age (≤65 vs. >65 years), marriage status (yes vs.
no), season (warm [April–September] vs. cold [October–March]), GDP (high vs. low, based onmedian value) and
NDVI (high vs. low, based on median value), to identify the possible effect modifications. Statistical differences
between stratum were tested using 2‐sample z tests with the following formula:

z =
β1 − β2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SE21 + SE
2
2

√

where β1 and β2 were the group‐specific regression coefficients (log OR) and SE1 and SE2 were the corresponding
standard errors (Liu et al., 2021).

We conducted multiple sensitivity analyses to examine the robustness of the associations of air pollutants with the
admission of respiratory diseases. First, we performed double‐pollutants model to test the stability of the rela-
tionship due to high correlation among air pollutants. Second, we exchanged the lag structure with step function,
where cut‐off points were set day by day. Third, we changed the degree of freedom from 4 to 6 for natural cubic
spline of temperature in the main model. Fourth, we trimmed the highest 1% of daily concentrations for all
pollutants to test the potential influences of outliers on the analyses.

All analyses were performed in R (version 4.2.2) using 2‐sided tests with an α of 0.05. Odds ratios and their 95%
Cis were converted into percent change in risk of the admission of respiratory diseases with per 10 μg/m3 (for CO,
1 mg/m3), using the following equation:

Percent change = ( eβ×10 − 1) × 100%

Percent change.lower95%CI = ( e(β− 1.96×SE)×10 − 1) × 100%

Percent change.upper95%CI = ( e(β+1.96×SE)×10 − 1) × 100%

where β is the regression coefficient (log OR) and SE is the standard error of the β.

3. Results
3.1. Baseline Characteristics

Among the total of 555,498 inpatient visits between 1st January 2016 and 31st December 2019, 60.1% were male,
and the mean age at hospital admission was 54.93 years. 53.3% of the cases were hospitalized in cold season and
46.7% of the cases were hospitalized in warm season. Table 1 summarizes the basic descriptive information of
patients.

Throughout the study period, the daily concentrations of pollutants were observed to fluctuate according to
seasonal changes (see Figure S10 in Supporting Information S1), with a clear increase in pollutant concentrations
during the cold season (except for O3). Of the 1,461 days, 1,293 (88.5%) days of daily PM2.5, 1,361 (93.2%) days
of daily PM10, 1,447 (99.0%) days of daily NO2, 1,361 (93.2%) days of daily SO2, 1,245 (85.2%) days of daily O3
and 1,456 (99.7%) days of daily CO concentrations achieved the target of the Chinese Ambient Air Quality
Standards Grade II standards (PM2.5 ≤ 75 μg/m3, PM10 ≤ 150 μg/m3, NO2 ≤ 80 μg/m3, SO2 ≤ 150 μg/m3,
O3 ≤ 160 μg/m3, CO≤ 4 mg/m3). Distribution of exposure to air pollutants and meteorological conditions on case
days and control days is provided in Table 2.
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The daily average concentrations for PM2.5, PM10, NO2, SO2, O3, and CO
were 46.75, 85.25, 34.84, 85.25, 101.03, and 0.98 mg/m3, respectively.
PM2.5, PM10, NO2, SO2, and CO had strong positive correlation coefficients
between each two pollutants. O3 was negatively associated with other pol-
lutants in significant correlations (Table S1 in Supporting Information S1).

3.2. Association of Daily Concentrations of Air Pollutants and
Respiratory Disease Admissions

We found that there were significant correlations between the daily con-
centrations of air pollutants and the number of inpatients. Figure 1 displays
the associations between pollutants and hospitalized patients with respiratory
diseases at various lag days adopting single‐pollutant models. For respiratory
hospitalization, all pollutants displayed adverse effect. Most pollutants,
including PM2.5, PM10, NO2, O3 (warm) and CO, exhibited immediate ef-
fects, often starting from the first day of exposure. The maximum single day
effect for each pollutant was as follows: a 10‐unit increase in PM2.5 (lag0)
corresponded to a 0.26% (95%CI: 0.17%, 0.35%) rise in hospitalization risk;
for PM10 (lag 0), each 10‐unit increase was linked to a 0.15% (95%CI:
0.09%, 0.22%) higher risk; NO2 (lag 4) saw a 0.61% (95%CI: 0.44%, 0.77%)
increase in risk for every 10‐unit rise; SO2 (lag 4) showed a substantial 1.72%
(95%CI: 1.24%, 2.21%) increase in risk with a 10‐unit rise; O3 (warm, lag 0)
indicated a 0.32% (95%CI: 0.20%, 0.43%) rise in risk for every 10‐unit in-
crease, and CO (lag 4) exhibited a significant 2.50% (95%CI: 1.96%, 3.04%)
increase in risk for every 1‐unit rise. Meanwhile, some pollutants had cu-
mulative effects that persist from lag01 to lag04, such as PM2.5, PM10, NO2,
O3 (warm) and CO. Concerning O3, it’s noteworthy that there was no sig-

nificant association with health outcomes throughout the year. During the cold season, O3 may even exhibit
adverse effects. Conversely, we observed notable health benefits linked to O3 during the warm season. It’s worth
noting that we observed a phenomenon known as harvesting effect for most pollutants, which means they exhibit
contrasting effects in the first few days of exposure.

The concentration‐response curves (both linear: DLM and nonlinear: DLNM) for six air pollutants can be seen
in Figure 2. In general, both linear and non‐linear curves showed similarity within the 99% concentration range
(within the red dashed line) for all air pollutants. However, nonlinear analysis revealed that for PM2.5, PM10,
and O3 (warm), their exposure‐response curves manifest negative effects at low concentrations, with a notable
escalation in harmful effects at high concentrations. In the case of NO2, a plateau period was observed at

Table 1
Demographic Characteristics of Respiratory Hospital Admissions in Beijing
During 2016–2019

Baseline characteristic Values

Respiratory disease hospitalizations (n) 555,498

Case days (n) 555,498

Control days (n) 1,331,023

Sex (n (%))

Male 333,603 (60.1)

Female 221,895 (39.9)

Age at hospital admission (mean (SD)) 54.93 (30.78)

Marriage (n (%))

No 175,780 (31.6)

Yes 379,718 (68.4)

Season at hospital admission (n (%))

Warm 259,182 (46.7)

Cold 296,316 (53.3)

GDP (mean (SD)) 127,155.7 (193,672.6)

NDVI (mean (SD)) 0.29 (0.15)

Note. SD standard deviation, GDP gross domestic product, NDVI normal-
ized difference vegetation index.

Table 2
Distribution of Air Pollutants and Meteorological Conditions in Beijing During 2016–2019

Variable Min Q25 Median Q75 Max Mean SD

Air pollutant

PM2.5 (μg/m
3) 10.63 29.21 39.77 55.45 209.46 46.75 26.83

PM10 (μg/m
3) 25.93 58.06 75.26 100.33 562.78 85.25 43.13

NO2 (μg/m
3) 11.81 24.85 30.80 41.70 99.84 34.84 14.32

SO2 (μg/m
3) 25.93 58.06 75.26 100.33 562.78 85.25 43.13

O3 (μg/m
3) 15.18 63.60 93.62 133.53 239.35 101.03 49.09

CO (mg/m3) 0.35 0.68 0.87 1.10 4.98 0.98 0.51

Meteorological condition

Relative humidity (%) 10.24 37.54 52.41 69.73 95.68 53.32 19.43

Temperature (°C) − 16.88 0.53 13.23 22.63 30.38 11.88 11.56

Note. SD standardized deviation, Q25 the 25th percentile, Q75 the 75th percentile.
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Figure 1. Percentage change (95%CI) of respiratory hospital admissions with a 10 µg/m3 increase PM2.5, PM10, NO2, SO2,
and O3 and 1 mg/m

3 increase CO at different lags. Note: The effects of single‐day lags (from current day to 4 days before: lag
0–lag 4) and cumulative lags (from lag 01 to lag 04) were plotted.

Figure 2. E‐R curves of air pollutants and respiratory hospital admissions. Note: The blue (red) lines represent the percent
change based on DLNM (DLM), with shadings in the corresponding colors indicative of 95% CI. The 95th (99th) percent of
air pollutant is marked by the dashed blue (red) line.
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elevated concentrations. The nonlinear findings for SO2 and CO aligned consistently with the linear results.
The exposure‐response relationships for ozone in different seasons can be seen in Figure S11 of the Supporting
Information S1.

3.3. Stratified Analysis

Following the main effect, we reported the effect estimates of the stratified analysis based on the maximum effect
single day. Figure 3 illustrates the impact of pollutants levels in different subgroups on hospitalization of res-
piratory diseases. In age‐specific analysis, the elderly (>65 years) people were more vulnerable to PM2.5

(p < 0.001), PM10 (p < 0.05). As for sex‐specific and marriage analysis, all pollutants showed no significance in
the subgroups. As for marriage‐specific, we found married individuals were more susceptible to the effects of SO2
(p < 0.05). We found that season may modify the association between PM2.5 (p < 0.001), NO2 (p < 0.001), SO2
(p < 0.001), O3 (p < 0.001), and CO (p < 0.001). PM2.5 had a greater effect in warm season while other gaseous
pollutants had a greater effect in cold season. O3 could be found in Figure S12 of the Supporting Information S1.
Similarly, all pollutants still showed no significant correlation with different level of GDP. According to an
analysis of greenness, exposure risk to NO2 (p < 0.001), SO2 (p < 0.001), O3 (warm, p < 0.001), and CO
(p < 0.001) was inversely correlated with NDVI. The differences of PM2.5 and PM10 exhibited similar trends but
they were not statistically significant.

3.4. Sensitivity Analysis

The outcomes of the sensitivity analysis revealed the robustness of the results, indicating that variations in
temperature degrees of freedom, adjustments to the lag structure of pollutants, or the imposition of concentration
limits beyond the 99th percentile do not compromise the findings (Figure S13 in Supporting Information S1). In
the double‐pollutants model, we observed interdependence in the effects of certain pollutants. Specifically, the
effects of PM2.5 were not independent of NO2 and CO, while the effects of PM10 were influenced by PM2.5, NO2,
and CO. Additionally, the effects of NO2 were not independent of CO. However, the effects of SO2, O3, and CO
demonstrated independence from each pollutant.

4. Discussion
In this large time‐stratified case‐crossover study, short‐term exposures to PM2.5, PM10, NO2, SO2, O3 (warm) and
CO were significantly associated with hospital admission of respiratory disease. The associations were modified
by age, marriage, season and greenness. No statistically significant differences were observed in terms of sex
and GDP.

Figure 3. Percentage change (95%CI) of respiratory hospital admissions per 10 μg/m3 increases in PM2.5, PM10, NO2, SO2,
and O3 and 1 mg/m

3 increase in CO at the maximum effect single day, stratified by age, sex, marriage, season, GDP and
NDVI. Note:*p < 0.05; **p < 0.01; ***p < 0.001.
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Our findings were consistent with numerous previous studies conducted at the individual level. Liu et al.
explained that risk of hospital admission of respiratory disease was changed according to the pollution in the area,
polluted and less polluted zones have 1.64 odds ratio (95%CI: 1.43,1.89) in India (Liu et al., 2013). In our study,
the short‐term effects of air pollutants varied depending on the type of pollutant, which likely reflects the dif-
ferences in biological mechanisms and characteristics among each pollutant. Air pollution can accumulate and
penetrate into lung tissue, and fine particulate matter can cause an increase in proinflammatory activity, leading to
bronchial injury. In contrast, ozone caused invisible changes in lung structure that may result in chronic respi-
ratory diseases (De Sario et al., 2013; Zhu et al., 2014).

Our study evaluated the impact of air pollutants on respiratory admission under different exposure windows. In
this study, the majority of pollutants (except for SO2) were found to increase the risk of hospitalization on the first
day of exposure. Cai’s study also revealed that PM10 and NO2 exposure at lag 01 had the strongest adverse effects
on asthma hospitalization in Shanghai (Cai et al., 2014). These findings suggested that both pollutants potentially
exert immediate and acute effects on respiratory disease. Comparable outcomes have been reported in other
studies as well (To et al., 2013). In addition, we found the strongest association between six air pollutants and
respiratory admissions at lag 04 in terms of cumulative effect, highlighting the lag effect of air pollutants.

Nonlinear analysis unveiled contrasting patterns at low concentrations for PM2.5, PM10, and O3, potentially
influenced by residual confounding. For example, there was an inverted u‐shaped relationship between income
level and environmental degradation (Panayotou, 1993). China remains in a phase characterized by high emis-
sions, and areas with elevated pollution levels often coincide with individuals of higher GDP (Wang et al., 2022).
The atypical patterns noted at lower concentrations might be influenced by confounding stemming from eco-
nomic conditions.

In certain lag days, we observed a negative association between air pollutants and respiratory admissions. This
phenomenon could be attributed to the short‐term acute exposure to air pollution that mainly affects vulnerable
individuals. When the levels of air pollution rise and high‐risk individuals fall sick or die, the total number of
high‐risk individuals reduces. Consequently, an incidence or mortality rate lower than the anticipated level is
observed. This adverse correlation is commonly known as the harvesting effect (Rabl, 2005; Schwartz, 2001).

In our study, the analysis stratification revealed that the relationship between air pollution and hospitalization for
respiratory diseases was moderated by age, marriage, season, and greenness. However, no significant associations
were found between sex and GDP. Previous studies have found that older adults are more susceptible to the
impacts of air pollution (Fan et al., 2022; Gaines et al., 2023; Gu et al., 2020; Kan et al., 2008), which may be a
result of the vulnerability of respiratory function in the elderly. For stratified analysis by season, our study found
that patients were more affected by pollutants except O3, PM2.5, and PM10 during cold seasons. Wang et al. found
that under low temperature, PM10, NO2 and SO2 had a more significant impact on the daily hospitalization caused
by respiratory diseases based on the research in western China (Wang et al., 2013). Sun et al. reported significant
increase in total incident respiratory diseases during winter in Hong Kong (Sun et al., 2018). This may be due to
the easy occurrence of temperature inversion under low temperature conditions, which hinders the diffusion of
pollutants and leads to a stronger effect (Trinh et al., 2019). O3 mainly exhibits adverse effects during the warm
season, because it is formed by the chemical reaction of volatile organic and nitrogen oxides compounds in
sunlight and high temperature conditions (Crutzen, 1974; Sillman, 1999). Regarding marital status, it is specu-
lated that the observed association could be attributable to unmeasured factors like social stress. For example,
married individuals might experience increased social pressure due to financial obligations to support family.
However, married individuals should have better health status, marriage can encourage healthy behaviors, such as
visiting doctors (Umberson, 1992), and discourage risky behaviors, such as smoking (Lindström, 2009). It should
be cautious when interpreting this result.

Regarding the impact of greenness, this study found that a high NDVI significantly reduced the exposure risk to
PM2.5, PM10, and NO2 on respiratory disease hospitalizations. Similar results were reported in study in urban U.S.
counties, an IQR increase in NDVI corresponds to a 1.29% and 0.01% decrease in the association between PM10,
PM2.5 and respiratory disease hospitalization (Heo & Bell, 2019). The commonly suggested mechanisms
encompass trees’ ability to absorb nitrogen oxides, ammonia, sulfur dioxide, and ozone, as well as their capability
to filter particulate matter by capturing it on their leaves and bark (Jim & Chen, 2008; Shen & Lung, 2017). In
addition, greenness promoted physical activity, which in turn enhanced antioxidant capacity and triggers an anti‐
inflammatory response (Beavers et al., 2010; Kimura et al., 2010).
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Additionally, stratified analysis by sex and GDP in this study did not observe any differences. Due to the absence
of precise measurement of individual economic levels, we resorted to matching gridded GDP with low accuracy
to approximate individual economic levels. Consequently, we failed to observe the moderating effect of the GDP.
Although GDP may represent other aspects, such as accessibility to healthcare services and social security, this
study did not find any moderating effects of GDP.

In this study, a case‐crossover design with a large sample size was used, which controlled individual covariates
(some confounders which are fixed in the short term, e.g., sex, age, and GDP), meteorological conditions, hol-
idays and influenza. Furthermore, the design used individual‐level exposure assessment (high resolution machine
learning product: 1–10 km) based on the patient’s permanent address, making the results more reliable. Third, we
found the modification of NDVI on air pollutants and admission due to respiratory diseases.

This study also has some limitations. First, given the observational nature of the studies, the possibility of residual
confounding cannot be excluded. Second, we employed daily outdoor concentration data of various air pollutants
to analyze their correlation with the daily hospitalizations of patients with respiratory diseases in Beijing. This
method will have introduced bias to effects estimates because residents spend a long time indoors, but indoor air
pollution was not considered. Moreover, this study only analyzed the strength of the association between in-
patients and air pollution and hospital outpatients were excluded, further study should analyze the impact of air
pollution on outpatients and inpatients to make the results more comprehensive.

5. Conclusions
Our study uncovered significant correlations between short‐term exposure to PM2.5, PM10, NO2, SO2, O3 (warm),
and CO, and respiratory disease hospitalizations. We observed that the relationships between short‐term air
pollutant exposure hospital admissions for respiratory diseases varied among different levels of greenness. The
role of socioeconomic status need to be investigated in future studies.
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