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ABSTRACT Salar de Uyuni is a vast, high-altitude salt flat in Bolivia with extreme
physico-geochemical properties approaching multiple limits of life. Evidence for di-
verse halophilic bacteria and archaea was found in its surface and near-surface salt
crust using 16S amplicon analysis, providing a snapshot of prokaryotic life.

Salar de Uyuni is the world’s largest salt flat, located in the southwestern Altiplano
of Bolivia at an altitude of approximately 3,650 m above sea level (1, 2). The

geochemical composition of brines and salt crusts (high in lithium, boron, magnesium,
potassium, sodium, and chloride) and other physical conditions (high daily temperature
fluctuations, UV radiation, and albedo) create a polyextreme environment close to
multiple limits of life (3–5). In addition to an understanding of extremophilic life on
Earth, characterization of the microbial communities of Salar de Uyuni will contribute
to determining the potential habitability of other planets, as well as new biotechnology
applications (6–9). To date, however, few microbial genomic studies have been con-
ducted (10–13). This study provides an initial snapshot of microbial diversity in the
crust.

Samples were collected in March 2015 from a remote site (20°33=28.58�S,
67°12=29.56�W) in Salar de Uyuni from the surface salt crust (SSC) (BOL4) and at a depth
of 5 to 15 cm (near-surface salt crust [NSSC] [BOL3]). DNA was extracted with the
PowerLyzer PowerSoil DNA extraction kit (MO BIO Laboratories, Inc., Carlsbad, CA).
Library construction and 16S amplicon sequencing of the V3 to V4 region were
performed on a MiSeq platform according to the manufacturer’s recommendations
(Illumina, Inc., San Diego, CA) using the primers Bakt_341F and Bakt_805R (14–16).

Raw reads were processed with mothur (v1.39.5), and sequence data were aggre-
gated with R (v3.4.1) (16–19) (https://www.mothur.org/wiki/MiSeq_SOP). Paired-end
sequencing generated 213,999 raw reads (median length, 459 bp [range, 35 to 600 bp]).
Reads were assembled with a quality score threshold of 20. Sequences longer than
475 bp and those with ambiguities and homopolymers (�8 bp), as well as chimeras,
were removed, and sequences were aligned against the SILVA small subunit (SSU) Ref
NR 99 database (v132) (20). Based on analysis using mothur, sequences with at least
97% similarity were binned into operational taxonomic units and classified (using a
pseudobootstrap value of 80) against the reference database trimmed to positions
201 to 1000 of the 16S sequence of Escherichia coli (GenBank accession number
J01859.1). Singletons were removed and only prokaryotic sequences were retained,
resulting in 21,636 (SSC) and 3,625 (NSSC) sequences with a median length of 457 bp
(range, 419 to 466 bp).

Archaea constituted 13.47% of the SSC sequences and 11.50% of the NSSC se-
quences, and bacteria constituted 86.53% and 88.50%, respectively. For archaea, all
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TABLE 1 Prevalence of archaeal and bacterial 16S amplicons at the phylum and genus
levels in the SSC and NSSC of Salar de Uyuni

Sample and taxonomic categorya Total no. of sequences Abundance (%)b

SSC (BOL 4)
Archaea

Phyla
Euryarchaeota 2,877 98.73
Nanoarchaeota 37 1.27
Hadesarchaeota 0 0.00

Genera
Halonotius 1,547 53.09
Halorubrum 542 18.60
Halobellus 276 9.47
Halovenus 202 6.93
Natronomonas 131 4.50
Halococcus 22 0.75
A07HB70 19 0.65
Halodesulfurarchaeum 18 0.62
Halapricum 15 0.51
Halobacterium 12 0.41

Bacteria
Phyla

Bacteroidetes 10,906 58.25
Proteobacteria 7,606 40.63
Patescibacteria 66 0.35

Genera
Salinibacter 9,962 53.21
Acinetobacter 5,181 27.67
Arhodomonas 735 3.93
Brevundimonas 264 1.41
Halofilum 191 1.02
Delftia 142 0.76
Diaphorobacter 132 0.71
Salicola 123 0.66
Fodinibius 75 0.40
Thiohalospira 38 0.20

NSSC (BOL 3)
Archaea

Phyla
Euryarchaeota 389 93.29
Nanoarchaeota 26 6.24
Hadesarchaeota 2 0.48

Genera
Halodesulfurarchaeum 200 47.96
Halonotius 39 9.35
Halapricum 34 8.15
Halobellus 28 6.71
Halanaeroarchaeum 26 6.24
Halorubrum 19 4.56
Halovenus 8 1.92
Natronomonas 8 1.92
Haloarcula 5 1.20
“Candidatus Haloredivivus” 4 0.96

Bacteria
Phyla

Proteobacteria 2,365 73.72
Bacteroidetes 375 11.69
Halanaerobiaeota 194 6.05

Genera
Halorhodospira 968 30.17
Desulfovermiculus 351 10.94
Acinetobacter 314 9.79
Arhodomonas 211 6.58
Salinibacter 200 6.23
Halanaerobium 194 6.05
Thiohalorhabdus 28 0.87
Thiohalospira 23 0.72
Halofilum 19 0.59
Limimonas 15 0.47

a The 3 most prevalent phyla and 10 most prevalent genera for each sample are shown.
b Abundance was calculated based on the total number of sequences in each domain.
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sequences were classified at the phylum level and 96.57% (SSC) and 91.85% (NSSC) at
the genus level; 98.73% (SSC) and 93.29% (NSSC) were Euryarchaeota, and 1.27% (SSC)
and 6.24% (NSSC) were Nanoarchaeota. Hadesarchaeota were present only in NSSC
(0.48%). The most prevalent genera were Halonotius in SSC (53.09%) and Halodesulfu-
rarchaeum in NSSC (47.96%) (Table 1). For bacteria, 99.71% (SSC) and 93.95% (NSSC) of
sequences were classified at the phylum level and 91.36% (SSC) and 73.72% (NSSC) at
the genus level. Bacteroidetes (58.25% [SSC] and 11.69% [NSSC]) and Proteobacteria
(40.63% [SSC] and 73.72% [NSSC]) were most prevalent at the phylum level, and
Salinibacter in SSC (53.21%) and Halorhodospira in NSSC (30.17%) were most prevalent
at the genus level (Table 1). These findings represent a snapshot of considerable
prokaryotic diversity in the largest salt flat on Earth.

Data availability. The 16S rRNA gene amplicon data sets are available at NCBI
under SRA accession numbers SRX7011107 (NSSC) and SRX7011108 (SSC).
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