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Abstract: Background: Alzheimer’s disease (AD) is a devastating neurodegenerative disease without
guidelines for early diagnosis or personalized treatment. Previous studies have highlighted a crucial
role of increasing phosphorylation levels of the amyloid precursor protein (APP) Tyr682 residue in
predicting neuronal deficits in AD patients. However, the lack of a method for the identification and
quantification of Tyr682 phosphorylation levels prevents its potential clinical applications. Methods:
Here we report a method to identify and quantify APP Tyr682 phosphorylation levels in blood
mononuclear cells of AD patients by tandem mass spectrometry (tMS). Results: This method showed
excellent sensitivity with detection and quantification limits set respectively at 0.035 and 0.082 ng
injected for the phosphorylated peptide and at 0.02 and 0.215 ng injected for the non-phosphorylated
peptide. The average levels of both peptides were quantified in transfected HELA cells (2.48 and
3.53 ng/µg of protein, respectively). Preliminary data on 3 AD patients showed quantifiable levels of
phosphorylated peptide (0.10–0.15 ng/µg of protein) and below the LOQ level of non-phosphorylated
peptide (0.13 ng/µg of protein). Conclusion: This method could allow the identification of patients
with increased APP Tyr682 phosphorylation and allow early characterization of molecular changes
prior to the appearance of clinical signs.

Keywords: Alzheimer’s disease; APP Tyr682 phosphorylation; targeted peptide analysis

1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder,
characterized by cognitive deficits and microscopic brain changes such as beta-amyloid
plaques (Aβ plaques) outside neurons and twisted strands of the protein tau (tangles)
inside neurons, and the latter two start being produced long before memory loss [1,2]. Un-
fortunately, despite the latest progresses in the knowledge of the mechanisms responsible
for AD, the biggest challenge of the AD research still consists of finding new biomarkers
for the early detection and the accurate diagnosis in the preclinical stages of AD. Indeed,
defining appropriate criteria for a diagnosis in the very early stages is crucial, as early
intervention is presumably the most effective.
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Previous evidence has emphasized the role of the APP Tyr682 residue in processes
responsible for the amyloid precursor protein (APP) trafficking and processing in neu-
rons [3–6]. The APP Tyr682 residue is located in the highly conserved 682YENPTY687 motif,
which binds specific adaptor proteins depending on its phosphorylation state [5,7–9]. The
APP interaction with these proteins acts as the major regulator of APP fate [5–7,10,11]. In
particular, increased APP Tyr682 phosphorylation affects APP endocytosis and trafficking
inside neurons [12]. Consequently, APP accumulates in the acidic neuronal compartments,
such as late endosomes and lysosomes, where it is preferentially cleaved by β and γ sec-
retases, to generate Aβ peptides [12,13]. We previously highlighted the critical role of
APP Tyr682 phosphorylation in AD neurons, by promoting Aβ production and neuronal
degeneration [14]. In fact, APP Tyr682 phosphorylation levels increase in familiar AD
patients carrying mutations on the presenilin (PSEN) 1 gene as well as in sporadic AD
patients [15–17]. In addition, Fyn tyrosine kinase (TK), which belongs to the Src TK fam-
ily [18], elicits APP Tyr phosphorylation at level of the Tyr682 residue, and by doing this,
triggers amyloidogenic processes in AD neurons [17]. Notably, the reduction of Fyn TK
activity using either molecular or pharmacologic strategies, such as Fyn TK inhibitors (TKI:
Saracatinib and Masitinib), prevents APP Tyr682 phosphorylation and Aβ accumulation
and protects AD neurons from death [15,17]. Others have previously described a different
involvement of Fyn in AD by increasing tau phosphorylation or triggering Aβ oligomer
neurotoxicity mechanisms [19–24]. Recently, a Fyn upregulation in microglia cells of AD
patients has been reported that precedes Aβ accumulation in neurons and contributes to
neuroinflammation-associated synaptic dysfunction and neuronal damage [25,26].

Of note, we recently found that APP Tyr682 phosphorylation increases in fibroblasts
of AD patients [16], opening up to the possibility to use APP Tyr682 phosphorylation level
as a potential powerful tool in detecting early signs of AD-related cognitive disorders
in peripheral cells. Indeed, cognitive performance reflects the integrity of the peripheral
system and alterations in the peripheral system may compromise or exacerbate brain
aging or brain dysfunctions [27]. In this context, having a diagnostic approach that allows
the selective identification and quantification of APP Tyr682 phosphorylation status in
peripheral cells of patients at risk of developing AD might help in the development of
clinically relevant marker of disease onset and/or progression.

In this work we showed encouraging data supporting a targeting tandem mass spec-
trometry (tMS) approach to identify and quantify APP Tyr682 phosphorylation status
in blood mononuclear cells of AD patients. We firstly settled and validated the proce-
dure in HELA cell line in which APP and Fyn proteins were overexpressed and APP
was phosphorylated on Tyr682 residue, as previously reported in neural stem cells [15].
Subsequently, we tested the procedure in blood mononuclear cells from AD patients. Our
results, although limited to a restricted number of samples, prove that this procedure
can be applied to blood mononuclear cells for identifying and quantifying APP Tyr682
phosphorylation levels.

2. Materials and Methods
2.1. Cell Lines

Human cell lines, HELA, were received from CEINGE Institute (Naples, Italy). Cells
were grown in a humidified incubator at 37 ◦C under 5% CO2 atmosphere in MEM (Gibco,
Rodano, MI, Italy) media supplemented with 10% FBS (Gibco, Rodano, MI, Italy), 2 mM
of L-glutamine (Gibco, Rodano, MI, Italy), 100 IU/mL of penicillin G, and 100 µg/mL of
streptomycin (Gibco, Rodano, MI, Italy). Cells were thawed every 2–3 weeks. Transfection
experiments were always performed in low-passage cultures a maximum of 1 week after
thawing, thus preserving the recovery of transfection activity. Cell transfections were
usually carried out 24 h after plating.
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2.2. Patients Selection and Isolation of Peripheral Blood Mononuclear Cells from Whole Blood

Patients with AD were diagnosed according to National Institute on Aging/Alzheimer’s
Association (NIA/AA) criteria and fulfilled the criteria for “Probable AD dementia with
evidence of the AD pathophysiological process” category. The severity of dementia was
scored by Clinical Dementia Rating (CDR), which is estimated on the basis of patient’s and
informant’s interview and physician’s clinical judgment [28,29]. The score is calculated
based on assessing six cognitive and behavioral domains, including memory, orientation,
judgment and problem solving, community affairs, home, and hobby performance, and
personal care. The score ranged from zero to five as follows: no dementia (CDR = 0),
very mild dementia (CDR = 0.5), mild dementia (CDR = 1), moderate dementia (CDR = 2),
severe dementia (CDR = 3), very severe dementia (CDR = 4), and terminal dementia
(CDR = 5). They had a Mini Mental State Examination (MMSE) score < 24, and positive
PET amyloid imaging. To rule out other potential causes of cognitive impairment, patients
underwent blood tests (including full blood count, erythrocyte sedimentation rate, urea
and electrolytes, thyroid function, vitamin B12, and folate) and brain imaging. Peripheral
blood mononuclear cells (PBMCs), including both lymphocytes and mononuclear cells,
were separated from the whole blood by a density gradient centrifugation method using
lymphocyte separation media Lymphosep (Biowest, Meda, MB, Italy). Blood samples were
firstly diluted 1:1 with a saline phosphate buffer (PBS), and then carefully layered over
Lymphosep in a 15-mL centrifuge tube, creating a sharp blood-Lymphosep interphase.
Tubes were centrifuged at 400× g at room temperature for 30 min. The ring of mononucleate
cells was collected and transferred into a new centrifuge tube. An equal volume of PBS
was added to the PBMCs layer, and the mixture was centrifuged for 10 min at 260× g at
room temperature. Cells were washed again with PBS to remove Lymphosep and platelets,
and processed for cell lysate.

2.3. Transfection Experiments

EGFP-n1APP (Addgene: #69924) and pmApple-FYN-N-10 (Addgene: #54903) plas-
mids were purchased from Addgene (Teddington, UK). In HELA transient transfection
experiments, 1 × 106 cells were plated in a 25-cm2 flask. Twenty-four hours after plating,
media were replaced with 3 mL of fresh medium and cells were transfected with a mix
containing 5 µg of each DNA and 5 µL of Lipofectamine-2000 Transfection reagent (Ther-
mofisher, Rodano, MI, Italy) in a final volume of 1 mL of pre-warmed Optimem medium
(Gibco, Rodano, MI, Italy) in accordance with the manufacturer’s protocol. Transfected
cells were incubated for 48 h at 37 ◦C. After 48 h transfection, cells were harvested, washed
with PBS, and then lysed in ice-cold modified radio immunoprecipitation assay (RIPA)
buffer (Sigma–Aldrich, Søborg, Denmark) supplemented with protease-phosphatase in-
hibitors (Merk Life Science S.r.l. Milan, Italy #A32959) and incubated for 30 min on ice. The
supernatant obtained after centrifugation at 13,000 rpm for 20 min at 4 ◦C constituted the
total protein extract.

2.4. Western Blot

In Western blot (WB) experiments, 30 µg of total protein HELA cells and 60 µg of
total protein from blood mononuclear cell (PBMCs) of patients were loaded onto 8%
polyacrylamide gel after being denatured at 95 ◦C for 5 min. Total protein concentration
was determined by the Bradford method, using bovine serum albumin (BSA) as standard.
For APP Tyr682 phosphorylation detection, 100 µg of total lysates from HELA cells was
incubated overnight with phospho-Tyrosine Mouse mAb Magnetic Bead Conjugate (P-
Tyr-100) (Cell Signaling, #8095; Milan, Italy). Immunoprecipitated (IP) samples were then
analysed by WB. Gels were transferred to PVDF membranes (Immuno-Blot; Bio Rad,
Segrate, MI, Italy) and incubated in primary rabbit anti APP antibody clone Y188 (Abcam,
ab32136, Cambridge, UK) antibody and secondary monoclonal anti-β-actin-peroxidase
(Merk Life Science S.r.l. MI, Italy) antibody.
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2.5. SDS-PAGE and In-Gel Digestion

SDS–PAGE was performed using standard methods on the Bio-Rad Mini-Protean
system, with 8% polyacrylamide gels. Then 30 µg of protein from HELA and 60 µg of
protein from PBMCs of patients, both in reducing buffer, were loaded onto the gel after
being denatured at 95 ◦C for 5 min. The gels were then run at 90–150 V for 1 h. Gels
were stained with Coomassie Brilliant Blue (CBB) R250 and distained by shaking in 10%
acetic acid in 30% methanol followed by rinsing in water. APP-GFP isoforms, migrating
approximately from 100 to 150 kDa, were cut as a single band and divided into small cubes
(1 mm) that were then collected into microcentrifuge tubes for the in-gel digestion following
the protocol of Hellman protocol of Hellman et al., [30] slightly modified as follows. The
gel pieces were dehydrated in 50 µL of acetonitrile for 15 min and rehydrated in 50 mM
of AMBIC pH 8.0 (Merk Life Science S.r.l. MI, Italy) in incremental 5-min steps until CBB
was removed. After 1 min spinning at 10,000 rpm, the supernatant was carefully discarded.
The gel pieces were then rehydrated with 10 µL of trypsin solution (10 ng/µL, Promega;
Italy) and incubated on ice for 60 min. After that, 50 mM of AMBIC was added to cover
the gel pieces, and placed in a 37 ◦C water bath, overnight. After digestion, the hydrolysis
mixture was centrifuged at maximum speed for a few seconds and the supernatant was
collected in a new microcentrifuge tube. After that, 2% acetonitrile and 0.5% formic acid
were added to each sample to stop enzymatic reaction. The remaining gel pieces were
rinsed with 100 µL of acetonitrile for 15 min and the rinse was collected and combined with
the previous supernatant. To dry supernatant down to dryness, samples were processed in
speed vacuum.

2.6. Preparation of Samples and Standards

Three synthetic peptides: MQQNGYENPTYK, MQQNGpYENPTYK, and isotopically
labelled MQQNGYENPTYK (Lys13C6,15N2), as internal standard, were obtained from
GenScript Biotech (Piscataway, NJ, USA). Peptide standards solutions were prepared by
diluting the 3 mg/mL of stock solution into water (0.1% formic acid) to reach the desired
concentrations to build the calibration curve. Sample’s digested proteins were suspended
in 90 µL of water (0.1% formic acid). All samples were spiked with 10 µL of I.S. at a final
concentration of 2 µg/mL.

2.7. LC-MS/MS Analysis

We implemented the LC-MS/MS method by using a system consisting of an UPLC
(Eksigent Ekspert ultraLC 100 series) coupled to a hybrid triple quadrupole/linear ion trap
tandem mass spectrometer (QTRAP 4500, AB Sciex, Framingham, MA, USA) equipped
with a Turbo V ion source. Instrument control, data acquisition, and processing were
performed using the associated Analyst 1.6 software. The LC separation was carried out on
a C18 column (EclipsePlus, 50 × 2.1 mm, RRHD particle size 3.5 µm) from Agilent (Santa
Clara, CA, USA). Elution was performed at a flow rate of 300 µL/min with water containing
0.1% (v/v) formic acid as eluent A and ACN (Merck, Darmstadt, Germany) containing 0.1%
(v/v) as eluent B, employing a linear gradient from 100% A to 50% A in 6 min. The injection
duty cycle was 11 min, considering the column equilibration time. Q1 resolution was
adjusted to 0.7 ± 0.1 amu fwhm for MRM, referred to as the unit resolution. Q3 was also
set to the unit resolution in MRM mode. MS analysis was carried out in positive ionization
mode using an ion spray voltage of 5000 V. The nebulizer and the curtain gas flows were set
at 60 psi using nitrogen. The Turbo V ion source was operated at 400 ◦C with the auxiliary
gas flow (nitrogen) set at 50 psi. Two suitable MRM transitions were selected for the
peptides MQQNGYENPTYK and MQQNGpYENPTYK, while one transition was selected
for the IS MQQNGYENPTYK(Lys13C6,15N2). The compounds dependent parameters for
the three synthetic peptides were optimized using the manual optimization protocol in
tuning mode. The Q1 mass, the Q3 transition, and the best parameters are reported in
Table 1.
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Table 1. Optimized Q1 mass, transitions, and parameters for MRM experiment.

Peptide Precursor Ion
(m/z)

Product Ion
(m/z) DP a CE b CXP c RT d (min)

MQQNGYENPTYK (Quantification) 736.8
[M +2H]2+ 508.2 55 41 25 3.34

(Qualification) 736.8 622.3 55 37 25

MQQNGYpENPTYK (Quantification) 776.7
[M +2H]2+ 508.1 55 41 25 3.28

(Qualification) 776.7 1050.8 55 37 25

MQQNGYENPTYK(Lys13C6,15N2)
740.5

[M +2H]2+ 516.3 55 41 25 3.34

a DP = declustering potential; b CE = collision energy; c CXP = collision cell exit potential; d RT = retention time.

2.8. Information-Dependent Acquisition (IDA) Parameters

An IDA experiment was performed to automatically trigger EPI scans by analyzing
MRM signals. The IDA criteria were set to select one intense peak exceeding 500 counts/s
and without exclusion after dynamic background subtraction of the survey scan. The mass
tolerance was set at 250 mDa. For the EPI scan, the scan rate was set to 1000 Da/s from 100
to 1000 Da. The CE was set at 40 eV, and the collision energy speed (CES) of the EPI was set
at 15 eV to provide rich EPI spectra. MS/MS spectra of unknown samples were compared
to standard spectra.

2.9. Validation

A validation study was obtained analyzing calibration curves, limit of detection (LOD),
limit of quantification (LOQ), and within-day and between-day imprecision and inaccuracy.
Calibration curves were obtained reporting the area ratio (peptide area/I.S. area) against the
injected ng of peptide. Five microliters of each peptide standard solution, corresponding to
0.25, 2.5, 5, 10, 25, and 45 ng, were injected in triplicate to build the calibration curves. Two
different curves were built for the MQQNGYENPTYK and MQQNGYpENPTYK peptides,
respectively. LOD and LOQ were calculated as a magnitude of, respectively 3 and 10 times
the standard deviation of noise to the lower point of standard level (0.25 ng). Two quality
control samples (QC) at two different concentration levels were used for assessing the
within-day and between-day variation. The lowest QC level consisted of an injection
of 3.75 ng of the peptides, the highest QC level consisted of an injection of 35 ng of the
peptides. The within-day imprecision (CV%) and inaccuracy (%) were calculated analyzing,
in the same analytical run, each level of QC samples 3 times. The between-day imprecision
(CV%) and inaccuracy (%) were calculated analyzing each level of QC samples once a day
for 5 days.

2.10. Statistical Analysis and Data Processing

Data were processed and analyzed by MultiQuant Software version 3.0.2. Three inde-
pendent experiments in HELA cell were analyzed in triplicate. The AD patients’ samples
were analyzed in triplicate (technical replicate). Data are expressed as mean ± standard
deviation of the mean.

3. Results
3.1. Tandem Mass Spectrometry Set Up and Validation

The MRM-EPI method consists of a short analytical cycle of 6 min and requires
minimum sample preparation for the LC-MS/MS analysis. Figure 1 shows the extract ion
chromatogram (XIC) and EPI spectrum of standard MQQNGYENPTYK peptide, while
Figure 2 reports the XIC and EPI of standard MQQNGYpENPTYK peptide. The doubly-
protonated forms, [M + 2H]2+, of the standard peptides were the most abounded during
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the optimization process. Thus, they were selected as precursor ions for the optimization
of the MRM-EPI experiments.
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and 736.8 > 622.3 (red). (B) EPI spectrum of MQQNGYENPTYK.

The validation was obtained by analyzing calibration curves and quality controls. The
linearity of calibration curves for both peptides, MQQNGYENPTYK and MQQNGYpENPTYK,
was estimated by the coefficients of correlation (r) which were respectively 0.9972 and
0.9984. The slopes were 0.30970 and 1.05976 and intercept values were −0.00604 to −0.00309
(Table 2).
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Table 2. Calibration curves, correlation coefficient (r), imprecision, inaccuracy, and LOD and LOQ values for
MQQNGYENPTYK and MQQNGpYENPTYK quantification.

Peptide LOD LOQ ng of Peptide Injected 0.25 2.5 5 10 25 45

MQQNGYENPTYK
y = 1.05976 × −0.00604

r = 0.9984
0.02 0.215

Mean 0.27 2.41 5.10 9.49 23.61 46.88
Imprecision a 6.1 7.4 2.0 1.5 5.3 2.5
Inaccuracy b 8.0 −3.6 2.0 −5.0 −5.6 4.1

MQQNGYpENPTYK
y = 0.30900 × −0.00187

r = 0.9972
0.035 0.082

Mean 0.30 2.48 4.66 8.85 23.49 47.49
Imprecision a 16.6 7.6 2.3 2.5 5.4 2.2
Inaccuracy b 20 −0.8 −6.2 −11.5 −6.2 4.4

a Expressed as relative standard deviation (CV%): (standard deviation/mean) × 100. b Expressed as % difference: [(concentration observed
− concentration added)/concentration added] × 100.

Quality control samples were analyzed after a sequence of unknown samples. Two lev-
els of QC samples were prepared to evaluate imprecision and inaccuracy of the method.
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The within-day imprecision (CV%) and inaccuracy (%) were calculated by analyzing, in
the same analytical run, each level of QC samples for 6 times. The imprecision varied
between 3.2% to 5.2% for MQQNGYENPTYK and 2.1% to 4.9% for MQQNGYpENPTYK.
The inaccuracy (%) ranged from 4.6% to 11.3% for MQQNGYENPTYK, and from −1.4% to
7.7% for MQQNGYpENPTYK (Table 3).

Table 3. Within-day imprecision (CV%) and inaccuracy (%) of results obtained by measuring two QC
levels 6 times within one day (n = 6).

Peptide Expected
Amount (ng)

Calculated
Amount (ng)

Imprecision
(CV%)

Inaccuracy
(%)

MQQNGYENPTYK 3.75 4.15 5.2 11.3
35.0 36.6 3.2 4.6

MQQNGYpENPTYK 3.75 3.7 2.1 −1.4
35.0 37.7 4.9 7.7

The between-day imprecision (CV%) and inaccuracy (%) were calculated analyzing
each level of QC samples once a day for 5 days. The imprecision was estimated from (CV%)
6.6% to 8.6% for MQQNGYENPTYK and from 9% to 14.3% for MQQNGYpENPTYK; the
inaccuracy was estimated from (%) 3.8% to 9.2% for MQQNGYENPTYK and 2.3% for
MQQNGYpENPTYK. (Table 4).

Table 4. Between-day imprecision (CV%) and inaccuracy (%) of results obtained by measuring two
QC levels once a day for five days (n = 5).

Peptide Expected
Amount (ng)

Calculated
Amount (ng)

Imprecision
(CV%)

Inaccuracy
(%)

MQQNGYENPTYK 3.75 4.1 6.6 9.2
35.0 36.35 8.6 3.8

MQQNGYpENPTYK 3.75 3.75 14.3 -
35.0 35.8 9.0 2.3

3.2. Samples Analysis

HELA cells were transfected with C-terminal green fluorescent protein (GFP) tagged
APP and C-terminal apple tagged Fyn. The efficiency of the transfection was evaluated
by WB using rabbit anti-APP and rabbit anti-Fyn antibodies 48 h after transfection (Sup-
plementary Figure S1). WB analysis of total lysates showed the presence of bands at
approximately 150 and 85 kDa corresponding to the molecular weight (MW) of the APP-
and Fyn-tagged fused proteins, respectively, thus indicating that cells were properly trans-
fected (Supplementary Figure S1a). In order to confirm that APP and Fyn overexpression
results in the increased APP Tyr682 phosphorylation, samples were immunoprecipitated
with anti-phospho-Tyr magnetic conjugated beads and analyzed by WB using rabbit anti-
APP antibody. As shown in Supplementary Figure S1b, APP was phosphorylated on Tyr
residue in APP+Fyn co-transfected cells.

Total lysate from APP and Fyn co-transfected cells were loaded on SDS-Tris-Glycine
gel. The bands migrating between 100 and 150 kDa, including the three different iso-
forms of APP were cut and digested following the procedure above-described. The sam-
ples after proteolysis were processed by LC-MS/MS. The explorative analysis of the
extract from transfected HELA cells showed the presence of both MQQNGYpENPTYK and
MQQNGYENPTYK peptides, in a variable amounts (ng/µg of protein) of 3.53 ± 0.07 and
2.48 ± 0.26, respectively (Figure 3A).
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Figure 3. (A) Extract ions chromatograms of MQQNGYENPTYK(Lys13C6,15N2) (green:I.S.), MQQNGYpENPTYK (red),
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MQQNGYpENPTYK (red), and MQQNGYENPTYK (blue) in AD patient.

These results encouraged the possibility to apply the procedure to analyze cell lines
and blood cells, and it was sensitive enough to detect and quantify changes in the APP
Tyr682 phosphorylation.

Therefore, we experimented using this method on mononuclear blood cells collected
from three AD patients (Table 5). The severity of dementia of the these patients was
scored by Clinical Dementia Rating (CDR), which is estimated on the basis of patient’s and
informant’s interview and physician’s clinical judgment [28,29].

Table 5. Detailed information of patients studied and amounts of peptides extracted after the in-gel digestion of APP.

Patients I.D. Age (y) Gender A.D. Specific
Mutation

Stage of Dementia
(CDR) *

Peptide Tyr682
Phosphorylated
(ng/µg of Prot)

Peptide No-Tyr682
Phosphorylated
(ng/µg of Prot)

O.S. 78 M None Mild
(1) 0.15 0.13

G.A. 80 F None Severe
(3) 0.10 <LOD

T.V. 75 M None Terminal (5) <LOD <LOD

* CDR: Clinical Dementia Rating by ref. Hughes et al. 1982; Heyman et al. 1987 [28,29].

We isolated and purified blood mononuclear cells as reported in the Methods, and
we processed samples as previously described for HELA cells. Figure 3B reports an ex-
ample of MRM ion chromatograms from blood mononuclear cells of one of the three
AD patients analyzed. tMS showed a difference in the levels of MQQNGYENPTYK and
MQQNGYpENPTYK. In particular, the phosphorylated peptide (MQQNGYpENPTYK)
was present in the mononuclear cells of the AD patients, resulting in 0.10 ± 0.03 ng/µg
of protein for G.A. (Supplementary Figure S2) and 0.15 ± 0.09 ng/µg of protein for O.S.
(Supplementary Figure S3). On the other hand, the unphosphorylated MQQNGYENPTYK
peptide was detectable only in O.S., in an amount of 0.13 ± 0.002 ng/µg of protein (Supple-
mentary Figure S3). In the G.A. sample, MQQNGYENPTYK was below the LOD, although
distinguishable from background noise (data not shown). In the T.V. sample, both peptides
were below the LOD (data not shown).

4. Discussion

Previous evidence supports the hypothesis that changes in the APP Tyr682 phospho-
rylation status influences APP trafficking and promotes the amyloidogenic APP processing
to generate Aβ in neurons [5,7,11–15,17,31]. Notably, we recently suggested that changes
related to APP Tyr682 phosphorylation in fibroblasts may reflect Aβ-related abnormalities
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in the brain [16], thus emphasizing the promising potential of using APP Tyr682 phospho-
rylation levels to develop new diagnostic strategies and to optimize therapeutic approaches
with better outcomes in patients who are included in clinical trials [5,6,16]. Indeed, all
these promising results need the development of a selective and quantitative procedure for
the APP Tyr682 phosphorylation detection. In this regard, it is worth mentioning that APP
has three Tyr(s) along the C-terminal tail [5], and although Tyr phosphorylation at sites
different than Tyr682 seems to not affect the extent of Aβ production or accumulation in
neurons, the possibility that changes in the phosphorylation states of the other Tyr(s) can
still interfere with neuronal functions cannot be ruled out. Thus, it is necessary to develop
a procedure that can discriminate among the three Tyr(s) and selectively assess the levels
of Tyr682 phosphorylation.

Herein, we described for the first time a fast and accurate LC-MS/MS method for si-
multaneous quantification of non-phosphorylated-MQQNGYENPTYK and phosphorylated-
MQQNGYpENPTYK peptides coming from tryptic digestion of the APP containing the
Tyr682 residue. Data from calibration curves and quality controls showed that the MRM
analysis of peptides by LC-MS/MS method has good specificity, accuracy, and precision,
and it can be used for its application in any type of cultured, tissue- or blood-isolated
cells that expressed APP. Moreover, we provided evidence that this procedure is sensitive
enough to detect APP Tyr682 phosphorylation levels injecting only 5 µL of the sample.
However, the real strength of the method is its high specificity in detecting explicitly
and exclusively APP-Tyr682 residue phosphorylation. The application of this methods
on mononuclear cells from blood of patients with AD can definitely proof whether and
in which level the increase in APP Tyr phosphorylation previously demonstrated by im-
munoprecipitation [16] is correlated to the specific APP Tyr682 residue. Even though
the chromatographic peaks are very close and appear to be not completely separated,
MS/MS technology enables to distinguish MQQNGYENPTYK and MQQNGYpENPTYK
unambiguously by their different fragmentation pattern as demonstrated by EPI-MRM
experiments. Mass spectrometry has been widely used to study the phosphorylation of
proteins involved in neurodegeneration deposition within areas of the cerebral cortex,
basal ganglia, and/or spinal cord, whilst the association between clinical phenotype and
protein dysfunction have not been completely clarified so far [32,33]. Usually, untargeted
approaches and a high-resolution platform are used [34–37]. However, currently these
instrumentations have no application in clinical laboratory. On the contrary, we developed
a targeted MS method to quantify a specific phosphorylation of APP using a low-resolution
platform that is more and more frequently being used for clinical application [38].

Of note, this is the first time that the MQQNGYpENPTYK has been detected in the
blood mononuclear cells of patients with AD, placing the basis for further analysis to verify
the potential role of APP Tyr682 phosphorylation as biomarker in AD.

Moreover, this approach is also useful to calculate the ratio between phosphorylated
and unphosphorylated peptides.

5. Conclusions

Collectively, these findings highlight the utility of this novel tMS approach to selec-
tively identify and analyze APP Tyr682 phosphorylation levels in human mononuclear
cells, as well as other cells. Although this procedure has some limitations that still require
further improvement, such as the inclusion of more patients and healthy individuals.
Indeed, it will be necessary to define the reference values in the blood, and the ratio be-
tween phosphorylated and non-phosphorylated peptides. The latter could represent the
indicator of the level of APP-Tyr682 phosphorylation which may assume a critical clinical
significance in patients with AD. In this regard, and in line with our previous findings, our
analysis of APP Tyr682 phosphorylation levels in blood mononuclear cells might be used
as biomarker for early diagnosis or for monitoring AD progression. In addition, it might
allow the stratification of patients before being included in clinical trials and the follow-up
assessments in the efficacy trials.
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