DOI: 10.2903/j.efsa.2024.8905

#### SCIENTIFIC OPINION



# Assessment of the feed additive consisting of red carotenoidrich *Paracoccus carotinifaciens* NITE SD 00017 for salmon and trout for the renewal of its authorisation (ENEOS Techno Materials Corporation)

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) | Vasileios Bampidis | Giovanna Azimonti | Maria de Lourdes Bastos | Henrik Christensen | Mojca Durjava | Birgit Dusemund | Maryline Kouba | Marta López-Alonso | Secundino López Puente | Francesca Marcon | Baltasar Mayo | Alena Pechová | Mariana Petkova | Fernando Ramos | Roberto Edoardo Villa | Ruud Woutersen | Georges Bories | Paul Brantom | Jürgen Gropp | Anna Dioni | Jaume Galobart | Orsolya Holczknecht | Joana Revez | Maria Vittoria Vettori

Correspondence: feedap@efsa.europa.eu

#### Abstract

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on red carotenoid-rich Paracoccus carotinifaciens NITE SD 00017 for salmon and trout (category: sensory additives; functional group: colourants; substances which when fed to animals add colours to food of animal origin) for the renewal of its authorisation. The applicant provided evidence that the additive complies with the conditions of the authorisation. The Panel concludes that the use of the additive in salmon and trout remains safe for the target species, the consumer and the environment under the authorised conditions of use. When assessing consumer exposure to canthaxanthin and adonirubin at the level of the existing maximum residue limits (MRL) for poultry and the proposed MRL for trout/salmon (5 mg/kg muscle), the exposure of consumers exceeds the acceptable daily intake (ADI) in the population classes toddlers and other children. The Panel considers that there is no need to restrict the use of the additive to fish older than 6 months or of more than 50 g. Red carotenoid-rich Paracoccus carotinifaciens NITE SD 00017 is not irritant to the skin, but is irritant to the eyes. It is considered a dermal and respiratory sensitiser and any exposure via skin or the respiratory tract is a risk.

#### **KEYWORDS**

astaxanthin, colourant, Panaferd®-AX, *Paracoccus carotinifaciens*, red carotenoids, safety, salmon, sensory additive, trout

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. © 2024 European Food Safety Authority. *EFSA Journal* published by Wiley-VCH GmbH on behalf of European Food Safety Authority.

# CONTENTS

| Ab  | stract.  |           |                                                               | 1  |
|-----|----------|-----------|---------------------------------------------------------------|----|
| 1.  | Intro    | duction   |                                                               | 3  |
|     | 1.1.     | Backgr    | ound and Terms of Reference                                   | 3  |
|     | 1.2.     | Additio   | onal information                                              | 3  |
| 2.  | Data     | and me    | thodologies                                                   | 3  |
|     | 2.1.     | Data      |                                                               | 3  |
|     | 2.2.     | Metho     | dologies                                                      | 3  |
| 3.  | Asse     | ssment    |                                                               | 4  |
|     | 3.1.     | Charac    | terisation                                                    | 4  |
|     |          | 3.1.1.    | Manufacturing process                                         | 4  |
|     |          | 3.1.2.    | Characterisation of the strain                                | 4  |
|     |          | 3.1.3.    | Characterisation of the additive                              | 4  |
|     |          | 3.1.4.    | Physico-chemical and technological properties of the additive | 6  |
|     |          | 3.1.5.    | Conditions of use                                             | 6  |
|     | 3.2.     | Safety    |                                                               | 7  |
|     |          | 3.2.1.    | Absorption, distribution, metabolism, excretion and residues  | 7  |
|     |          | 3.2.2.    | Toxicology                                                    | 8  |
|     |          | 3.2.3.    | Safety for the target species                                 | 9  |
|     |          | 3.2.4.    | Safety for the consumer                                       | 9  |
|     |          | 3.2.5.    | Safety for user                                               | 11 |
|     |          | 3.2.6.    | Safety for the environment                                    | 12 |
|     | 3.3.     | Efficac   | y                                                             | 12 |
| 4.  | Cond     | clusions  |                                                               | 12 |
| 5.  | Reco     | ommenc    | lations                                                       | 12 |
| Ab  | brevia   | itions    |                                                               | 12 |
| Acl | knowl    | edgeme    | nts                                                           | 13 |
| Со  | nflict o | of intere | st                                                            | 13 |
| Red | questo   | or        |                                                               | 13 |
| Qu  | estior   | numbe     | r                                                             | 13 |
| Сој | oyrigh   | nt for no | n-EFSA content                                                | 13 |
| Par | nel me   | embers.   |                                                               | 13 |
| Leg | gal no   | tice      |                                                               | 13 |
| Ref | erenc    | es        |                                                               | 13 |
| Ap  | pendi    | x A       |                                                               | 15 |

## 1 | INTRODUCTION

## 1.1 | Background and Terms of Reference

Regulation (EC) No 1831/2003<sup>1</sup> establishes the rules governing the Community authorisation of additives for use in animal nutrition. In particular, Article 14(1) of that Regulation lays down that an application for renewal shall be sent to the Commission at the latest 1 year before the expiry date of the authorisation.

The European Commission received a request from JX Nippon ANCI SAS (Europe) on behalf of JXTG Nippon Oil & Energy Corporation<sup>2</sup> for renewal of the authorisation of the product red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 for salmon and trout (category: sensory additives; functional group: colourants; substances which when fed to animals add colours to food of animal origin).

According to Article 7(1) of Regulation (EC) No 1831/2003, the Commission forwarded the application to the European Food Safety Authority (EFSA) as an application under Article 14(1) (renewal of the authorisation). The dossier was received on 22 August 2017 and the general information and supporting documentation are available at https://open.efsa.europa.eu/questions/EFSA-Q-2017-00694. The particulars and documents in support of the application were considered valid by EFSA as of 20 November 2017.

According to Article 8 of Regulation (EC) No 1831/2003, EFSA, after verifying the particulars and documents submitted by the applicant, shall undertake an assessment in order to determine whether the feed additive complies with the conditions laid down in Article 5. EFSA shall deliver an opinion on the safety for the target animals, consumer, user and the environment and on the efficacy of the product red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017, when used under the proposed conditions of use (see **Section 3.1.5**).

## 1.2 | Additional information

The additive, a natural source of red carotenoids containing as main colouring principle astaxanthin, adonirubin and canthaxanthin, is currently authorised for salmon and trout (2a(ii)167).<sup>3</sup> The FEEDAP Panel adopted two opinions on the safety and efficacy of Panaferd<sup>®</sup>-AX (red carotenoid-rich bacterium *Paracoccus carotinifaciens* NITE SD 00017) (EFSA, 2007; EFSA FEEDAP Panel, 2010).

## 2 | DATA AND METHODOLOGIES

#### 2.1 Data

The present assessment is based on data submitted by the applicant in the form of a technical dossier<sup>4</sup> in support of the authorisation request for the use of red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 (Panaferd®-AX) as a feed additive.

The FEEDAP Panel used the data provided by the applicant together with data from other sources, such as previous risk assessments by EFSA or other expert bodies, peer-reviewed scientific papers and other scientific reports to deliver the present output.

EFSA has verified the European Union Reference Laboratory (EURL) report as it relates to the methods used for the control of the astaxanthin, adonirubin and canthaxanthin in animal feed and marker residue in muscle tissue of salmon and trout.<sup>5</sup>

## 2.2 | Methodologies

The approach followed by the FEEDAP Panel to assess the safety and the efficacy of red carotenoid-rich *Paracoccus carotinifaciens* (Panaferd®-AX) is in line with the principles laid down in Regulation (EC) No 429/2008<sup>6</sup> and the relevant guidance documents: Guidance on the renewal of the authorisation of feed additives (EFSA FEEDAP Panel, 2021).

<sup>4</sup>FEED dossier reference: FAD-2017-0048

<sup>&</sup>lt;sup>1</sup>Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. OJ L 268, 18.10.2003, p. 29. <sup>2</sup>On 31 October 2023 EFSA was informed by the applicant that the applicant company changed to ENEOS Techno Materials Corporation (1–5-2 Higashi-Shimbashi, Minato-ku, Tokyo 105-7109 Japan), represented in the EU by ANCI SAS (Les Collines de Cuques – B3, 6 avenue de l'Armée d'Afrique, F-13100 Aix-en-Provence, France). <sup>3</sup>Commission Regulation (EC) No 721/2008 of 25 July 2008 concerning the authorisation of a preparation of red carotenoid-rich bacterium *Paracoccus carotinifaciens* as a feed additive. OK L 198, 26.7.2008, p. 23. And COMMISSION REGULATION (EU) No 334/2010 of 22 April 2010 amending Regulation (EC) No 721/2008 as regards the composition of feed additives. OJ L 102, 23.4.2010, p 21.

<sup>&</sup>lt;sup>5</sup>Evaluation report received on 12/07/2018 and available on the EU Science Hub https://joint-research-centre.ec.europa.eu/reports-and-technical-documentation/ fad-2017-0048\_en

<sup>&</sup>lt;sup>6</sup>Commission Regulation (EC) No 429/2008 of 25 April 2008 on detailed rules for the implementation of Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the preparation and the presentation of applications and the assessment and the authorisation of feed additives. OJ L 133, 22.5.2008, p. 1.

# 3 | ASSESSMENT

The additive red carotenoid-rich *Paracoccus carotinifaciens* is currently authorised as a sensory additive (functional group: colourants; substances which when fed to animals add colours to food of animal origin) for use in feed for salmon and trout. The present application is for the renewal of the current authorisation. The additive will be referred to in this opinion with its trade name Panaferd<sup>®</sup>-AX.

# 3.1 | Characterisation

## 3.1.1 | Manufacturing process

The additive is obtained via fermentation with the strain *Paracoccus carotinifaciens* NITE SD 00017. The information submitted regarding the manufacturing process lists some modifications applied which have been developed since the first authorisation was granted.<sup>7,8</sup>

declared that no antimicrobials are used in the manufacturing process.<sup>10</sup>

## 3.1.2 | Characterisation of the strain

The strain under assessment was isolated from soil and is deposited in the National Institute of Technology and Evaluation (NITE) of Japan with accession number NITE SD 00017.<sup>11</sup> The strain is not genetically modified.

The taxonomic identification of the strain NITE SD 00017 was performed using

<sup>13</sup> the

The applicant

FEEDAP Panel considers that the identification of NITE SD 00017 as *P. carotinifaciens* is confirmed.

The susceptibility of the strain to the antimicrobials recommended by the FEEDAP Panel (EFSA FEEDAP Panel, 2018) was tested by broth microdilution following the Clinical and Laboratory Standards Institute (CLSI) performance standards

All the minimum inhibitory con-

centration (MIC) values determined were equal or fell below the corresponding cut-off values for *Enterobacteriaceae*, except for fosfomycin which was exceeded by five dilutions (256 mg/L vs. 8 mg/L).<sup>14</sup> Therefore, *P. carotinifaciens* NITE SD 00017 is considered susceptible to all relevant antibiotics except for fosfomycin.

The WGS data of the production strain were queried for the presence of genes coding for antimicrobial resistance (AMR)

<sup>15</sup> No hits of concern were identified. Although the strain was resistant to fosfomycin, since no acquired AMR genes were found in the genome, this resistance does not raise safety concerns.

Antimicrobial activity was measured in culture supernatants of the strain by a broth microdilution method.<sup>16</sup> No inhibitory activity was detected against the 18 reference strains used, *Acinetobacter baumannii* NCTC 12156, *A. baumannii* ATCC 17978, *Bacillus subtilis* NC08236, *B. subtilis* ATCC 6633, *Escherichia coli* ATCC 25922, *E. coli* ATCC 35218, *Enterococcus faecalis* NCTC 12697, *E. faecalis* NCTC 12203, *Klebsiella pneumoniae* NCTC 13368, *K. pneumoniae* NCTC 13439, *Pseudomonas aeruginosa* BAA 2110, *P. aeruginosa* ATCC 27853, *Proteus vulgaris* ATCC 6380, *P. mirabilis* ATCC 7002, *Staphylococcus aureus* NCTC 12981, *S. aureus* ATCC 29213, *S. aureus* BAA 2312 and *Streptococcus pneumoniae* ATCC 49619.

## 3.1.3 | Characterisation of the additive

The additive is a preparation containing dried killed cells of *Paracoccus carotinifaciens* NITE SD 00017 and calcium carbonate. The additive is specified by the authorising regulation to contain 20–23 g/kg astaxanthin, 7–15 g/kg adonirubin and 1–5 g/kg canthaxanthin. The analysed values from five batches (Table 1) showed compliance with the specifications.

<sup>&</sup>lt;sup>7</sup>Technical dossier/Section II/Annex 2.13.

<sup>&</sup>lt;sup>8</sup>Technical dossier/Supplementary Information January 2021/Annex\_14.

<sup>&</sup>lt;sup>9</sup>Technical dossier/Supplementary Information January 2021/Annex\_07.

<sup>&</sup>lt;sup>10</sup>Technical dossier/Section II.

<sup>&</sup>lt;sup>11</sup>Technical dossier/Supplementary Information January 2021/Annex\_01.

<sup>&</sup>lt;sup>12</sup>Technical dossier/Supplementary Information January 2021/Annex\_02.

<sup>&</sup>lt;sup>13</sup>Technical dossier/Section II/Annex 2.12.

<sup>&</sup>lt;sup>14</sup>Technical dossier/Section II/Annex 3.2 and Supplementary Information January 2021/Annex\_03 and Annex\_04.

<sup>&</sup>lt;sup>15</sup>Technical dossier/Supplementary Information January 2021/Annex\_05.

<sup>&</sup>lt;sup>16</sup>Technical dossier/Supplementary Information January 2021/Annex\_03.

**TABLE 1** Carotenoid profile (g/kg) of red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017.

|                        | Specification | Average | Range     |
|------------------------|---------------|---------|-----------|
| Astaxanthin            | 20–23         | 21.68   | 21.2–22.0 |
| Adonirubin             | 7–15          | 8.5     | 7.6–9.4   |
| Canthaxanthin          | 1–5           | 2.04    | 1.8–2.3   |
| Adonixanthin           |               | 2.74    | 2.2–3.5   |
| Echinenone             |               | 0.68    | 0.5-0.9   |
| beta-Carotene          |               | 0.44    | 0.2–0.6   |
| Asteroidenone          |               | 0.42    | 0.3-0.5   |
| 3-Hydroxyechinenone    |               | 0.24    | 0.1-0.4   |
| Others                 |               | 0.1     | < 0.1-0.1 |
| Total carotenoids (TC) |               | 36.8    | 35.1–38.0 |

Three of the above batches were analysed to provide information on the proximate composition (Table 2).

| Average | Range                                         |  |  |  |
|---------|-----------------------------------------------|--|--|--|
| 41.1    | 37.1-43.4                                     |  |  |  |
| 21.9    | 20.1–24.5                                     |  |  |  |
| 2.9     | 2.7–3.2                                       |  |  |  |
| < 0.1   | < 0.1                                         |  |  |  |
| 5.6     | 5.0-5.9                                       |  |  |  |
| 2.8     | 2.5–2.9                                       |  |  |  |
|         | Average<br>41.1<br>21.9<br>2.9<br><0.1<br>5.6 |  |  |  |

 TABLE 2
 Proximate composition (% as is) of red

 carotenoid-rich Paracoccus carotinifaciens NITE SD 00017.

In the same three batches, lead concentration ranged from 0.08 to 0.17 mg/kg, cadmium ranged from 0.02 to 0.03 mg/kg while arsenic and mercury were below their limit of quantification (LOQ)<sup>17</sup> as well as mycotoxins<sup>18</sup> (aflatoxins B1, B2, G1 and G2, fumonisins B1 and B2, nivalenol, deoxynivalenol, zearalenone, patulin, ochratoxin A, citrinin, sterigmatocystin, penicillic acid).<sup>19</sup>

Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and coplanar dioxin-like polychlorinated biphenyls (Co-planar PCBs) were analysed in three other batches. The calculated (lower bound) levels of the sum of dioxins and dioxin-like-PCBs ranged from 0.028 to 0.062 pg WHO-PCDD/F-PCB-TEQ/kg.<sup>20</sup>

The FEEDAP Panel considers that the amounts of the detected impurities do not raise safety concerns.

Five other batches were assessed for microbiological contamination. Total aerobic count was between  $2.40 \times 10^4$  and  $2.90 \times 10^5$  CFU/g, coliform bacteria was absent in 10 g samples and *Salmonella* spp. was not detected in 25 g samples.<sup>21</sup> The FEEDAP Panel notes that the values found regarding the total aerobic count are high and may deserve attention/monitor-ing during the production process.

Lipopolysaccharides (LPS) are present in most Gram-negative bacteria's outer membrane and are typically recognised by Toll-like receptor 4 (TLR4) present on the surface of phagocytic cells. The applicant provided analytical data for the determination of LPS content in five batches of the additive.<sup>22</sup> The results of the chromogenic Limulus Amebocyte Lysate (LAL) assay averaged  $1.50 \times 10^6 \text{ EU/g}^{23}$  (range  $0.76 \times 10^6 - 2.90 \times 10^6 \text{ EU/g}$ ). Moreover, the LPS of *P. carotinifaciens* NITE SD 00017 pure culture were extracted, purified and characterised (in terms of composition and potential for cytokines induction).<sup>24</sup> Based on the results of silver-staining SDS-PAGE, GS-MS and MALDI-TOF-MS, it was determined that the strain's LPS have low molecular weight and that its Lipid A is penta-acylated.<sup>25</sup> The strain's LPS and their Lipid A potential to induce

<sup>&</sup>lt;sup>17</sup>LOQs were for arsenic 0.1 mg/kg and for mercury 0.01 mg/kg.

<sup>&</sup>lt;sup>18</sup>Technical dossier/Section II/Annex 2.5.

<sup>&</sup>lt;sup>19</sup>0.005 mg/kg for Aflatoxins B1, B2, G1, G2; 0.05 mg/kg for Fumonisins B1, B2, Nivalenol, Deoxynivalenol, Zearalenone, Patulin, Citrinin, Sterigmatocystin; 0.2 mg/kg for Penicillic acid and 5 μg/kg for Ochratoxin A.

<sup>&</sup>lt;sup>20</sup>Technical dossier/Supplementary information January 2021/Annex 17. TEQ = toxic equivalency factors for PCDD/Fs and DL-PCBs established by WHO in 2005 (van den Berg et al., 2006).

<sup>&</sup>lt;sup>21</sup>Technical dossier/Section II/Annex 2.6.

<sup>&</sup>lt;sup>22</sup>Technical dossier/Supplementary information January 2021/Annex\_20.

<sup>&</sup>lt;sup>23</sup>Endotoxin Unit. One EU is equal to one International Unit (IU) of endotoxin.

<sup>&</sup>lt;sup>24</sup>Technical dossier/Supplementary Information January 2021/Annex\_09, Annex\_10, Annex\_11, Annex\_12 and Annex\_13.

<sup>&</sup>lt;sup>25</sup>Technical dossier/Supplementary Information January 2021/Annex\_09, Annex\_10, Annex\_11 and Annex\_12.

inflammatory cytokines was investigated in two different cell lines and the results showed lower cytokine induction activity compared with the *Escherichia coli* O55 LPS and comparable to a TLR4 antagonist (ultrapure commercial extract of LPS from *Rhodobacter sphaeroides*).<sup>26,27</sup> Based on the biological activity data, it is concluded that the LPS of the *P. carotinifaciens* NITE SD 00017 LPS trigger low TLR4-mediated cytokine release.

The presence of viable cells of the production strain was investigated in three batches, in triplicate. One gram of product per batch was diluted in 50 mL saline and 50 µL of this suspension was spread in solid media and incubated at 28°C for 10 days (positive controls were incubated for 5 days). The production strain was not detected.<sup>28</sup> Due to the low amount of the additive tested, the presence of viable cells cannot be excluded. However, the FEEDAP Panel considers that based on the inactivation steps in the manufacturing process, the presence of *P. carotinifaciens* NITE SD 00017 is unlikely. Based on the data provided to characterise *P. carotinifaciens* NITE SD 00017, the potential presence of viable cells in the additive would not represent a safety concern.

The Chemical Abstracts Service (CAS) number, molecular formula and molecular weight of astaxanthin, canthaxanthin and adonirubin are reported in Table 3.

|                                                                      | Chemical abstracts<br>service (CAS) number | Molecular formula                              | Molecular weight<br>(g/mol) |
|----------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|-----------------------------|
| Astaxanthin (3,3'-dihydroxy- $\beta$ , $\beta$ -carotene-4,4'-dione) | 472–61-7                                   | C <sub>40</sub> H <sub>52</sub> O <sub>4</sub> | 597                         |
| Canthaxanthin ( $\beta$ -carotene-4,4'-dione)                        | 514–78-3                                   | C <sub>40</sub> H <sub>52</sub> O <sub>2</sub> | 565                         |
| Adonirubin (3-hydroxy- $\beta\beta$ -carotene-4,4'-dione)            | 4418-72-8                                  | C <sub>40</sub> H <sub>52</sub> O <sub>3</sub> | 581                         |

TABLE 3 Description of the main carotenoids in red carotenoid-rich Paracoccus carotinifaciens NITE SD 00017.

Due to the presence of the long hydrocarbon chain, these substances are insoluble in water but soluble in fats and most organic solvents.

## 3.1.4 | Physico-chemical and technological properties of the additive

The additive is a dark red granular powder with an average bulk density of 473 kg/m<sup>3</sup> and tapped density of 623 kg/m<sup>3</sup>.

In order to establish the impact of the changes implemented in the manufacturing process on the physico-chemical properties of the additive, the applicant provided new data regarding the dusting potential and particle size, which are described below.

The particle size distribution was determined by laser diffraction analysis in three batches of the additive. The fractions of particles below 10, 50 and 100 µm were in the range of 3–4, 12–15 and 29–35%(V/V), respectively. Dusting potential, measured in the same batches (Stauber-Heubach method) showed values of 1.9, 3.1 and 2.6 g/m<sup>3</sup>. The dusting potential was also measured in five additional batches (Stauber-Heubach method) showing values of 2.6, 2.3, 3.1, 4.8 and 5.1 g/m<sup>3</sup>.<sup>29</sup> In this experiment, the concentration of astaxanthin, adonirubin and cantaxanthin was also determined. The following mean concentrations were measured before and after dust generation, respectively: 21.7 and 20.1 mg/g astaxanthin; 9.0 and 8.4 mg/g adonirubin; 2.2 and 1.9 mg/g canthaxanthin. Particle size distribution of the dust was not analysed.

No new data were submitted on stability and homogeneity. The Panel considers that the small changes introduced in the manufacturing process would not have an impact on the stability and the homogeneous distribution of the additive in feed, and therefore, the previous assessment is still considered valid (EFSA, 2007).

The applicant reported the potential incompatibility between carotenoids and blood meal based on customer feedback and scientific literature data. Hatlen et al. (2012) observed lower muscle colour score and lower astaxanthin concentrations when the diet of salmons was supplemented with porcine blood meal, possibly due to degradation of astaxanthin catalysed by iron from haemoglobin present in blood meal. The FEEDAP Panel recommends avoiding the simultaneous use of the additive and blood meal in the diet of salmon and trout.

## 3.1.5 | Conditions of use

The additive is currently authorised for use in feed for salmon and trout with a maximum content of 100 mg/kg complete feed where the maximum content is expressed as the sum of astaxanthin, adonirubin and canthaxanthin.

The authorisation under other provisions foresees:

<sup>&</sup>lt;sup>26</sup>Technical dossier/Supplementary Information January 2021/Annex\_13.

<sup>&</sup>lt;sup>27</sup>Technical dossier/Spontaneous submission March 2024/240326 New data LPS Paracoccus carotinifaciens.

<sup>&</sup>lt;sup>28</sup>Technical dossier/Supplementary information January 2021/Annex\_08.

<sup>&</sup>lt;sup>29</sup>Technical dossier/Supplementary information January 2021/Annex 19.

- 1. The maximum content is expressed as the sum of astaxanthin, adonirubin and canthaxanthin.
- 2. Use permitted from the age of 6 months onwards or weight of 50 g.
- 3. The mixture of the additive with astaxanthin or canthaxanthin is allowed provided that the total concentration of the sum of astaxanthin, adonirubin and canthaxanthin from other sources does not exceed 100 mg/kg in complete feedingstuff.

Maximum residue limits are also set in the authorising regulation as follows:

For salmon: 10 mg/kg for the sum of adonirubin and canthaxanthin/kg muscle (wet tissue). For trout: 8 mg/kg for the sum of adonirubin and canthaxanthin/kg muscle (wet tissue).

The applicant is requesting to delete the provision limiting the use from the age of 6 months onwards or weight of 50 g (point 2 under other provisions).

The applicant is requesting the modification of provision 3 as follows: 'The mixture of the additive with astaxanthin is allowed provided that the total concentration of the sum of astaxanthin, adonirubin and canthaxanthin from other sources does not exceed 100 mg/kg in complete feedingstuff' considering that as of today, there is no authorisation in force for canthaxanthin in feed for salmonids.

Lastly, the applicant is requesting to lower the MRLs for salmon to 5 mg for the sum of adonirubin and canthaxanthin/kg muscle (wet tissue).

In addition, the applicant is asking to add the following provisions:

- For safety: breathing protection, safety glasses and gloves shall be worn during handling.
- Red carotenoid-rich Paracoccus carotinifaciens may be placed on the market and used as an additive consisting of a
  preparation.

## 3.2 | Safety

The safety of the additive red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 for the target species, consumer, user and environment was established in previous FEEDAP opinions (EFSA, 2007; EFSA FEEDAP Panel, 2010).

The applicant provided the following information to support that, under the approved conditions of use, the additive remains safe for the target species, consumer, user and environment: (i) a company report on adverse events (see Section 3.2.4), (ii) an extensive literature search and (iii) a report on residue monitoring.

The extensive literature search<sup>30,31</sup> (ELS) covered the period June 2005 until March 2024 and the search terms and search strategy were provided.<sup>32</sup> The main search terms regarded the additive, the active substances and included terms concerning the safety and the toxicity for the target species, consumers, users and the environment. A total of 78 publications were considered relevant by the applicant. The FEEDAP Panel reviewed the papers and mentioned them in the assessment when considered relevant.

#### 3.2.1 Absorption, distribution, metabolism, excretion and residues

The metabolism of the three main carotenoids (astaxanthin, adonirubin and canthaxanthin) was described in the former opinion of the FEEDAP Panel (EFSA, 2007). No new studies have been submitted in the current application. No relevant publications were identified in the ELS by the Panel for the assessment of the renewal of the authorisation.

The applicant submitted a report on residue monitoring.<sup>33</sup> Samples of salmon and trout were collected at the end of the production cycle of fish fed red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 in one European country. The samples originated from three fish producers using the additive under assessment. The inclusion rate of the additive was variable depending on the growth rate of the fish and was not always reaching the highest authorised use level. In all three cases, the highest supplementation level was calculated to be ~ 100 mg of the sum of astaxanthin, canthaxanthin and adonirubin. The carotenoids were extracted from the fish flesh, separated and quantified using a validated HPLC method. The results (125 samples analysed) indicated  $0.3 \pm 0.1$  mg canthaxanthin/kg muscle,  $1.3 \pm 0.2$  mg adonirubin/kg muscle and  $3.8 \pm 0.6$  mg astaxanthin/kg muscle. A similar analysis was performed in trout from four producers. Also in this case, the inclusion level varied based on the growing stage of the trout; the highest inclusion level was calculated to be ~ 100 mg of the sum of astaxanthin, canthaxanthin and adonirubin. The results (32 samples analysed) indicated  $0.3 \pm 0.1$  mg canthaxanthin/kg muscle,  $1.7 \pm 0.8$  mg adonirubin/kg muscle and  $5.2 \pm 2.3$  mg astaxanthin/kg muscle.

The FEEDAP Panel considers that the data provided might reflect current fish farming practices (adapting use levels according to the growth phase of the fish). However, considering that the additive was not administered up to the highest

<sup>&</sup>lt;sup>30</sup>Technical dossier/Section III/Annex 3.1.

<sup>&</sup>lt;sup>31</sup>Technical dossier/Supplementary information/March 2024/Annex\_Literature search.

<sup>&</sup>lt;sup>32</sup>(Livivo, Ovid, PubMed, ToxNET, ECHA, IPS INCHEM, ScienceDirect, ETH Knowledge Portal (including Web of Science), Google Scholar, AGRICOLA and AGRIS). <sup>33</sup>Technical dossier/Section III/Annex 3.3.

authorised use level continuously during the production cycle of the fish, the data cannot be used for the calculation of consumer exposure.

Residue data derived from studies with animals exposed to the highest proposed use level of the additive were assessed in the former opinion (EFSA, 2007). The FEEDAP Panel reviewed the studies in salmon and trout and considered that the dose–response study performed with the additive under assessment in rainbow trout (*Oncorhynchus mykiss*) can be retained for the consumer safety assessment. The treatment group with 100 mg of the sum of astaxanthin, adonirubin and canthaxanthin will be considered to derive residue data. The residue values are reported in Table 4.

**TABLE 4** Concentration of astaxanthin, canthaxanthin and adonirubin in muscle of rainbow trout fed the additive for 12 weeks.

|                          | Astaxanthin     | Canthaxanthin   | Adonirubin      |
|--------------------------|-----------------|-----------------|-----------------|
| Average (mg/kg) $\pm$ SD | $3.30 \pm 1.95$ | $0.43 \pm 0.21$ | $1.87 \pm 1.02$ |
| Average + 2SD            | 7.20            | 0.85            | 3.91            |

#### 3.2.2 | Toxicology

The toxicity of red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 was assessed by the FEEDAP Panel in 2007 and it was concluded that 'Panaferd®-AX is non genotoxic and exhibits very low acute and sub-chronic toxicity. Therefore, the FEEDAP Panel considers that no specific risk for the consumer related to compounds arising from the fermentation process (other than red carotenoids) is likely to occur' (EFSA, 2007).

No new studies were submitted. The toxicology of ATX was re-evaluated by the FEEDAP Panel in 2019 (EFSA FEEDAP Panel, 2019a). In this opinion, an acceptable daily intake (ADI) of 0.2 mg astaxanthin/kg body weight (bw) per day was established based on a lowest observed adverse effect level (LOAEL) of 40 mg ATX/kg bw per day (end point: increased incidence of multinucleated hepatocytes in a 2-year rat study). Similarly, the toxicology of CTX was re-evaluated by the FEEDAP Panel in 2013 (EFSA FEEDAP Panel, 2013). In this opinion, the ADI of 0.03 mg CTX/kg bw, already agreed by JECFA (JECFA, 1995), the EU Scientific Committee for Food (European Commission, 2000), and by EFSA ANS Panel (EFSA ANS Panel, 2010), was confirmed.<sup>34</sup> The ELS did not identify relevant studies that would lead the Panel to modify these conclusions.

In its previous opinion (EFSA, 2007), the FEEDAP Panel noted that the safety of adonirubin was not established. However, it was stated that 'adonirubin has an intermediary chemical structure between canthaxanthin and astaxanthin, which suggests that the toxicological profiles of the three compounds are similar.' Therefore, the Panel stated that the ADI for canthaxanthin should be applied to the sum of canthaxanthin plus adonirubin on a precautionary basis. In the absence of any new evidence, the FEEDAP Panel considers that the same conclusions should be retained for the present assessment.

Conclusions on the absence of a genotoxic potential of the additive were reached in the previous opinion (EFSA, 2007) based on a negative Ames test, a negative mouse lymphoma assay and a negative in vivo micronucleus test in bone marrow erythrocytes. However, the FEEDAP Panel noted that the available data set did not comply with the current requirements on genotoxicity testing strategy (EFSA FEEDAP Panel, 2017a; EFSA Scientific Committee, 2017) since the negative results observed in the in vivo micronucleus test were not associated with evidence of target tissue exposure and did not allow to evaluate the aneugenic potential of the test item. To this aim, the applicant provided an in vitro micronucleus test performed in Chinese hamster ovary (CHO) cells following the OECD Guideline 487 and claimed to be GLP-compliant. Based on the results of a preliminary cytotoxicity test, four concentrations were selected for the analysis of micronucleus frequency in binucleated cells. Panaferd®-AX was tested at (i) 100, 300, 600, 1250 µg/mL applying a short treatment (3 + 21 h of recovery) in the presence of metabolic activation; (ii) 100, 200, 700, 1250 µg/mL after a short treatment in the absence of metabolic activation; (iii) 40, 60, 80, 100 µg/mL following a continuous treatment (24 + 0 h of recovery) without metabolic activation. Cytotoxicity up to 54% was recorded at the highest concentrations tested. The frequencies of micronucleus. Therefore, the FEEDAP Panel concluded that Panaferd®-AX did not induce structural and numerical chromosomal damage in cultured Chinese Hamster Ovary (CHO) cells under the experimental conditions applied in this study.

#### **Conclusions on toxicology**

The FEEDAP Panel concludes that Panaferd®-AX does not raise safety concern for genotoxicity.

The ADI of 0.2 and 0.03 mg/kg bw can be retained for the consumer safety assessment of astaxanthin and of the sum of canthaxanthin and adonirubin, respectively.

<sup>&</sup>lt;sup>34</sup>By applying an uncertainty factor of 10 to a no observed adverse effect level (NOAEL) of 0.25 mg/kg bw per day for scotopic b-wave changes (without impairment of vision) in humans and a lower benchmark dose (BMDL05) of 0.2–0.33 mg/kg bw per day for crystal incidence in a meta-analysis of findings of crystals in the retina of humans exposed to canthaxanthin.

## 3.2.3 | Safety for the target species

In its previous opinion (EFSA, 2007), the FEEDAP Panel concluded that the additive is safe for salmonids at the inclusion level of 0.4% based on a tolerance study in rainbow trout in which Panaferd®-AX was tolerated at dietary incorporation rate of 12.5-fold greater than the maximum incorporation rate of 0.4%. Considering the carotenoid levels in the additive, the Panel recommended to set the maximum use level for the sum of astaxanthin, canthaxanthin and adonirubin and to apply 100 mg/kg feed for this sum.

No new studies have been provided in the present application. No relevant publications were identified by the Panel in the ELS.

The measured levels of endotoxins in the additive  $2.9 \times 10^6$  EU/g are of the same order of magnitude as those commonly found in feedingstuffs (ca. 1,000,000 IU/g, Cort et al., 1990). Therefore, at the usual conditions of use of the additive in feed, the endotoxins potentially added by the additive would be around 7300 EU/kg complete feed. The Panel also notes that the characterisation of the LPS showed that those originating from the production strain under assessment are of low concern.

Considering that no adverse effects have been reported, and no relevant information was found in the ELS with regard to the safety of the product and taking into account that the manufacturing/composition of the additive has not been substantially changed, the Panel considers that the conclusions reached in the previous opinion are still valid. The FEEDAP Panel concludes that the use of the additive remains safe for the target species under the conditions of the authorisation.

The applicant requested to remove the restriction of use of the additive from the age of 6 months onwards or weight of 50 g. As already expressed by the FEEDAP Panel in 2005 (EFSA, 2005), there is no reason to restrict the use of ATX to any particular physiological developmental stage of fish. In addition, the Panel notes that the tolerance studies in rainbow trout considered in the original opinion was done in juvenile animals (6–7.5 g). Therefore, the Panel concludes that there is no need to restrict the use of the additive from the age of 6 months onwards or weight of 50 g.

## 3.2.4 | Safety for the consumer

In its former opinion, the FEEDAP Panel concluded that 'As consumer exposure to astaxanthin and canthaxanthin after administration of Panaferd-AX at the maximum dose proposed would be at the most equal or less than that resulting from the use of other astaxanthin or canthaxanthin sources, there is no additional risk for the consumer. [...] The calculated consumer exposure to adonirubin plus canthaxanthin derived from the use of Panaferd-AX in salmon and trout complies with the ADI for canthaxanthin (37 %). Therefore, no additional risk due to adonirubin exposure resulting from the use of Panaferd-AX is likely to occur.' (EFSA, 2007).

The applicant provided a company report on adverse events<sup>35</sup>

could not be related to the

use of the additive and are not considered relevant for the current assessment.

The consumer exposure to residues of astaxanthin, canthaxanthin and adonirubin has been assessed following the methodology detailed in the guidance on consumer safety (EFSA FEEDAP Panel, 2017b). The input values used in the calculation are included in Table 5. The outcome of the calculation is shown in Table 6 (for detailed results per age class, country and survey, see Appendix A, Table A.1).

**TABLE 5** Input values used to calculate consumer exposure to carotenoid residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017.

|             | Astaxanthin<br>(mg/kg tissue) | Canthaxanthin + adonirubin<br>(mg/kg tissue) |
|-------------|-------------------------------|----------------------------------------------|
| Fish (meat) | 7.20                          | 4.76                                         |

**TABLE 6** Chronic dietary exposure to carotenoid residues from red carotenoid-rich

 Paracoccus carotinifaciens NITE SD 00017 calculated based on residue data in trout.

|                  | Astaxanthin                                                     |                    | Canthaxanthin + adonirubin                                      |                    |  |
|------------------|-----------------------------------------------------------------|--------------------|-----------------------------------------------------------------|--------------------|--|
| Population class | Highest exposure<br>estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>b</sup> | Highest exposure<br>estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>c</sup> |  |
| Infants          | 0.0153                                                          | 8                  | 0.0101                                                          | 34                 |  |
| Toddlers         | 0.0413                                                          | 21                 | 0.0273                                                          | 91                 |  |
| Other children   | 0.0286                                                          | 14                 | 0.0189                                                          | 63                 |  |
| Adolescents      | 0.0203                                                          | 10                 | 0.0134                                                          | 45                 |  |
|                  |                                                                 |                    |                                                                 | (Continues)        |  |

| (continued)      |                                                                 |                    |                                                                 |                    |  |  |
|------------------|-----------------------------------------------------------------|--------------------|-----------------------------------------------------------------|--------------------|--|--|
|                  | Astaxanthin                                                     |                    | Canthaxanthin + adonirubin                                      |                    |  |  |
| Population class | Highest exposure<br>estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>b</sup> | Highest exposure<br>estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>c</sup> |  |  |
| Adults           | 0.0170                                                          | 9                  | 0.0112                                                          | 37                 |  |  |
| Elderly          | 0.0158                                                          | 8                  | 0.0104                                                          | 35                 |  |  |
| Very elderly     | 0.0120                                                          | 6                  | 0.0079                                                          | 26                 |  |  |

TABLE 6 (Continued)

<sup>a</sup>Expressed as maximum highest reliable percentile (HRP).

<sup>b</sup>ADI astaxanthin: 0.2 mg/kg bw.

<sup>c</sup>ADI canthaxanthin: 0.03 mg/kg bw.

Following the exposure calculation, it appears that the exposure to astaxanthin is well below the ADI (6%–21%), and that of canthaxanthin plus adonirubin ranges between 26% and 91% of the respective ADI.

MRLs exists for the sum of canthaxanthin and adonirubin for salmon (10 mg/kg muscle (wet tissue)) and trout (8 mg/kg muscle (wet tissue)). For astaxanthin, the setting of MRLs was not considered necessary (EFSA FEEDAP Panel, 2014).

When assessing consumer exposure to canthaxanthin and adonirubin at the level of the existing MRLs, the exposure of consumers exceeds the ADI in the population classes toddlers and other children for both salmon and trout (Table 7) (for detailed results per age class, country and survey, see Appendix A, Table A.2 and A.3).

**TABLE 7** Chronic dietary exposure to canthaxanthin + adonirubin residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 calculated based on existing MRLs in trout (8 mg/kg muscle) and salmon (10 mg/kg muscle).

|                  | Input value: 8 mg/kg                                            | muscle             | Input value: 10 mg/kg muscle                                    |                    |
|------------------|-----------------------------------------------------------------|--------------------|-----------------------------------------------------------------|--------------------|
| Population class | Highest exposure<br>estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>b</sup> | Highest exposure<br>estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>b</sup> |
| Infants          | 0.0170                                                          | 56.7               | 0.0213                                                          | 70.9               |
| Toddlers         | 0.0459                                                          | 152.9              | 0.0573                                                          | 191.1              |
| Other children   | 0.0318                                                          | 106.1              | 0.0398                                                          | 132.6              |
| Adolescents      | 0.0226                                                          | 75.2               | 0.0282                                                          | 94.0               |
| Adults           | 0.0188                                                          | 62.8               | 0.0235                                                          | 78.5               |
| Elderly          | 0.0175                                                          | 58.4               | 0.0219                                                          | 73.0               |
| Very elderly     | 0.0133                                                          | 44.4               | 0.0166                                                          | 55.4               |

<sup>a</sup>Expressed as maximum HRP.

<sup>b</sup>ADI canthaxanthin: 0.03 mg/kg bw.

The applicant proposes to reduce the MRLs for salmon from 10 mg to 5 mg/kg muscle while keeping that of trout at 8 mg/kg muscle. When calculating the consumer exposure at the MRL of 5 mg/kg muscle, the exposure is below the ADI for all population classes (Table 8) (for detailed results per age class, country and survey, see Appendix A, Table A.4).

**TABLE 8**Chronic dietary exposure to canthaxanthin + adonirubin residuesfrom red carotenoid-rich Paracoccus carotinifaciens NITE SD 00017 calculatedbased on proposed MRL for trout/salmon.

|                  | Input value: 5 mg/kg muscle                                  |                    |  |
|------------------|--------------------------------------------------------------|--------------------|--|
| Population class | Highest exposure estimate <sup>a</sup><br>(mg/kg bw per day) | % ADI <sup>b</sup> |  |
| Infants          | 0.0106                                                       | 35.5               |  |
| Toddlers         | 0.0287                                                       | 95.5               |  |
| Other children   | 0.0199                                                       | 66.3               |  |
| Adolescents      | 0.0141                                                       | 47.0               |  |
| Adults           | 0.0118                                                       | 39.2               |  |
| Elderly          | 0.0109                                                       | 36.5               |  |
| Very elderly     | 0.0083                                                       | 27.7               |  |

<sup>a</sup>Expressed as maximum HRP.

<sup>b</sup>ADI canthaxanthin: 0.03 mg/kg bw.

The FEEDAP Panel considers that the MRL of 5 mg/kg muscle would ensure compliance with the ADI for the sum of canthaxanthin and adonirubin, and could be applied to both salmon and trout. The existing data on residues (see Table 4), also confirmed by the data from the recent residue monitoring performed by the applicant, show that the residues would comply with this proposed MRL of 5 mg/kg for muscle of salmon and trout.

Consumer exposure needs to take into consideration all potential dietary sources. Astaxanthin is currently authorised only in salmon and trout, while canthaxanthin is also authorised for use in chickens for fattening, minor poultry species for fattening, laying poultry, poultry reared for laying and the following MRLs are in force: 2.5 mg/kg skin/fat, 15 mg/kg liver, 30 mg/kg egg yolk (8.1 mg/kg whole egg containing 27% of yolk).<sup>36</sup> Consumer exposure considering the combined exposure from salmonids and poultry was done using the proposed MRL of 5 mg/kg muscle as input data together with existing MRLs in poultry (Table 9). The outcome of the calculation is shown in Table 10 (for detailed results per age class, country and survey, see Appendix A, Table A.5).

|                       | Canthaxanthin + adonirubin<br>(mg/kg tissue) |
|-----------------------|----------------------------------------------|
| Fish (meat)           | 5                                            |
| Birds fat/skin tissue | 2.5                                          |
| Birds liver           | 15                                           |
| Whole eggs            | 8.1                                          |

**TABLE 9** Input values used to calculate consumer exposure to canthaxanthin + adonirubin from all sources (fish and poultry).

**TABLE 10**Chronic dietary exposure to canthaxanthin + adonirubinresidues calculated based on proposed MRL in trout/salmon and existingMRLs in poultry.

| Population class | Highest exposure estimat<br>(mg/kg bw per day) | e <sup>a</sup><br>% ADI <sup>b</sup> |
|------------------|------------------------------------------------|--------------------------------------|
| Infants          | 0.0295                                         | 98                                   |
| Toddlers         | 0.0385                                         | 128                                  |
| Other children   | 0.0426                                         | 142                                  |
| Adolescents      | 0.0248                                         | 83                                   |
| Adults           | 0.0176                                         | 59                                   |
| Elderly          | 0.0175                                         | 58                                   |
| Very elderly     | 0.0186                                         | 62                                   |

<sup>a</sup>Expressed as maximum HRP.

<sup>b</sup>ADI canthaxanthin: 0.03 mg/kg bw.

When assessing consumer exposure to canthaxanthin and adonirubin at the level of the existing MRLs for poultry and the proposed MRL for trout/salmon, the exposure of consumers exceeds the ADI in the population classes toddlers and other children. The main contributors to the consumer exposure are eggs and fish.

## 3.2.5 | Safety for user

In 2007, based on the results of an acute inhalation study in rats and a skin and eye irritation study in rabbits, the FEEDAP Panel concluded that: 'Panaferd-AX shows very low acute inhalation toxicity and no potential for skin irritation. However, Panaferd-AX is considered an eye irritant. Considering the nature of the product, it should also be considered a respiratory sensitiser' (EFSA, 2007).

No additional studies were submitted in the present application, and no relevant data were found in the ELS performed by the applicant.

The highest dusting potential measured was 5.1 g/m<sup>3</sup>, indicating that exposure of users by inhalation is likely.

The additive consists of inactivated cells of *P. carotinifaciens*, and therefore, it should be considered as a skin and respiratory sensitiser. In addition, considering the high content of LPS, albeit its low TLR4 mediated cytokine release, the Panel considers that any exposure via inhalation is a risk.

Therefore, considering the above, the Panel concludes that the additive is not irritant to the skin, but is irritant to the eyes. It is considered a dermal and respiratory sensitiser and any exposure via skin or the respiratory tract is a risk.

<sup>36</sup>Commission Implementing Regulation (EU) 2015/1486 of 2 September 2015 concerning the authorisation of canthaxanthin as feed additive for certain categories of poultry, ornamental fish and ornamental birds, OJ L 229, 3.9.2015, p. 5–8.

## 3.2.6 | Safety for the environment

In 2007, the FEEDAP Panel concluded that astaxanthin, adonirubin and canthaxanthin, the major red carotenoids contained in the additive, are not expected to pose a risk for the environment (EFSA, 2007).

In the current dossier, no new studies were provided, and the ELS did not identify any relevant papers on the safety of the additive or its main components for the environment.

Considering that the major carotenoids contained in the additive are naturally occurring in the marine environment (Mapelli-Brahm et al., 2023), in line with the provisions of the guidance on the assessment of feed additive for the environment (EFSA FEEDAP Panel, 2019b), the FEEDAP Panel concludes that the use of red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 as source of astaxanthin, canthaxanthin and adonirubin for salmon and trout is not expected to pose additional risk to the environment in comparison with their naturally occurring forms.

Therefore, the FEEDAP Panel concludes that the use of the additive in salmon and trout remains safe for the environment under the conditions of the authorisation.

## 3.3 | Efficacy

The present application for renewal of the authorisation does not include a proposal for amending or supplementing the conditions of the authorisation that would have an impact on the efficacy of the additive. Therefore, there is no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

## 4 | CONCLUSIONS

The applicant provided evidence that the additive currently in the market complies with the existing conditions of the authorisation.

The Panel concludes that the use of the additive in salmon and trout remains safe for the target species, the consumer and the environment under the authorised conditions. The Panel considers that there is no need to restrict the use of the additive to fish older than 6 months or of more than 50 g.

When assessing consumer exposure to canthaxanthin and adonirubin at the level of the existing MRLs for poultry and the proposed MRL for trout/salmon (5 mg/kg muscle), the exposure of consumers exceeds the ADI in the population classes toddlers and other children. The main contributors to the consumer exposure are eggs and fish.

Red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 is not irritant to the skin but is considered an eye irritant, and a skin and respiratory sensitiser. Any exposure though skin and inhalation is considered a risk for the user.

There is no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

## 5 | RECOMMENDATIONS

The Panel recommends reducing the MRLs for the sum of canthaxanthin and adonirubin for both salmon and trout to 5 mg/kg muscle. The Panel also notes that a revision of the MRL for canthaxanthin when used in poultry might be needed.

The applicant is requesting the modification of provision 3 as follows: '*The mixture of the additive with astaxanthin is allowed provided that the total concentration of the sum of astaxanthin, adonirubin and canthaxanthin from other sources does not exceed 100 mg/kg in complete feedingstuff*' considering that as of today, there is no authorisation in force for canthaxanthin in feed for salmonids. However, the Panel notes that such a provision should be independent from other authorisations. Therefore, the Panel recommends the following wording for provision 3: 'the mixture of the additive with other authorised feed additives containing astaxanthin, adonirubin and/or canthaxanthin is allowed provided that the total concentration of the sum of astaxanthin, adonirubin and canthaxanthin in the diet does not exceed 100 mg/kg complete feed'.

The FEEDAP Panel notes that the values found regarding the total aerobic count are high and may deserve attention/ monitoring during the production process.

The FEEDAP Panel recommends avoiding the simultaneous use of the additive and blood meal in the feed of salmon and trout.

#### ABBREVIATIONS

- ADI average daily intake
- ANS EFSA Scientific Panel on Additives and Nutrient Sources added to Food
- BW body weight
- CAS Chemical Abstracts Service
- CFU colony forming unit
- ECHA European Chemicals Agency
- EURL European Union Reference Laboratory
- FAO Food Agricultural Organisation

JECEA The Joint FAO/WHO Expert Committee on Food Additives LOD limit of detection LOO limit of quantification MIC minimum inhibitory concentration maximum residue limit MRL NOAEL no observed adverse effect level TI R4 Toll-like receptor 4 WHO World Health Organization

#### ACKNOWLEDGEMENTS

The Panel wishes to acknowledge the contribution of Montserrat Anguita, Rosella Brozzi, Elisa Pettenati and Matteo Innocenti to this opinion.

#### CONFLICT OF INTEREST

If you wish to access the declaration of interests of any expert contributing to an EFSA scientific assessment, please contact interestmanagement@efsa.europa.eu.

#### REQUESTOR

**European Commission** 

#### **QUESTION NUMBER**

EFSA-Q-2017-00694

#### **COPYRIGHT FOR NON-EFSA CONTENT**

EFSA may include images or other content for which it does not hold copyright. In such cases, EFSA indicates the copyright holder and users should seek permission to reproduce the content from the original source.

#### PANEL MEMBERS

Vasileios Bampidis, Giovanna Azimonti, Maria de Lourdes Bastos, Henrik Christensen, Mojca Durjava, Birgit Dusemund, Maryline Kouba, Marta López-Alonso, Secundino López Puente, Francesca Marcon, Baltasar Mayo, Alena Pechová, Mariana Petkova, Fernando Ramos, Roberto Edoardo Villa, and Ruud Woutersen.

#### LEGAL NOTICE

Relevant information or parts of this scientific output have been blackened in accordance with the confidentiality requests formulated by the applicant pending a decision thereon by the European Commission. The full output has been shared with the European Commission, EU Member States and the applicant. The blackening will be subject to review once the decision on the confidentiality requests is adopted by the European Commission.

#### REFERENCES

- Cort, N., Fredriksson, G., Kindahl, H., Edqvist, L. E., & Rylander, R. (1990). A clinical and endocrine study on the effect of orally administered bacterial endotoxin in adult pigs and goats. *Journal of Veterinary Medicine. Series A—Zentralblatt für Veterinärmedizin. Reihe A—Physiology, Pathology, Clinical Medicine*, 37, 130–137.
- EFSA (European Food Safety Authority). (2005). Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on the safety of use of colouring agents in human nutrition. Part I. General Principles and Astaxanthin. *EFSA Journal*, 3(12), 291. https://doi.org/10.2903/j. efsa.2005.291
- EFSA (European Food Safety Authority). (2007). Safety and efficacy of Panaferd-AX (red carotenoid-rich bacterium *Paracoccus carotinifaciens*) as feed additive for salmon and trout Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed. *EFSA Journal*, *5*(10), 546. https://doi.org/10.2903/j.efsa.2007.546
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food). (2010). Scientific opinion on the re-evaluation of canthaxanthin (E161g) as food additive. EFSA Journal, 8(10), 1852. https://doi.org/10.2903/j.efsa.2010.1852
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed). (2010). Scientific Opinion on modification of the terms of authorisation of a red carotenoid-rich bacterium *Paracoccus carotinifaciens* (Panaferd-AX) as feed additive for salmon and trout EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). *EFSA Journal*, 8(1), 1428. https://doi.org/10.2903/j.efsa.2010.1428
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed). (2013). Scientific opinion on the safety and efficacy of CAROPHYLL® red 10% (preparation of canthaxanthin) for all poultry for breeding purposes (chickens, turkeys and other poultry). *EFSA Journal*, *11*(1), 3047. https://doi.org/10.2903/j.efsa.2013.3047
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed). (2014). Scientific opinion on the safety and efficacy of synthetic astaxanthin as feed additive for salmon and trout, other fish, ornamental fish, crustaceans and ornamental birds. *EFSA Journal*, *12*(6), 3724. https://doi.org/10.2903/j.efsa.2014.3724
- EFSA FEEDAP Panel (EFSA Panel on additives and products or substances used in animal feed), Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. L., Bories, G., Chesson, A., Cocconcelli, P. S., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., Lopez-Alonso, M., Lopez Puente, S., Mantovani, A., Mayo, B., Ramos, F., Saarela, M., ... Martino, L. (2017a). Guidance on the assessment of the safety of feed additives for the target species. *EFSA Journal*, *15*(10), 5021. https://doi.org/10.2903/j.efsa.2017.5021

- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. L., Bories, G., Chesson, A., Cocconcelli, P. S., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., López-Alonso, M., López Puente, S., Mantovani, A., Mayo, B., Ramos, F., Saarela, M., ... Innocenti, M. L. (2017b). Guidance on the assessment of the safety of feed additives for the consumer. *EFSA Journal*, *15*(10), 5022. https://doi.org/10.2903/j.efsa.2017.5022
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. L., Bories, G., Chesson, A., Cocconcelli, P. S., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., Lopez-Alonso, M., Lopez Puente, S., Mantovani, A., Mayo, B., Ramos, F., Saarela, M., ... Galobart, J. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. *EFSA Journal*, 16(3), 5206. https://doi.org/10.2903/j.efsa.2018.5206
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Bampidis, V., Bastos, M. L., Christensen, H., Dusemund, B., Kouba, M., Kos Durjava, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Brock, T., Knecht, J., ... Azimonti, G. (2019a). Guidance on the assessment of the safety of feed additives for the environment. *EFSA Journal*, 17(4), 5648. https://doi.org/10.2903/j.efsa.2019.5648
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Bampidis, V., Azimonti, G., Bastos, M. L., Christensen, H., Dusemund, B., Kouba, M., Kos Durjava, M., Lopez-Alonso, M., Lopez Puente, S., Marcon, F., Mayo, B., Pechova, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Bories, G., ... Gropp, J. (2019b). Scientific opinion on the safety and efficacy of astaxanthin-dimethyldisuccinate (Carophyll\* stay-pink 10%-CWS) for salmonids, crustaceans and other fish. *EFSA Journal*, *17*(12), 5920. https://doi.org/10.2903/j.efsa.2019.5920
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Bampidis, V., Azimonti, G., Bastos, M. L., Christensen, H., Dusemund, B., Fašmon Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Anguita, M., ... Innocenti, M. L. (2021). Guidance on the renewal of the authorisation of feed additives. *EFSA Journal*, *19*(1), 6340. https://doi.org/10.2903/j.efsa.2021.6340
- EFSA Scientific Committee, Hardy, A., Benford, D., Halldorsson, T., Jeger, M., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., Ockleford, C., Ricci, A., Rychen, G., Silano, V., Solecki, R., Turck, D., Younes, M., Aquilina, G., Crebelli, R., Gurtler, R., ... Schlatter, J. (2017). Scientific opinion on the clarification of some aspects related to genotoxicity assessment. *EFSA Journal*, *15*(12), 5113. https://doi.org/10.2903/j.efsa.2017.5113
- European Commission. (2000). Reports of the scientific Committee for Food (43rd series, ISBN 92–828–5887-1). Opinion on canthaxanthin (expressed on 13 June 1997). pp. 28–33. https://ec.europa.eu/food/fs/sc/scf/reports/scf\_reports\_43.pdf
- Hatlen, B., Oaland, Ø., Tvenning, L., Breck, O., Jakobsen, J. V., & Skaret, J. (2012). Growth performance, feed utilization and product quality in slaughter size Atlantic salmon (Salmo salar L.) fed a diet with porcine blood meal, poultry oil and salmon oil. *Aquaculture Nutrition*, 19(4), 573–584.
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). (1995). Forty-fourth report of the joint FAO/WHO expert committee on food additives. Evaluation of certain food additives and contaminants. World Health Organization. Technical Report Series, No 859. https://whqlibdoc.who.int/ trs/WHO\_TRS\_859.pdf
- Mapelli-Brahm, P., Gómez-Villegas, P., Gonda, M. L., León-Vaz, A., León, R., Mildenberger, J., Rebours, C., Saravia, V., Vero, S., Vila, E., & Meléndez-Martínez, A. J. (2023). Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. *Marine Drugs*, 21(6), 340.
- Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. *Toxicological Sciences*, 93(2), 223–241.

**How to cite this article:** EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Bampidis, V., Azimonti, G., Bastos, M. L., Christensen, H., Durjava, M., Dusemund, B., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Villa, R. E., Woutersen, R., Bories, G., Brantom, P., ... Vettori, M. V. (2024). Assessment of the feed additive consisting of red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 for salmon and trout for the renewal of its authorisation (ENEOS Techno Materials Corporation). *EFSA Journal*, *22*(7), e8905. <u>https://doi.org/10.2903/j.efsa.2024.8905</u>

## APPENDIX A

#### Detailed results on chronic exposure calculation

**TABLE A.1** Chronic dietary exposure per population class, country and survey of consumers (mg/kg bw per day) to carotenoid residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 calculated based on residue data in trout.

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| Infants          | Bulgaria         | 523                | 0.000000000      | 95th            |
| Infants          | Germany          | 142                | 0.0029559317     | 95th            |
| Infants          | Denmark          | 799                | 0.0077157853     | 95th            |
| Infants          | Finland          | 427                | 0.0036363622     | 95th            |
| Infants          | Italy            | 9                  | 0.000000000      | 50th            |
| Infants          | United Kingdom   | 1251               | 0.0101243870     | 95th            |
| Toddlers         | Belgium          | 36                 | 0.0056855556     | 90th            |
| Toddlers         | Bulgaria         | 428                | 0.0145921048     | 95th            |
| Toddlers         | Germany          | 348                | 0.0068889419     | 95th            |
| Toddlers         | Denmark          | 917                | 0.0068965060     | 95th            |
| Toddlers         | Spain            | 17                 | 0.0000000000     | 75th            |
| Toddlers         | Finland          | 500                | 0.0129741912     | 95th            |
| Toddlers         | Italy            | 36                 | 0.0272874933     | 90th            |
| Toddlers         | Netherlands      | 322                | 0.0065954276     | 95th            |
| Toddlers         | United Kingdom   | 1314               | 0.0116716291     | 95th            |
| Toddlers         | United Kingdom   | 185                | 0.0113715804     | 95th            |
| Other children   | Austria          | 128                | 0.0117113962     | 95th            |
| Other children   | Belgium          | 625                | 0.0111474667     | 95th            |
| Other children   | Bulgaria         | 433                | 0.0154518368     | 95th            |
| Other children   | Germany          | 293                | 0.0061458337     | 95th            |
| Other children   | Germany          | 835                | 0.0070677736     | 95th            |
| Other children   | Denmark          | 298                | 0.0072481150     | 95th            |
| Other children   | Spain            | 399                | 0.0189301929     | 95th            |
| Other children   | Spain            | 156                | 0.0186426809     | 95th            |
| Other children   | Finland          | 750                | 0.0110503166     | 95th            |
| Other children   | France           | 482                | 0.0090069371     | 95th            |
| Other children   | Greece           | 838                | 0.0123067824     | 95th            |
| Other children   | Italy            | 193                | 0.0161838740     | 95th            |
| Other children   | Latvia           | 187                | 0.0056355860     | 95th            |
| Other children   | Netherlands      | 957                | 0.0069203857     | 95th            |
| Other children   | Netherlands      | 447                | 0.0051069872     | 95th            |
| Other children   | Sweden           | 1473               | 0.0092019583     | 95th            |
| Other children   | Czechia          | 389                | 0.0142800000     | 95th            |
| Other children   | United Kingdom   | 651                | 0.0098818535     | 95th            |
| Adolescents      | Austria          | 237                | 0.0070973372     | 95th            |
| Adolescents      | Belgium          | 576                | 0.0055768640     | 95th            |
| Adolescents      | Cyprus           | 303                | 0.0058013599     | 95th            |
| Adolescents      | Germany          | 393                | 0.0062010913     | 95th            |
| Adolescents      | Germany          | 1011               | 0.0036293080     | 95th            |
| Adolescents      | Denmark          | 377                | 0.0032538857     | 95th            |
| Adolescents      | Spain            | 651                | 0.0123959402     | 95th            |
| Adolescents      | •                | 209                |                  | 95th            |
| Adolescents      | Spain            |                    | 0.0134188661     | 95th<br>95th    |
|                  | Spain            | 86                 | 0.0078876794     |                 |
| Adolescents      | Finland          | 306                | 0.0057278142     | 95th            |
| Adolescents      | France           | 973                | 0.0052963799     | 95th            |

#### PARACOCCUS CAROTINIFACIENS NITE SD 00017 (PANAFERD®-AX) FOR SALMON AND TROUT

#### TABLE A.1 (Continued)

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| Adolescents      | Latvia           | 453                | 0.0053702564     | 95th            |
| Adolescents      | Netherlands      | 1142               | 0.0039414618     | 95th            |
| Adolescents      | Sweden           | 1018               | 0.0061347714     | 95th            |
| Adolescents      | Czechia          | 298                | 0.0102450000     | 95th            |
| Adolescents      | United Kingdom   | 666                | 0.0048347955     | 95th            |
| Adults           | Austria          | 308                | 0.0066763944     | 95th            |
| Adults           | Belgium          | 1292               | 0.0064297215     | 95th            |
| Adults           | Germany          | 10,419             | 0.0060720513     | 95th            |
| Adults           | Denmark          | 1739               | 0.0031674570     | 95th            |
| Adults           | Spain            | 981                | 0.0112070886     | 95th            |
| Adults           | Spain            | 410                | 0.0109408802     | 95th            |
| Adults           | Finland          | 1295               | 0.0082308617     | 95th            |
| Adults           | France           | 2276               | 0.0049364499     | 95th            |
| Adults           | Hungary          | 1074               | 0.0042881410     | 95th            |
| Adults           | Ireland          | 1274               | 0.0053214015     | 95th            |
| Adults           | Italy            | 2313               | 0.0073546215     | 95th            |
| Adults           | Latvia           | 1271               | 0.0067462935     | 95th            |
| Adults           | Netherlands      | 2055               | 0.0052789365     | 95th            |
| Adults           | Romania          | 1254               | 0.0051694167     | 95th            |
| Adults           | Sweden           | 1430               | 0.0085898584     | 95th            |
| Adults           | Czechia          | 1666               | 0.0068417109     | 95th            |
| Adults           | United Kingdom   | 1265               | 0.0054537924     | 95th            |
| Elderly          | Austria          | 67                 | 0.0065826934     | 95th            |
| Elderly          | Belgium          | 511                | 0.0067216905     | 95th            |
| Elderly          | Germany          | 2006               | 0.0069406535     | 95th            |
| Elderly          | Denmark          | 274                | 0.0035665458     | 95th            |
| Elderly          | Finland          | 413                | 0.0086504675     | 95th            |
| Elderly          | France           | 264                | 0.0053049130     | 95th            |
| Elderly          | Hungary          | 206                | 0.0027647849     | 95th            |
| Elderly          | Ireland          | 149                | 0.0064539234     | 95th            |
| Elderly          | Italy            | 289                | 0.0078837387     | 95th            |
| Elderly          | Netherlands      | 173                | 0.0076905019     | 95th            |
| Elderly          | Netherlands      | 289                | 0.0067622862     | 95th            |
| Elderly          | Romania          | 83                 | 0.0063917123     | 95th            |
| Elderly          | Sweden           | 295                | 0.0104221110     | 95th            |
| Elderly          | United Kingdom   | 166                | 0.0060098262     | 95th            |
| Very elderly     | Austria          | 25                 | 0.0000000000     | 75th            |
| Very elderly     | Belgium          | 704                | 0.0071588823     | 95th            |
| Very elderly     | Germany          | 490                | 0.0070466667     | 95th            |
| Very elderly     | Denmark          | 12                 | 0.0028655477     | 75th            |
| Very elderly     | France           | 84                 | 0.0053826988     | 95th            |
| Very elderly     | Hungary          | 80                 | 0.0025079570     | 95th            |
| Very elderly     | Ireland          | 77                 | 0.0055575139     | 95th            |
| Very elderly     | Italy            | 228                | 0.0057559903     | 95th            |
| Very elderly     | Netherlands      | 450                | 0.0067874889     | 95th            |
| Very elderly     | Romania          | 45                 | 0.0039666667     | 90th            |
| Very elderly     | Sweden           | 72                 | 0.0079179395     | 95th            |
| Very elderly     | United Kingdom   | 139                | 0.0063528194     | 95th            |

<sup>a</sup>Maximum of the highest reliable percentile values across European dietary surveys.

**TABLE A.2** Chronic dietary exposure per population class, country and survey of consumers (mg/kg bw per day) to canthaxanthin + adonirubin residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 calculated based on existing MRL in trout (8 mg/kg muscle).

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| nfants           | Bulgaria         | 523                | 0.0000000000     | 95th            |
| nfants           | Germany          | 142                | 0.0049679524     | 95th            |
| nfants           | Denmark          | 799                | 0.0129677064     | 95th            |
| nfants           | Finland          | 427                | 0.0061115331     | 95th            |
| nfants           | Italy            | 9                  | 0.0000000000     | 50th            |
| nfants           | United Kingdom   | 1251               | 0.0170157764     | 95th            |
| Foddlers         | Belgium          | 36                 | 0.0095555556     | 90th            |
| Foddlers         | Bulgaria         | 428                | 0.0245245459     | 95th            |
| <b>Foddlers</b>  | Germany          | 348                | 0.0115780536     | 95th            |
| <b>Foddlers</b>  | Denmark          | 917                | 0.0115907664     | 95th            |
| Foddlers         | Spain            | 17                 | 0.000000000      | 75th            |
| Foddlers         | Finland          | 500                | 0.0218053634     | 95th            |
| <b>Foddlers</b>  | Italy            | 36                 | 0.0458613333     | 90th            |
| Foddlers         | Netherlands      | 322                | 0.0110847523     | 95th            |
| Foddlers         | United Kingdom   | 1314               | 0.0196161833     | 95th            |
| Foddlers         | United Kingdom   | 185                | 0.0191118998     | 95th            |
| Other children   | Austria          | 128                | 0.0196830189     | 95th            |
| Other children   | Belgium          | 625                | 0.0187352381     | 95th            |
| Other children   | Bulgaria         | 433                | 0.0259694737     | 95th            |
| Other children   | Germany          | 293                | 0.0103291323     | 95th            |
| Other children   | Germany          | 835                | 0.0118786111     | 95th            |
| Other children   | Denmark          | 298                | 0.0121817059     | 95th            |
| Other children   | Spain            | 399                | 0.0318154502     | 95th            |
| Other children   | Spain            | 156                | 0.0313322368     | 95th            |
| Other children   | Finland          | 750                | 0.0185719606     | 95th            |
| Other children   | France           | 482                | 0.0151377094     | 95th            |
| Other children   | Greece           | 838                | 0.0206836679     | 95th            |
| Other children   | Italy            | 193                | 0.0271997882     | 95th            |
| Other children   | Latvia           | 187                | 0.0094715732     | 95th            |
| Other children   | Netherlands      | 957                | 0.0116309003     | 95th            |
| Other children   | Netherlands      | 447                | 0.0085831718     | 95th            |
| Other children   | Sweden           | 1473               | 0.0154654762     | 95th            |
| Other children   | Czechia          | 389                | 0.0240000000     | 95th            |
| Other children   | United Kingdom   | 651                | 0.0166081571     | 95th            |
| Adolescents      | Austria          | 237                | 0.0119282978     | 95th            |
| Adolescents      | Belgium          | 576                | 0.0093728807     | 95th            |
| Adolescents      | Cyprus           | 303                | 0.0097501848     | 95th            |
| Adolescents      | Germany          | 393                | 0.0104220022     | 95th            |
| Adolescents      | Germany          | 1011               | 0.0060996773     | 95th            |
| Adolescents      | Denmark          | 377                | 0.0054687155     | 95th            |
| Adolescents      | Spain            | 651                | 0.0208335129     | 95th            |
| Adolescents      | Spain            | 209                | 0.0225527161     | 95th            |
| Adolescents      | Spain            | 86                 | 0.0132566040     | 95th            |
| Adolescents      | Finland          | 306                | 0.0096265785     | 95th            |
| Adolescents      | France           | 973                | 0.0089014788     | 95th            |
| Adolescents      | Italy            | 247                | 0.0144841551     | 95th            |
|                  |                  |                    |                  |                 |
| Adolescents      | Latvia           | 453                | 0.0090256410     | 95th            |

#### TABLE A.2 (Continued)

| Population class        | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|-------------------------|------------------|--------------------|------------------|-----------------|
| Adolescents             | Sweden           | 1018               | 0.0103105402     | 95th            |
| Adolescents             | Czechia          | 298                | 0.0172184874     | 95th            |
| Adolescents             | United Kingdom   | 666                | 0.0081257067     | 95th            |
| Adults                  | Austria          | 308                | 0.0112208310     | 95th            |
| Adults                  | Belgium          | 1292               | 0.0108062547     | 95th            |
| Adults                  | Germany          | 10,419             | 0.0102051282     | 95th            |
| Adults                  | Denmark          | 1739               | 0.0053234571     | 95th            |
| Adults                  | Spain            | 981                | 0.0188354430     | 95th            |
| Adults                  | Spain            | 410                | 0.0183880339     | 95th            |
| Adults                  | Finland          | 1295               | 0.0138333811     | 95th            |
| Adults                  | France           | 2276               | 0.0082965544     | 95th            |
| Adults                  | Hungary          | 1074               | 0.0072069597     | 95th            |
| Adults                  | Ireland          | 1274               | 0.0089435319     | 95th            |
| Adults                  | Italy            | 2313               | 0.0123607083     | 95th            |
| Adults                  | Latvia           | 1271               | 0.0113383085     | 95th            |
| Adults                  | Netherlands      | 2055               | 0.0088721622     | 95th            |
| Adults                  | Romania          | 1254               | 0.0086880952     | 95th            |
| Adults                  | Sweden           | 1430               | 0.0144367368     | 95th            |
| Adults                  | Czechia          | 1666               | 0.0114986737     | 95th            |
| Adults                  | United Kingdom   | 1265               | 0.0091660376     | 95th            |
| Elderly                 | Austria          | 67                 | 0.0110633502     | 95th            |
| Elderly                 | Belgium          | 511                | 0.0112969589     | 95th            |
| Elderly                 | Germany          | 2006               | 0.0116649639     | 95th            |
| Elderly                 | Denmark          | 274                | 0.0059941947     | 95th            |
| Elderly                 | Finland          | 413                | 0.0145386008     | 95th            |
| Elderly                 | France           | 264                | 0.0089158201     | 95th            |
| Elderly                 | Hungary          | 206                | 0.0046466974     | 95th            |
| Elderly                 | Ireland          | 149                | 0.0108469302     | 95th            |
| Elderly                 | Italy            | 289                | 0.0132499810     | 95th            |
| Elderly                 | Netherlands      | 173                | 0.0129252132     | 95th            |
| Elderly                 | Netherlands      | 289                | 0.0113651869     | 95th            |
| Elderly                 | Romania          | 83                 | 0.0107423736     | 95th            |
| Elderly                 | Sweden           | 295                | 0.0175161529     | 95th            |
| •                       | United Kingdom   |                    | 0.0101005482     | 95th            |
| Elderly<br>Very elderly | Austria          | 166<br>25          | 0.0000000000     | 75th            |
|                         |                  |                    |                  |                 |
| Very elderly            | Belgium          | 704                | 0.0120317349     | 95th            |
| Very elderly            | Germany          | 490                | 0.0118431373     | 95th            |
| Very elderly            | Denmark          | 12                 | 0.0048160466     | 75th            |
| Very elderly            | France           | 84                 | 0.0090465526     | 95th            |
| Very elderly            | Hungary          | 80                 | 0.0042150538     | 95th            |
| Very elderly            | Ireland          | 77                 | 0.0093403595     | 95th            |
| Very elderly            | Italy            | 228                | 0.0096739333     | 95th            |
| Very elderly            | Netherlands      | 450                | 0.0114075444     | 95th            |
| Very elderly            | Romania          | 45                 | 0.00666666667    | 90th            |
| Very elderly            | Sweden           | 72                 | 0.0133074614     | 95th            |

<sup>a</sup>Maximum of the highest reliable percentile values across European dietary surveys.

**TABLE A.3** Chronic dietary exposure per population class, country and survey of consumers (mg/kg bw per day) to canthaxanthin + adonirubin residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 calculated based on existing MRL in salmon (10 mg/kg muscle).

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | <b>HRP</b> description |
|------------------|------------------|--------------------|------------------|------------------------|
| Infants          | Bulgaria         | 523                | 0.000000000      | 95th                   |
| Infants          | Germany          | 142                | 0.0062099405     | 95th                   |
| Infants          | Denmark          | 799                | 0.0162096330     | 95th                   |
| Infants          | Finland          | 427                | 0.0076394164     | 95th                   |
| Infants          | Italy            | 9                  | 0.0000000000     | 50th                   |
| Infants          | United Kingdom   | 1251               | 0.0212697205     | 95th                   |
| Toddlers         | Belgium          | 36                 | 0.0119444444     | 90th                   |
| Toddlers         | Bulgaria         | 428                | 0.0306556824     | 95th                   |
| Toddlers         | Germany          | 348                | 0.0144725670     | 95th                   |
| Toddlers         | Denmark          | 917                | 0.0144884580     | 95th                   |
| Toddlers         | Spain            | 17                 | 0.000000000      | 75th                   |
| Toddlers         | Finland          | 500                | 0.0272567042     | 95th                   |
| <b>Foddlers</b>  | Italy            | 36                 | 0.0573266667     | 90th                   |
| Foddlers         | Netherlands      | 322                | 0.0138559404     | 95th                   |
| Foddlers         | United Kingdom   | 1314               | 0.0245202292     | 95th                   |
| Toddlers         | United Kingdom   | 185                | 0.0238898747     | 95th                   |
| Other children   | Austria          | 128                | 0.0246037736     | 95th                   |
| Other children   | Belgium          | 625                | 0.0234190476     | 95th                   |
| Other children   | Bulgaria         | 433                | 0.0324618421     | 95th                   |
| Other children   | Germany          | 293                | 0.0129114154     | 95th                   |
| Other children   | Germany          | 835                | 0.0148482639     | 95th                   |
| Other children   | Denmark          | 298                | 0.0152271324     | 95th                   |
| Other children   | Spain            | 399                | 0.0397693127     | 95th                   |
| Other children   | Spain            | 156                | 0.0391652961     | 95th                   |
| Other children   | Finland          | 750                | 0.0232149508     | 95th                   |
| Other children   | France           | 482                | 0.0189221368     | 95th                   |
| Other children   | Greece           | 838                | 0.0258545849     | 95th                   |
| Other children   | Italy            | 193                | 0.0339997353     | 95th                   |
| Other children   | Latvia           | 187                | 0.0118394665     | 95th                   |
| Other children   | Netherlands      | 957                | 0.0145386254     | 95th                   |
| Other children   | Netherlands      | 447                | 0.0107289648     | 95th                   |
| Other children   | Sweden           | 1473               | 0.0193318452     | 95th                   |
| Other children   | Czechia          | 389                | 0.030000000      | 95th                   |
| Other children   | United Kingdom   | 651                | 0.0207601964     | 95th                   |
| Adolescents      | Austria          | 237                | 0.0149103722     | 95th                   |
| Adolescents      | Belgium          | 576                | 0.0117161009     | 95th                   |
| Adolescents      | Cyprus           | 303                | 0.0121877310     | 95th                   |
| Adolescents      | Germany          | 393                | 0.0130275028     | 95th                   |
| Adolescents      | Germany          | 1011               | 0.0076245967     | 95th                   |
| Adolescents      | Denmark          | 377                | 0.0068358944     | 95th                   |
| Adolescents      | Spain            | 651                | 0.0260418911     | 95th                   |
| Adolescents      | Spain            | 209                | 0.0281908951     | 95th                   |
| Adolescents      | Spain            | 86                 | 0.0165707550     | 95th                   |
| Adolescents      | Finland          | 306                | 0.0120332231     | 95th                   |
| Adolescents      | France           | 973                | 0.0111268485     | 95th                   |
| Adolescents      | Italy            | 247                | 0.0181051939     | 95th                   |
| Adolescents      | Latvia           | 453                | 0.0112820513     | 95th                   |
| Adolescents      | Netherlands      | 1142               | 0.0082803819     | 95th                   |
| adicacenta       | rechendings      | 1172               | 0.0002003019     | <b>9</b> 500           |

#### TABLE A.3 (Continued)

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| Adolescents      | Sweden           | 1018               | 0.0128881752     | 95th            |
| Adolescents      | Czechia          | 298                | 0.0215231092     | 95th            |
| Adolescents      | United Kingdom   | 666                | 0.0101571333     | 95th            |
| Adults           | Austria          | 308                | 0.0140260387     | 95th            |
| Adults           | Belgium          | 1292               | 0.0135078184     | 95th            |
| Adults           | Germany          | 10,419             | 0.0127564103     | 95th            |
| Adults           | Denmark          | 1739               | 0.0066543213     | 95th            |
| Adults           | Spain            | 981                | 0.0235443038     | 95th            |
| Adults           | Spain            | 410                | 0.0229850424     | 95th            |
| Adults           | Finland          | 1295               | 0.0172917263     | 95th            |
| Adults           | France           | 2276               | 0.0103706931     | 95th            |
| Adults           | Hungary          | 1074               | 0.0090086996     | 95th            |
| Adults           | Ireland          | 1274               | 0.0111794148     | 95th            |
| Adults           | Italy            | 2313               | 0.0154508854     | 95th            |
| Adults           | Latvia           | 1271               | 0.0141728856     | 95th            |
| Adults           | Netherlands      | 2055               | 0.0110902028     | 95th            |
| Adults           | Romania          | 1254               | 0.0108601190     | 95th            |
| Adults           | Sweden           | 1430               | 0.0180459209     | 95th            |
| Adults           | Czechia          | 1666               | 0.0143733422     | 95th            |
| Adults           | United Kingdom   | 1265               | 0.0114575471     | 95th            |
| Elderly          | Austria          | 67                 | 0.0138291878     | 95th            |
| Elderly          | Belgium          | 511                | 0.0141211986     | 95th            |
| Elderly          | Germany          | 2006               | 0.0145812049     | 95th            |
| Elderly          | Denmark          | 274                | 0.0074927433     | 95th            |
| Elderly          | Finland          | 413                | 0.0181732510     | 95th            |
| Elderly          | France           | 264                | 0.0111447751     | 95th            |
| Elderly          | Hungary          | 206                | 0.0058083717     | 95th            |
| Elderly          | Ireland          | 149                | 0.0135586627     | 95th            |
| Elderly          | Italy            | 289                | 0.0165624762     | 95th            |
| Elderly          | Netherlands      | 173                | 0.0161565165     | 95th            |
| Elderly          | Netherlands      | 289                | 0.0142064836     | 95th            |
| Elderly          | Romania          | 83                 | 0.0134279670     | 95th            |
| Elderly          | Sweden           | 295                | 0.0218951911     | 95th            |
| Elderly          | United Kingdom   | 166                | 0.0126256852     | 95th            |
| Very elderly     | Austria          | 25                 | 0.0000000000     | 75th            |
| Very elderly     | Belgium          | 704                | 0.0150396687     | 95th            |
| Very elderly     | Germany          | 490                | 0.0148039216     | 95th            |
| Very elderly     | Denmark          | 12                 | 0.0060200582     | 75th            |
| Very elderly     | France           | 84                 | 0.0113081907     | 95th            |
| Very elderly     | Hungary          | 80                 | 0.0052688172     | 95th            |
| Very elderly     | Ireland          | 77                 | 0.0116754494     | 95th            |
| Very elderly     | Italy            | 228                | 0.0120924167     | 95th            |
| Very elderly     | Netherlands      | 450                | 0.0142594305     | 95th            |
| Very elderly     | Romania          | 45                 | 0.0083333333     | 90th            |
| Very elderly     | Sweden           | 72                 | 0.0166343267     | 95th            |
| Very elderly     | United Kingdom   | 139                | 0.0133462593     | 95th            |

<sup>a</sup>Maximum of the highest reliable percentile values across European dietary surveys.

**TABLE A.4** Chronic dietary exposure per population class, country and survey of consumers (mg/kg bw per day) to canthaxanthin + adonirubin residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 calculated based on proposed MRL in trout/salmon (5 mg/kg muscle).

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| Infants          | Bulgaria         | 523                | 0.000000000      | 95th            |
| Infants          | Germany          | 142                | 0.0031049702     | 95th            |
| Infants          | Denmark          | 799                | 0.0081048165     | 95th            |
| Infants          | Finland          | 427                | 0.0038197082     | 95th            |
| Infants          | Italy            | 9                  | 0.000000000      | 50th            |
| Infants          | United Kingdom   | 1251               | 0.0106348602     | 95th            |
| Toddlers         | Belgium          | 36                 | 0.0059722222     | 90th            |
| Toddlers         | Bulgaria         | 428                | 0.0153278412     | 95th            |
| Toddlers         | Germany          | 348                | 0.0072362835     | 95th            |
| Toddlers         | Denmark          | 917                | 0.0072442290     | 95th            |
| Toddlers         | Spain            | 17                 | 0.000000000      | 75th            |
| Toddlers         | Finland          | 500                | 0.0136283521     | 95th            |
| Toddlers         | Italy            | 36                 | 0.0286633333     | 90th            |
| Toddlers         | Netherlands      | 322                | 0.0069279702     | 95th            |
| Toddlers         | United Kingdom   | 1314               | 0.0122601146     | 95th            |
| Toddlers         | United Kingdom   | 185                | 0.0119449374     | 95th            |
| Other children   | Austria          | 128                | 0.0123018868     | 95th            |
| Other children   | Belgium          | 625                | 0.0117095238     | 95th            |
| Other children   | Bulgaria         | 433                | 0.0162309211     | 95th            |
| Other children   | Germany          | 293                | 0.0064557077     | 95th            |
| Other children   | Germany          | 835                | 0.0074241320     | 95th            |
| Other children   | Denmark          | 298                | 0.0076135662     | 95th            |
| Other children   | Spain            | 399                | 0.0198846564     | 95th            |
| Other children   | Spain            | 156                | 0.0195826480     | 95th            |
| Other children   | Finland          | 750                | 0.0116074754     | 95th            |
| Other children   | France           | 482                | 0.0094610684     | 95th            |
| Other children   | Greece           | 838                | 0.0129272925     | 95th            |
| Other children   | Italy            | 193                | 0.0169998676     | 95th            |
| Other children   | Latvia           | 187                | 0.0059197332     | 95th            |
| Other children   | Netherlands      | 957                | 0.0072693127     | 95th            |
| Other children   | Netherlands      | 447                | 0.0053644824     | 95th            |
| Other children   | Sweden           | 1473               | 0.0096659226     | 95th            |
| Other children   | Czechia          | 389                | 0.0150000000     | 95th            |
| Other children   | United Kingdom   | 651                | 0.0103800982     | 95th            |
| Adolescents      | Austria          | 237                | 0.0074551861     | 95th            |
| Adolescents      | Belgium          | 576                | 0.0058580504     | 95th            |
| Adolescents      | Cyprus           | 303                | 0.0060938655     | 95th            |
| Adolescents      | Germany          | 393                | 0.0065137514     | 95th            |
| Adolescents      | Germany          | 1011               | 0.0038122983     | 95th            |
| Adolescents      | Denmark          | 377                | 0.0034179472     | 95th            |
| Adolescents      | Spain            | 651                | 0.0130209456     | 95th            |
| Adolescents      | Spain            | 209                | 0.0140954476     | 95th            |
| Adolescents      | Spain            | 86                 | 0.0082853775     | 95th            |
| Adolescents      | Finland          | 306                | 0.0060166116     | 95th            |
| Adolescents      | France           | 973                | 0.0055634243     | 95th            |
| Adolescents      | Italy            | 247                | 0.0090525970     | 95th            |
| Adolescents      | Latvia           | 453                | 0.0056410256     | 95th            |
|                  |                  |                    |                  |                 |

#### TABLE A.4 (Continued)

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| Adolescents      | Sweden           | 1018               | 0.0064440876     | 95th            |
| Adolescents      | Czechia          | 298                | 0.0107615546     | 95th            |
| Adolescents      | United Kingdom   | 666                | 0.0050785667     | 95th            |
| Adults           | Austria          | 308                | 0.0070130193     | 95th            |
| Adults           | Belgium          | 1292               | 0.0067539092     | 95th            |
| Adults           | Germany          | 10,419             | 0.0063782051     | 95th            |
| Adults           | Denmark          | 1739               | 0.0033271607     | 95th            |
| Adults           | Spain            | 981                | 0.0117721519     | 95th            |
| Adults           | Spain            | 410                | 0.0114925212     | 95th            |
| Adults           | Finland          | 1295               | 0.0086458632     | 95th            |
| Adults           | France           | 2276               | 0.0051853465     | 95th            |
| Adults           | Hungary          | 1074               | 0.0045043498     | 95th            |
| Adults           | Ireland          | 1274               | 0.0055897074     | 95th            |
| Adults           | Italy            | 2313               | 0.0077254427     | 95th            |
| Adults           | Latvia           | 1271               | 0.0070864428     | 95th            |
| Adults           | Netherlands      | 2055               | 0.0055451014     | 95th            |
| Adults           | Romania          | 1254               | 0.0054300595     | 95th            |
| Adults           | Sweden           | 1430               | 0.0090229605     | 95th            |
| Adults           | Czechia          | 1666               | 0.0071866711     | 95th            |
| Adults           | United Kingdom   | 1265               | 0.0057287735     | 95th            |
| Elderly          | Austria          | 67                 | 0.0069145939     | 95th            |
| Elderly          | Belgium          | 511                | 0.0070605993     | 95th            |
| Elderly          | Germany          | 2006               | 0.0072906025     | 95th            |
| Elderly          | Denmark          | 274                | 0.0037463717     | 95th            |
| Elderly          | Finland          | 413                | 0.0090866255     | 95th            |
| Elderly          | Finance          | 264                | 0.0055723876     | 95th            |
|                  |                  | 204                |                  | 95th            |
| Elderly          | Hungary          |                    | 0.0029041859     |                 |
| Elderly          | Ireland          | 149                | 0.0067793314     | 95th            |
| Elderly          | Italy            | 289                | 0.0082812381     | 95th            |
| Elderly          | Netherlands      | 173                | 0.0080782583     | 95th            |
| Elderly          | Netherlands      | 289                | 0.0071032418     | 95th            |
| Elderly          | Romania          | 83                 | 0.0067139835     | 95th            |
| Elderly          | Sweden           | 295                | 0.0109475956     | 95th            |
| Elderly          | United Kingdom   | 166                | 0.0063128426     | 95th            |
| Very elderly     | Austria          | 25                 | 0.0000000000     | 75th            |
| Very elderly     | Belgium          | 704                | 0.0075198343     | 95th            |
| Very elderly     | Germany          | 490                | 0.0074019608     | 95th            |
| Very elderly     | Denmark          | 12                 | 0.0030100291     | 75th            |
| Very elderly     | France           | 84                 | 0.0056540954     | 95th            |
| Very elderly     | Hungary          | 80                 | 0.0026344086     | 95th            |
| Very elderly     | Ireland          | 77                 | 0.0058377247     | 95th            |
| Very elderly     | Italy            | 228                | 0.0060462083     | 95th            |
| Very elderly     | Netherlands      | 450                | 0.0071297152     | 95th            |
| Very elderly     | Romania          | 45                 | 0.0041666667     | 90th            |
| Very elderly     | Sweden           | 72                 | 0.0083171634     | 95th            |
| Very elderly     | United Kingdom   | 139                | 0.0066731296     | 95th            |

<sup>a</sup>Maximum of the highest reliable percentile values across European dietary surveys.

**TABLE A.5** Chronic dietary exposure per population class, country and survey of consumers (mg/kg bw per day) to canthaxanthin + adonirubin residues from red carotenoid-rich *Paracoccus carotinifaciens* NITE SD 00017 calculated based on proposed MRL in trout/salmon (5 mg/kg muscle) and existing MRLs in poultry (2.5 mg/kg skin/fat, 15 mg/kg liver, 8.1 mg/kg whole egg).

| Infants                    | Bulgaria           | 523  | 0.0295425218 | 95th         |
|----------------------------|--------------------|------|--------------|--------------|
| Infants                    | Germany            | 142  | 0.0071013211 | 95th         |
| Infants                    | Denmark            | 799  | 0.0126831412 | 95th         |
| Infants                    | Finland            | 427  | 0.0046619796 | 95th         |
| Infants                    | Italy              | 9    | 0.0000000000 | 50th         |
| Infants                    | United Kingdom     | 1251 | 0.0221930993 | 95th         |
| Toddlers                   | Belgium            | 36   | 0.0183966594 | 90th         |
| Toddlers                   | Bulgaria           | 428  | 0.0385329845 | 95th         |
| Toddlers                   | Germany            | 348  | 0.0226049313 | 95th         |
| Toddlers                   | Denmark            | 917  | 0.0180122437 | 95th         |
| Toddlers                   | Spain              | 17   | 0.0329787844 | 75th         |
| Toddlers                   | Finland            | 500  | 0.0171376984 | 95th         |
| Toddlers                   | Italy              | 36   | 0.0376773699 | 90th         |
| Toddlers                   | Netherlands        | 322  | 0.0247201657 | 95th         |
| Toddlers                   | United Kingdom     | 1314 | 0.0307526485 | 95th         |
| Toddlers                   | United Kingdom     | 185  | 0.0274996860 | 95th         |
| Other children             | Austria            | 128  | 0.0231133609 | 95th         |
| Other children             | Belgium            | 625  | 0.0215155028 | 95th         |
| Other children             | Bulgaria           | 433  | 0.0380361724 | 95th         |
| Other children             | Germany            | 293  | 0.0224972095 | 95th         |
| Other children             | Germany            | 835  | 0.0232480974 | 95th         |
| Other children             | Denmark            | 298  | 0.0182667992 | 95th         |
| Other children             | Spain              | 399  | 0.0346943531 | 95th         |
| Other children             | Spain              | 156  | 0.0425867801 | 95th         |
| Other children             | Finland            | 750  | 0.0204681918 | 95th         |
| Other children             | France             | 482  | 0.0268136075 | 95th         |
| Other children             | Greece             | 838  | 0.0326378847 | 95th         |
| Other children             | Italy              | 193  | 0.0311447529 | 95th         |
| Other children             | Latvia             | 187  | 0.0200220170 | 95th         |
| Other children             | Netherlands        | 957  | 0.0227084231 | 95th         |
| Other children             | Netherlands        | 447  | 0.0197769173 | 95th         |
| Other children             | Sweden             | 1473 | 0.0189405524 | 95th         |
| Other children             | Czechia            | 389  | 0.0267404243 | 95th         |
| Other children             | United Kingdom     | 651  | 0.0212877672 | 95th         |
| Adolescents                | Austria            | 237  | 0.0144073775 | 95th         |
| Adolescents                | Belgium            | 576  | 0.0109846479 | 95th         |
|                            | 5                  |      |              |              |
| Adolescents<br>Adolescents | Cyprus             | 303  | 0.0115588716 | 95th<br>95th |
| Adolescents                | Germany            | 393  | 0.0187298095 | 95th         |
| Adolescents                | Germany<br>Denmark | 1011 |              |              |
|                            |                    | 377  | 0.0085276849 | 95th         |
| Adolescents                | Spain              | 651  | 0.0220150298 | 95th         |
| Adolescents                | Spain              | 209  | 0.0248407149 | 95th         |
| Adolescents                | Spain              | 86   | 0.0146678501 | 95th         |
| Adolescents                | Finland<br>-       | 306  | 0.0090255836 | 95th         |
| Adolescents                | France             | 973  | 0.0140350384 | 95th         |
| Adolescents                | Italy              | 247  | 0.0160495718 | 95th         |
| Adolescents                | Latvia             | 453  | 0.0155985999 | 95th         |

| TABLE A.5 | (Continued) |
|-----------|-------------|
|-----------|-------------|

| Population class | Survey's country | Number of subjects | HRP <sup>a</sup> | HRP description |
|------------------|------------------|--------------------|------------------|-----------------|
| Adolescents      | Sweden           | 1018               | 0.0125638201     | 95th            |
| Adolescents      | Czechia          | 298                | 0.0195888480     | 95th            |
| Adolescents      | United Kingdom   | 666                | 0.0112887366     | 95th            |
| Adults           | Austria          | 308                | 0.0116144563     | 95th            |
| Adults           | Belgium          | 1292               | 0.0107307774     | 95th            |
| Adults           | Germany          | 10,419             | 0.0109307402     | 95th            |
| Adults           | Denmark          | 1739               | 0.0075375787     | 95th            |
| Adults           | Spain            | 981                | 0.0175754124     | 95th            |
| Adults           | Spain            | 410                | 0.0169648178     | 95th            |
| Adults           | Finland          | 1295               | 0.0137165716     | 95th            |
| Adults           | France           | 2276               | 0.0104962006     | 95th            |
| Adults           | Hungary          | 1074               | 0.0125170878     | 95th            |
| Adults           | Ireland          | 1274               | 0.0105116610     | 95th            |
| Adults           | Italy            | 2313               | 0.0126736930     | 95th            |
| Adults           | Latvia           | 1271               | 0.0146564547     | 95th            |
| Adults           | Netherlands      | 2055               | 0.0104692288     | 95th            |
| Adults           | Romania          | 1254               | 0.0151611125     | 95th            |
| Adults           | Sweden           | 1430               | 0.0161737693     | 95th            |
| Adults           | Czechia          | 1666               | 0.0119670902     | 95th            |
| Adults           | United Kingdom   | 1265               | 0.0105546939     | 95th            |
| Elderly          | Austria          | 67                 | 0.0148730274     | 95th            |
| Elderly          | Belgium          | 511                | 0.0104632476     | 95th            |
| Elderly          | Germany          | 2006               | 0.0106927589     | 95th            |
| Elderly          | Denmark          | 274                | 0.0087101570     | 95th            |
| Elderly          | Finland          | 413                | 0.0124664943     | 95th            |
| Elderly          | France           | 264                | 0.0108186600     | 95th            |
| Elderly          | Hungary          | 206                | 0.0098739020     | 95th            |
| Elderly          | Ireland          | 149                | 0.0131396483     | 95th            |
| Elderly          | Italy            | 289                | 0.0122267132     | 95th            |
| Elderly          | Netherlands      | 173                | 0.0104713904     | 95th            |
| Elderly          | Netherlands      | 289                | 0.0115192457     | 95th            |
| Elderly          | Romania          | 83                 | 0.0153391266     | 95th            |
| Elderly          | Sweden           | 295                | 0.0175284436     | 95th            |
| Elderly          | United Kingdom   | 166                | 0.0109637065     | 95th            |
| Very elderly     | Austria          | 25                 | 0.0070351759     | 75th            |
| Very elderly     | Belgium          | 704                | 0.0113161930     | 95th            |
| Very elderly     | Germany          | 490                | 0.0108696817     | 95th            |
| Very elderly     | Denmark          | 12                 | 0.0060964295     | 75th            |
| Very elderly     | France           | 84                 | 0.0104695165     | 95th            |
| Very elderly     | Hungary          | 80                 | 0.0101788342     | 95th            |
| Very elderly     | Ireland          | 77                 | 0.0116206972     | 95th            |
| Very elderly     | Italy            | 228                | 0.0108682818     | 95th            |
| Very elderly     | Netherlands      | 450                | 0.0108584144     | 95th            |
| Very elderly     | Romania          | 45                 | 0.0128392514     | 90th            |
| Very elderly     | Sweden           | 72                 | 0.0186499053     | 95th            |
| Very elderly     | United Kingdom   | 139                | 0.0104998682     | 95th            |

<sup>a</sup>Maximum of the highest reliable percentile values across European dietary surveys.



The EFSA Journal is a publication of the European Food Safety Authority, a European agency funded by the European Union

