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Abstract: The thymus is a central lymphoid organ for T cell development. Thymic epithelial cells (TECs) constitute a major 
component of the thymic stroma, which provides a specialized microenvironment for survival, proliferation, and differentiation 
of immature T cells. In this study, subsets of TECs were examined immunohistochemically to investigate their cytokeratin 
(CK) expression patterns during thymus regeneration following thymic involution induced by cyclophosphamide treatment. 
The results demonstrated that both normal and regenerating mouse thymuses showed a similar CK expression pattern. The 
major medullary TECs (mTEC) subset, which is stellate in appearance, exhibited CK5 and CK14 staining, and the minor 
mTEC subset, which is globular in appearance, exhibited CK8 staining, whereas the vast majority of cortical TECs (cTECs) 
expressed CK8 during thymus regeneration. Remarkably, the levels of CK5 and CK14 expression were enhanced in mTECs, and 
CK8 expression was upregulated in cTECs during mouse thymus regeneration after cyclophosphamide-induced acute thymic 
involution. Of special interest, a relatively high number of CK5+CK8+ TEC progenitors occurred in the thymic cortex during 
thymus regeneration. Taken together, these findings shed more light on the role of CK5, CK8, and CK14 in the physiology 
of TECs during mouse thymus regeneration, and on the characterization of TEC progenitors for restoration of the epithelial 
network and for concomitant regeneration of the adult thymus. 
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environment for T cell development [1]. TECs in the thymic 
cortex are responsible for attraction of T cell precursors, 
commitment to the T cell lineage, expansion of immature 
double negative thymocytes, and positive selection of double 
positive thymocytes [2-4]. The thymic medulla is composed 
of a heterogeneous population of epithelial cells that function 
in negative selection of single positive thymocytes [3-5]. 

The morphological heterogeneity of TECs has been well 
documented at the light and electron microscopic level [6-
8]. It is important to understand the identification of the 
different types of TECs, as each type has distinct properties 
and functions in governing T cell development. TECs are 

Introduction	

The thymus is a central lymphoid organ for development 
of T cells from bone marrow-derived immature T cells. 
Thymic epithelial cells (TECs) constitute a major component 
of the thymic stroma, which provides a specialized micro
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traditionally divided into two major categories; cortical 
TECs (cTECs) and medullary TECs (mTECs), according 
to their location in the thymic lobule. A subset of mTECs, 
particularly in humans, is often concentrically arranged and 
forms Hassall’s corpuscles. Furthermore, human TECs can 
be classified into several types based on their ultrastructural 
characteristics, including thymic subcapsular (subcapsular/
paraseptal/perivascular), cortical or pale, intermediate, dark, 
undifferentiated, large medullary or cystic, and spindle-
shaped medullary epithelial cells, and Hassall’s corpuscles 
[9]. Generally, TECs are broadly classified into four types: 
subcapsular/paraseptal/perivascular, cortical and medullary 
epithelial cells, and Hassall’s corpuscles, based on their 
immunohistochemical features [6, 7, 10, 11]. 

A unique characteristic of TECs among the various cell 
populations of the thymus is the presence of cytokeratin 
(CK) intermediate filaments, which form tonofilaments in 
the cytoplasm. Thus, antibodies against various types of CKs 
have been very useful for identifying TECs in the thymus. In 
humans, CKs comprise a family of at least 30 subtypes [12, 
13]. Each CK subset expressed by an epithelial cell depends 
mainly on the type of epithelium, the stage of development 
and differentiation, and the functional states and pathological 
conditions [14, 15]. Immunohistochemical determination of 
CK polypeptides with highly specific antibodies is very useful 
for classifying and phenotypically characterizing subsets of 
TEC populations. Variations in CK composition in different 
parts of the human thymus have been demonstrated [16, 
17]. Simple epithelium CKs such as CK8, CK18, and CK19 
are present in the cortex, and stellate TECs in the medulla 
are positive for CK19 [18]. Most mTECs express complex 
epithelium CKs such as CK13, CK14, and CK17, in contrast 
to the cortex, where only a few cells are positive for these CKs 
[18]. In mice, antibodies specific to CK5, CK8, and CK14 
have been most commonly used in studies to identify the 
main TEC subtypes [19-22]. 

Thus, in the present study, we characterized the CK5, 
CK8, and CK 14 expression patterns in TECs during 
thymus regeneration following acute involution induced by 
cyclophosphamide in mice.

Materials and Methods

Experimental acute thymic involution and 
regeneration model

Adult male, specific pathogen-free, C57BL/6 mice were 
purchased from Dae Han Bio Link (Seoul, Korea). They 
were housed three to four per cage and maintained under a 
12 hour light/dark cycle at 24oC, in a specific pathogen-free, 
humidity-controlled facility, and were provided with standard 
sterile food and water ad libitum. The mice were allowed to 
acclimate to their environment for 1 week, and were used 
at 8-10-weeks-of-age. Because cyclophosphamide, a DNA 
alkylating agent commonly used in chemotherapy, is a long-
established method for investigating thymic regeneration 
[23-28], the animals were given a single intraperitoneal dose 
of cyclophosphamide (400 mg/kg body weight, Sigma, St. 
Louis, MO, USA) in normal saline and were killed in groups 
of four or more at 3, 7, and 14 days after injection. Mice given 
the same volume of normal saline were used as controls. 
Animal care and all experimental procedures were conducted 
in accordance with the “Guide for Animal Experiments” 
published by the Korean Academy of Medical Sciences. 

Tissue preparation for immunohistochemistry
Mice were anesthetized with a single intraperitoneal 

injection of sodium pentobarbital (5 mg/kg body weight). 
For cryosections, the thymus was removed and rapidly frozen 
in isopentane cooled with liquid nitrogen. Frozen sections 
(5-μm thick) were cut on a Reichert cryostat and placed on 
3-aminopropyltriethoxysilane-coated slides. After being 
dried, the cryosections were fixed in cold acetone for 10 
minutes at −20oC. 

Immunohistochemistry
Immunostaining was performed using the streptavidin-

biotin complex (ABC) method, as described previously [25-
27]. Briefly, the sections were incubated for 20 minutes in a 
solution of phosphate-buffered saline (PBS), containing 0.3% 
H2O2, to eliminate endogenous peroxidases. After washing 
in PBS, the sections were incubated with 2% bovine serum 
albumin (Sigma). Excess solution was shaken off, and the 
sections were incubated for 16-18 hours at 4°C with a rabbit 
anti-CK5 monoclonal antibody (mAb) raised against a 
synthetic peptide mapping to the carboxy terminus of human 
CK8 (EP1601Y, Thermo Scientific, Rockford, IL, USA), 
a rabbit anti-CK8 mAb raised against a synthetic peptide 
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mapping to the carboxy terminus of human CK8 (EP1628Y, 
Thermo Scientific), and a rabbit polyclonal anti-CK14 
antibody raised against a synthetic peptide mapping to the 
carboxy terminus of human CK14 (Thermo Scientific). 

Following incubation with the primary antibody, the 
sections were washed three times with PBS for 5 minutes 
and incubated for 2 hours at room temperature with an 
affinity-purified F(ab´)2 fragment donkey anti-rabbit 
biotinylated antibody (1 : 200, Jackson ImmunoResearch 
Laboratories, West Grove, PA, USA). The sections were 
then rinsed in PBS and incubated for 60 minutes at room 
temperature with an ABC reagent (Vectastain Elite Kit, 
Vector Laboratories, Burlingame, CA, USA), according to 
the manufacturer’s instructions. The sections were developed 
in 0.025% 3,3'-diaminobenzidine and 0.003% H2O2 medium 
under microscopic control at room temperature to visualize 
peroxidase activity. The sections were rinsed in distilled water, 
counterstained with or without Mayer’s hematoxylin, and 
mounted in a xylene-based mounting medium (Entellan, 
Darmstadt, Germany). Controls for the staining procedure 
included the following: (1) omission of the primary antibody 
from the reaction sequence and its replacement with non-
immune rabbit serum or (2) omission of the secondary 
antibody or the ABC solution from the reaction sequence. 
Light microscopic slides were observed and photographed 
using an Olympus BX50 microscope (Olympus, Tokyo, 
Japan). All photomicrographs were taken with an Olympus 
C-3030 digital camera. 

Immunofluorescent staining 
Two-color double immunofluorescent staining was 

performed to identify CK5+CK8+ TECs. After the sections 
were rinsed in PBS and incubated with 2% bovine serum 
albumin (Sigma) for 60 minutes, they were incubated with 
the first primary antibody (anti-CK5) for 16-18 hours at 4oC. 
Following the primary antibody incubation, the sections were 
incubated with an affinity-purified F(ab´)2 fragment donkey 
anti-rabbit rhodamine-conjugated antibody (1 : 100, Jackson 
ImmunoResearch Laboratories). After the sections were 
rinsed in PBS, they were further incubated with the second 
primary antibody, which was a rat anti-CK8 mAb raised 
against mouse cytokeratin Endo-A (Troma-1, Developmental 
Studies Hybridoma Bank from The University of Iowa, Ames, 
IA, USA). Following the second primary antibody incubation, 
the sections were incubated with an affinity-purified F(ab´)2 
fragment donkey anti-rabbit FITC-conjugated antibody (1 : 

80, Jackson ImmunoResearch Laboratories). Thereafter, the 
labeled cells were examined with a Zeiss Axio Imager light 
microscope (Carl Zeiss, Oberkochen, Germany) fitted with a 
filter combination to visualize green and red fluorescing cells. 
Photomicrographs were captured digitally at a 1,300×1,030 
pixel resolution with a Photometrix CoolSnap Fx CCD-
camera (Roper Scientific, Trenton, NJ, USA) on a Zeiss 
Axio Imager microscope equipped with fluorescent epi-
illumination. The digital images were processed using an 
image analysis program software (MetaMorph, Universal 
Imaging, Downingtown, PA, USA). 

Results

The entire thymic epithelial network was stained with anti-
CK5, -CK8, and -CK14 antibodies using an immuno
peroxidase technique. Identical immunofluorescent staining 
of both the cortical and medullary regions was obtained with 
these three antibodies (data not shown). Cells immunolabeled 
for CK5, CK8, and CK14 were observed in the normal and 
regenerating rat thymus and were identifiable as TECs by 
their morphological features, which showed a reticular 
network of cells in the cortex and medulla, and by their 
CK expression (Figs. 1-3). In contrast to the delicate and 
dendritic morphology of cTECs, most mTECs were stellate 
in appearance and closely packed, displaying voluminous 
cytoplasm and short processes (Figs. 1-3). 

CK5 and CK14 were distributed in similar patterns in 
normal and regenerating thymuses with a stronger CK14 
immunostaining intensity than that for CK5 (Figs. 1, 2). In 
normal mouse thymus, CK5 and CK14 immunoreactivity 
was observed in virtually all of the stellate mTECs, whereas 
the cTECs barely expressed CK5 and CK14 in the thymic 
cortex of normal mice (Figs. 1, 2, 4). We previously showed 
that the thymus undergoes time-dependent changes after 
cyclophosphamide treatment, which involve both lymphoid 
and stromal cells [24]. Essentially the same localization 
pattern of CK5 and CK14 immunoreactivity was observed 
in the thymuses of normal and cyclophosphamide-treated 
mice at all times (Figs. 1, 2). Characteristically, however, 
CK5 and CK14 protein expression was strongly upregulated 
in mTECs during thymus regeneration from acute thymic 
involution induced by cyclophosphamide treatment (Figs. 1, 
2). Furthermore, and of particular interest, CK5- and CK14-
positive TECs increased in number and in intensity in the 
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cortex during regeneration from acute thymic involution 
induced by cyclophosphamide treatment (Figs. 1, 2). The 
CK5 and CK14 staining intensity and pattern and the 
number of CK5 and CK14 immunoreactive cTECs returned 
to levels similar to those of the normal mouse thymus 2 
weeks after cyclophosphamide treatment, which coincided 
with the completion of thymic regeneration (Figs. 1, 2). No 

immunoreactivity was seen in control sections after omitting 
the primary antibody, secondary antibody, or the ABC 
reagent from the reaction sequence, or after replacing the 
primary antibody with a normal (nonimmune) rabbit IgG 
(data not shown). 

CK8 immunoreactivity was observed in both cTECs and 
mTECs in normal mouse thymus (Fig. 3). The subcapsular/

Fig. 1. (A-D) Immunohistochemical 
localization of cytokeratin (CK)5 
in frozen sections of mouse thymus 
from control animals (A1-3, n=4), 
a n d  a t  3  ( B 1 -3 ,  n = 7 ) ,  7  ( C 1 -3 , 
n=6), and 14 (D1-3, n=4) days after 
c yclophosphamide treatment.  C , 
cortex ; M, medulla ; arrows, CK5+ 

thymic epithelial cells. Scale bars=100 
μm (A1, B1, C1, D1), 50 μm (A2, A3, 
B2, B3, C2, C3, D2, D3). (E) Data on 
the relative intensity of CK5 expression 
in the thymic medulla are also plotted 
i n  a  b a r  g r ap h  a n d  e x p r e s s e d  a s 
mean±standard deviation. CY 3d, CY 
1w, and CY 2w represent 3, 7, and 14 
days after cyclophosphamide treatment, 
respectively. *P<0.001 compared with 
the control, as determined by the t-test.
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paraseptal subset of cTECs was flat and their cytoplasmic 
processes were very thin in control thymus (Fig. 3). These 
cTECs lined the capsule and the interlobular septum as a 
single, continuous layer, which had a smooth, even surface 
contour (Fig. 3). Perivascular TECs, which belong to the 
same subcapsular/paraseptal TEC subset, and resembled 
subcapsular/paraseptal TECs morphologically, surrounded 

blood vessels completely as a single, continuous layer (Fig. 3). 
Most cTECs in the thymic cortex, other than the subcapsular/
paraseptal/perivascular cTEC subset, were thin and sheet 
like, displaying slender cytoplasmic processes and providing 
a large surface area for cell-cell interactions between TECs 
and developing thymocytes (Fig. 3). Additionally, CK8 was 
also expressed by the minor subset of mTECs in the thymic 

Fig. 2. (A-D) Immunohistochemical 
localization of cytokeratin (CK)14 
in frozen sections of mouse thymus 
from control animals (A1-3, n=4), 
a n d  a t  3  ( B 1 -3 ,  n = 7 ) ,  7  ( C 1 -3 , 
n=6), and 14 (D1-3, n=4) days after 
c yclophosphamide treatment.  C , 
cortex; M, medulla ; arrows, CK14+ 

thymic cortical epithelial cells. Scale 
bars=100 μm (A1, B1, C1, D1), 50 μm 
(A2, A3, B2, B3, C2, C3, D2, D3). (E) 
Data on the relative intensity of CK14 
expression in the thymic medulla are 
also plotted in a bar graph and expressed 
as mean±standard deviation. CY 3d, CY 
1w, and CY 2w represent 3, 7, and 14 
days after cyclophosphamide treatment, 
respectively. *P<0.001 compared with 
the control, as determined by the t-test.
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medulla of control mice, most of which were globular in 
appearance (Fig. 4). 

Substantially the same localization pattern of CK8 
immunoreactivity was observed in the thymuses of normal 
and cyclophosphamide-treated mice at all times (Fig. 
3). Characteristically, however, strongly enhanced CK8 
protein expression was observed in cTECs during thymus 

regeneration from acute thymic involution induced by 
cyclophosphamide treatment, particularly at 3 days after 
cyclophosphamide treatment (Fig. 3). However, CK8 
expression by the minor globular mTEC subset decreased 
considerably during thymic regeneration, particularly 
at 3 days after cyclophosphamide treatment (Fig. 3). 
Morphological alterations in subcapsular/paraseptal/

Fig. 3. (A-D) Immunohistochemical 
localization of cytokeratin (CK)8 
in frozen sections of mouse thymus 
from control animals (A1-3, n=4), 
a n d  a t  3  ( B 1 -3 ,  n = 7 ) ,  7  ( C 1 -3 , 
n=6), and 14 (D1-3, n=4) days after 
c yclophosphamide treatment.  C , 
cortex; M, medulla. Scale bars=100 
μm (A1, B1, C1, D1), 50 μm (A2, 
A3, B2, B3, C2, C3, D2, D3). (E) 
Data on the relative intensity of CK8 
expression in the thymic cortex are also 
plotted in a bar graph and expressed as 
mean±standard deviation. CY 3d, CY 
1w, and CY 2w represent 3, 7, and 14 
days after cyclophosphamide treatment, 
respectively. *P<0.001 compared with 
the control, as determined by the t-test.
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perivascular TECs during thymic regeneration were the same 
as those described in a previous study [25]. The staining 
intensity and expression pattern in CK8 immunoreactive 
TECs were similar to those of the control mouse thymus 1 
week after cyclophosphamide treatment (Fig. 3). 

Double immunofluorescence staining of CK5 and CK8 
clearly defined CK5+CK8+ TECs, which increased in number 
in the thymic cortex during thymus regeneration (Fig. 5).

Discussion

This study was designed to examine the properties 
of mouse TECs from the viewpoint of CK5, CK8, and 
CK14 expression using immunohistochemical and 
immunofluorescent methods to clarify whether TEC 
phenotypes and expression levels change during mouse 
thymus regeneration following thymic involution induced 
by cyclophosphamide treatment. Our findings confirmed 

that both normal and regenerating mouse thymuses showed 
a substantially similar pattern of CK expression. The major 
mTEC subset, which was stellate in appearance, exhibited 
CK5 and CK14 staining, and the minor mTEC subset, which 
was globular in appearance, exhibited CK8 staining, whereas 
the vast majority of cTECs expressed CK8 during thymus 
regeneration. However, CK5+ and CK14+ cTECs, which were 
barely seen in the normal mouse thymic cortex, occurred 
in a relatively high number in the cortex during mouse 
thymus regeneration. Remarkably, the level of CK5 and CK14 
expression was enhanced in mTECs, and CK8 expression was 
upregulated in cTECs, whereas the CK8 expression level was 
fairly diminished in globular mTECs during mouse thymus 
regeneration after cyclophosphamide-induced acute thymic 
involution. Generally, these changes in CK5, CK8, and CK14 
expression level became similar to those of normal thymus 2 
weeks after cyclophosphamide treatment at approximately the 
same time when thymus regeneration was almost completed. 
The levels of CK5, CK8, and CK14 increased in TECs during 

Fig. 4. High magnification images of the stellate and globular 
thymic medullary epithelial cells (mTECs) by immunohistochemical 
localization of cytokeratin (CK)5, CK8, and CK14 in frozen sections 
of the mouse thymus from control animals. (A, B) CK5 and CK14 
immunoreactivity was observed in virtually all of the stellate mTECs, 
whereas thymic cortical epithelial cells (cTECs) barely expressed CK5 
and CK14 in the thymic cortex of normal mice. (C) CK8 was expressed 
by a minor subset of mTECs, most of which are globular in appearance, 
in the thymic medulla of control mice, whereas all the cTECs expressed 
CK8 in the thymic cortex of normal mice. C, cortex; M, medulla; 
arrows, CK8+ globular mTECs. Scale bars=50 μm.
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thymus regeneration. It has been demonstrated that CK5, 
CK8, and CK14 are overexpressed in various cancer cells 
including human breast carcinoma, lung squamous cell 
carcinoma, and gastric adenocarcinoma [29-34], suggesting 
that elevation of these CKs could promote cell survival and 
proliferation. Moreover, CK8 and CK14 suppress apoptosis 
induced by a variety of agents in various epithelial cells [35, 
36]. Thus, it is speculated that the enhanced expression of 
CK5, CK8, and CK14 may be involved in various cellular 
activities, including survival of TECs during thymus 
regeneration.

Our findings strongly indicate that the anti-CK5 
and anti-CK14 antibodies can be utilized as a tool for 
immunohistological analysis of mTECs, and that the 
anti-CK8 mAb used in this study can be applied for 
immunohistological analysis of entire cTEC populations and 
minor globular mTECs in both normal and regenerating 
mouse thymuses. Additionally and most importantly, the 
anti-CK5 and anti-CK14 antibodies used in this study can 

also be employed to identify CK5- or CK14-positive cTECs 
by immunohistochemical or immunofluorescence methods 
in both normal and regenerating mouse thymuses throughout 
the entire period of mouse thymus regeneration. 

Our observations are in agreement with those of many 
other studies in which various antibodies were directed 
against CK5, CK8, and CK14. For example, CK5 and CK14 
are expressed by the predominant mTECs using a rabbit 
polyclonal antibody (AF 138) specific to mouse CK5 and a 
rabbit polyclonal antibody (AF 64) specific to mouse CK14 
obtained from Covance Research (Princeton, NJ, USA) [20-
22]. These anti-CK5 and anti-CK14 antibodies were originally 
developed by Roop et al. [37] using synthetic peptides 
corresponding to the carboxyl-terminal amino acid sequences 
of mouse CK5 and CK14, and their immunoreactive 
properties against mouse thymus are well characterized [19]. 
Our data using a rabbit anti-CK5 mAb (clone EP1601Y, 
Thermo Scientific) directed against a synthetic peptide 
corresponding to residues on the carboxyl-terminal of 

Fig. 5. (A) Two-color double-label immunofluorescent localization of cytokeratin (CK)8 (green) and CK5 (red) in frozen sections of mouse 
thymus 3 days after cyclophosphamide treatment. C, cortex; M, medulla; arrows, CK5+CK8+ thymic epithelial cells. Scale bar=50 μm. Data on the 
relative number of CK5+CK8+ (B) and CK14+CK8+ (C) Cotical thymic epithelial cells (cTECs) are also plotted in a bar graph and expressed as 
mean±standard deviation. *P<0.001 compared with the control, as determined by the t-test.
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human CK5, and a rabbit polyclonal antibody directed 
against a synthetic peptide derived from the carboxyl-
terminal of human CK14 (Thermo Scientific) coincide with 
previous results showing that in normal mouse thymus, CK5 
expression is found together with CK14 expression in stellate 
medullary TECs. 

In agreement with previous results using a rat mAb 
specific for mouse CK8 (Troma-1, the Developmental Studies 
Hybridoma Bank), our data using a rabbit anti-CK8 mAb 
(EP1628Y, Thermo Scientific) directed against a synthetic 
peptide corresponding to residues on the carboxyl-terminal 
of human CK8 confirmed that in normal mouse thymus, 
CK8 is expressed by the vast majority of cTECs, including 
subcapsular TECs, which have a distinctive reticular 
appearance, and by the minority of mTECs, which have a 
distinctive globular appearance [19, 20]. This anti-CK8 mAb 
(Troma-1) was originally developed by Kemler et al. [38]. 
Thus, the medulla of the thymic lobule in mice consisted 
of two main populations of TECs: CK5+ or CK14+ stellate 
mTECs, the major mTEC subset, which did not express CK8, 
and CK8+ globular mTECs, the minor mTEC subset, which 
did not express CK5 or CK14. These two mTEC subsets were 
also defined by differential reactivity with the lectin UEA-
1 and mAbs that recognize classical versus nonpolymorphic 
major histocompatibility complex molecules. The major CK5+ 
or CK14+ stellate mTEC subset does not express UEA-1 or Ia, 
but the minor CK8+ globular mTECs express UEA-1 and Ia 
[19, 39, 40].

One of the most salient features observed in our 
experimental thymus regeneration model was the occurrence 
of a relatively high number of CK5+CK8+ TECs in the thymic 
cortex during thymus regeneration. An emerging body of data 
supports the existence of thymic epithelial progenitor/stem 
cells during both the embryonic and postnatal period, which 
have the CK5+CK8+ phenotype [41]. Similar to our results, 
García-Ceca et al. [42] demonstrated that high numbers of 
CK5+CK8+ TEC progenitors occur in both wild-type and 
EphB-deficient thymic parenchyma after fetal thymus lobes 
were grafted under the kidney capsule of mice, and these 
CK5+CK8+ TEC progenitors reached higher numbers in the 
grafted EphB-deficient thymus lobes than in the wild-type 
ones. High numbers of CK5+CK8+ TEC progenitors have also 
been reported in other mice with defective maturation of 
thymic epithelium, such as Foxn1D/D mice [43], conditioned 
Stat3-deficient mice [44], and Krm1−/− mice [45]. Popa et 
al. [46] confirmed that CK5+CK8+ TEC progenitors in the 

thymic cortex expand significantly during thymus atrophy 
induced by steroid treatment or by irradiation and prior to 
thymic regeneration. They also showed that in involuted 
thymuses, cMyc and Trp63 transcription factors, known to 
be expressed in early epithelial cell progenitors, are expressed 
in a subset of cortical CK5+CK8+ TEC progenitors [46]. Thus, 
CK5+CK8+ cTECs, which emerged in the thymic cortex 
during mouse thymus regeneration, are obviously regarded as 
thymic epithelial progenitor cells. Although the precise role 
of CK5+CK8+ TEC progenitors during thymus regeneration 
after cyclophosphamide-induced acute thymic involution 
remains to be elucidated, our results suggest that these TEC 
progenitors may be involved in replenishing TECs during 
thymus regeneration. 

Taken together, our data shed more light on the role of 
CK5, CK8, and CK14 in TECs and strongly indicate that 
the antibodies specific to these CKs used in this study can 
be utilized as a tool for immunohistological analysis of TEC 
subsets in the thymus during mouse thymus regeneration. 
In addition, our results demonstrated that critical steps 
in the recovery of the adult thymus include expansion of 
CK5+CK8+ TEC progenitors and elevated expression of CK5 
and CK14 in mTECs and CK8 in cTECs during thymus 
regeneration, suggesting that CK5+CK8+ TEC progenitors are 
activated during thymus regeneration and may be involved 
in restoration of the epithelial network and consequent 
regeneration of the adult thymus. 
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