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Abstract

A typical time series in functional magnetic resonance imaging (fMRI) exhibits

autocorrelation, that is, the samples of the time series are dependent. In addition,

temporal filtering, one of the crucial steps in preprocessing of functional magnetic

resonance images, induces its own autocorrelation. While performing connectivity

analysis in fMRI, the impact of the autocorrelation is largely ignored. Recently, auto-

correlation has been addressed by variance correction approaches, which are sensi-

tive to the sampling rate. In this article, we aim to investigate the impact of the

sampling rate on the variance correction approaches. Toward this end, we first

derived a generalized expression for the variance of the sample Pearson correlation

coefficient (SPCC) in terms of the sampling rate and the filter cutoff frequency, in

addition to the autocorrelation and cross-covariance functions of the time series.

Through simulations, we illustrated the importance of the variance correction for a

fixed sampling rate. Using the real resting state fMRI data sets, we demonstrated that

the data sets with higher sampling rates were more prone to false positives, in agree-

ment with the existing empirical reports. We further demonstrated with single sub-

ject results that for the data sets with higher sampling rates, the variance correction

strategy restored the integrity of true connectivity.
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1 | INTRODUCTION

The voxel time series from functional magnetic resonance imaging

(fMRI) is widely used to investigate the functional connectivity

between various brain regions. The connectivity analysis in resting

state fMRI studies widely employs sample Pearson correlation coef-

ficient (SPCC) to measure the statistical association between two

time series (Birn et al., 2013; Biswal, Yetkin, Haughton, & Hyde,

1995; Murphy, Birn, & Bandettini, 2013). When the time series are

white (no autocorrelation), the variance of the SPCC, called nominal

variance, is used for the inference on connectivity. However, by its

very nature, the time series in fMRI exhibits sample-to-sample

dependence or an inherent autocorrelation (Bollmann, Puckett,

Cunnington, & Bartha, 2018; Fiecas, Cribben, Bahktiari, & Cummine,

2017; Friston, Jezzard, & Turner, 1994; Weisskoff et al., 1993). The

autocorrelation affects the variance of the SPCC and hence the subse-

quent inference (Afyouni, Smith, & Nichols, 2018; Arbabshirani et al.,

2014; Fiecas et al., 2017; Hart, Cribben, & Fiecas, 2018). The origin of

the inherent autocorrelation is attributed to multiple physiological noise

sources (Aguirre, Zarahn, & Esposito, 1997; Friston et al., 2000; Liu,
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2016; Lund, Madsen, Sidaros, Luo, & Nicholsd, 2006; Purdon &

Weisskoff, 1998; Zarahn, Aguirre, & Esposito1, 1997), repetition time

(TR; Arbabshirani et al., 2014; Bollmann et al., 2018), and the low-

frequency fluctuations from the hemodynamic response function

(Friston et al., 1995; Rajapakse, Kruggel, Maisog, von Cramon, &

Yves, 1998).

The primary sources of the autocorrelation due to the physiologi-

cal noise in the fMRI include pseudo-periodic heartbeat (0.6–4.2 Hz;

Cordes et al., 2001; Glover, Li, & Ress, 2000), subject respiration noise

(0.1–0.3 Hz; Lund et al., 2006; Wise, Ide, Poulin, & Tracey, 2004), and

equipment-related noises such as the thermal drift in shims (less than

0.01 Hz; Purdon & Weisskoff, 1998; Weisskoff, 1996). The noise from

subject initiated motion is usually impulsive in nature and may occur

at any frequency (Friston, Williams, Howard, Frackowiak, & Turner,

1996; Patel et al., 2014; Power, Schlaggar, & Petersen, 2015). The sig-

nal of interest that is believed to contain the neural component in

fMRI, usually spans the frequencies between 0.01 Hz and 0.1 Hz

(Bharat, Edgar, & James, 1996; Cordes et al., 2001). Thus, the time

series are usually denoised with a temporal band pass filter in order to

reduce the level of autocorrelation and to provide a better signal-to-

noise ratio. Owing to its importance, temporal band pass filtering is

employed in various fMRI connectivity initiatives such as the Human

Connectome Project (HCP; Essen et al., 2012).

A temporal filter, by its operational principle, is a linear system that

convolves an input time series with the filter impulse response to pro-

duce a filtered time series (Hayes, 1996). While temporal filtering

reduces the level of the physiological noise, it is well-known that the

shape of the filter introduces an autocorrelation artifact in the filtered

time series (Bright, Tench, & Murphy, 2017; Davey, Graydena, Egan, &

Johnston, 2013). This type of autocorrelation is called the filter-induced

autocorrelation as opposed to the inherent signal autocorrelation.

Davey et al. (2013) showed that filtering increases the variance of the

SPCC, thereby introduces false positives in the seed-voxel-based con-

nectivity analysis. Based on this observation, they suggested a correc-

tive measure constructed using the filter frequency response to reduce

the fraction of the false positives. However, the corrective measure is

derived without accounting for the inherent autocorrelation.

Recently, investigation of the impact of the inherent autocorrelation

on connectivity has become increasingly important in the resting state

fMRI community (Afyouni et al., 2018; Arbabshirani et al., 2014; Fiecas

et al., 2017; Hart et al., 2018). In these studies, the approach is to com-

pute the variance of the SPCC accounting for the inherent autocorrela-

tion and use the variance for the reliable inference on connectivity. In

this article, we refer to these approaches as variance correction.

Arbabshirani et al. (2014) provided a heuristic variance correction for

the time series that follow an autoregressive (AR) model of the first

order and investigated its impact on brain networks. Using the classical

result of Roy (1989) on the co-variance structure of the autocorrelation,

Fiecas et al. (2017) proposed a variance component model that accounts

for the inherent autocorrelation and the heterogeneity across subjects

on the variance of the SPCC. This approach was later extended by Hart

et al. (2018) to investigate the impact of longitudinal autocorrelation in

the functional connectivity networks of Alzheimer's patients. The

unpublished work by Afyouni et al. (2018) used the approach in Roy

(1989) to derive the effective degrees of freedom (DOF) of the SPCC

and investigated the impact of the autocorrelation on the graph-

theoretic measures. We noted that the sampling rate was fixed and low

(except in Afyouni et al. (2018)) in these variance correction approaches.

The impact of the sampling rate on modeling the inherent auto-

correlation is studied in Corbin et al. (2018) for the general linear

model. However, as far as we know, no such investigation has been

undertaken to examine the impact of the sampling rate on variance

correction. Recent simultaneous multi-slice acquisition methods pro-

vide data sets with sampling rates greater than 1.5 Hz for the whole

brain analysis. These methods have advantages such as separating the

breathing and the cardiac pulsation from the low frequency fluctua-

tions (Boyacioglu, Schulz, Koopmans, Barth, & Norris, 2015), and pro-

ducing larger spatial extents of activation in the task (Demetriou et al.,

2018; Todd et al., 2016) as well as in the resting-state fMRI (Preibisch,

Buhrer, & Riedl, 2015; Smith et al., 2013). Despite the advantages,

data sets with high sampling rates exhibit decreased DOF and

increased false positive rates (FPRs) in the fMRI connectivity analysis

(Eklund, Andersson, Josephson, Johannesson, & Knutsson, 2012, Fig-

ures 1 and 2), (Bright et al., 2017, Figure 2). Thus, it is important to

investigate the impact of the sampling rate on the variance correction.

In this article, we investigated the effect of the sampling rate on

the variance correction for the resting state fMRI connectivity analy-

sis. Using the classical result of Roy (1989), we derived a generalized

analytical expression for the variance of the SPCC between the fil-

tered time series whose unfiltered version exhibits an unknown auto-

correlation structure. We expressed the generalized variance in terms

of the filter impulse response in addition to the autocorrelation and

the cross-covariance of the time series. This framework enabled us to

discern the filter-induced autocorrelation from that of the inherent

autocorrelation. By relating the filter impulse response to parameters

such as the TR (inverse of the sampling rate) and the cutoff frequency

of the filter, we showed that it is possible to investigate the impact of

the sampling rate on the variance. We then present a variance correc-

tion strategy for the two commonly used significance tests for the

SPCC, namely, the z-test and the t-test. With the correction strategy,

F IGURE 1 The temporal filtering setup used in fMRI analysis. The
time series v(n) and w(n) were processed with a filter of impulse
response h(n) to obtain the filtered time series x(n) and y(n),
respectively. It is desirable to find the statistics of the SPCC rxy
between the filtered time series in terms of the h(n) and the nontrivial
autocorrelation sequences rv(k) and rw(k) [Color figure can be viewed
at wileyonlinelibrary.com]
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we demonstrated that it is possible to mitigate the effect of false posi-

tives due to autocorrelation. In particular, we studied the resting state

fMRI data set with three different sampling rates. We show that data

sets with high sampling rates (short TR) produce a large number of

FPR in the single subject results, which can be significantly mitigated

by the variance correction. Since the autocorrelation may vary voxel-

wise, we discuss the importance of these corrections on the seed-

voxel-based connectivity analysis.

2 | MATERIALS AND METHODS

2.1 | Background

Pearson correlation coefficient is widely used in the resting state fMRI

connectivity analysis as it measures the normalized linear association

between the time series v(n) and w(n). It is given by

ρvw =
γvw 0ð Þ
σvσw

, ð1Þ

where γvw(0) is the cross-covariance between the time series at

lag 0, σv, and σw are the respective standard deviations and | ρvw

| ≤ 1 is a constant. The time series are assumed to have zero

mean. In practice, the SPCC (Fisher, 1915) is used to estimate the

ρvw. The SPCC between the two zero-mean time series v(n) and w

(n) is given by

rvw =

PN−1
i=0 v ið Þw ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN−1

i=0 v2 ið Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN−1

i=0 w2 ið Þ
q , ð2Þ

where, N is the length of the time series. Unlike ρvw, the SPCC rvw is a

random variable. For a white bivariate Gaussian time series, the

asymptotic probability density function (PDF) of the rvw is normal with

the mean ρvw and the variance

V rvw½ �= 1−ρ2vw
� �2

N
, ð3Þ

where, V[x] denotes the variance of a random variable x. The variance

of the SPCC plays a major role in the statistical inference on connec-

tivity via hypothesis testing on the rvw.

2.2 | Hypothesis testing

The two most important statistical tests for the SPCC widely

employed in fMRI connectivity analysis are the z-test and the t-test

(Sarty, 2006). Prior to the z-test, the variance of the raw SPCC in

Equation (3) is stabilized using Fisher's z-transformation given by

z rvwð Þ= 1
2
ln
1 + rvw
1− rvw

: ð4Þ

The asymptotic variance of z(rvw) is given by

VN z rvwð Þ½ �= 1
N−3

: ð5Þ

z-test: In the z-test, the null hypothesis of zero correlation is

tested against any of the possible alternative hypotheses by compar-

ing the test statistic

Z =
z rvwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VN z rvwð Þ½ �p ð6Þ

to a standard normal N 0,1ð Þ distribution. The statistic Z is called the

Z-score.

t-test: In the t-test, the null hypothesis of zero correlation is tested

by comparing the statistic (t-score)

t= rvw

ffiffiffiffiffiffiffiffiffiffi
N−2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r2vw

p ð7Þ

to a t-distribution with the mean 0, the variance σ2 = ν(ν − 2), and the

DOF ν = N − 2. The variance of the SPCC, used in the above hypothe-

sis tests, for the white time series is independent of the sampling rate.

The variance for the autocorrelated time series depends on the sam-

pling rate. Thus, it is important to study the effect of the sampling rate

on the variance. We began the study by considering the effect of the

inherent autocorrelation and the filter-induced autocorrelation on

variance.

1

2

3

4

5

67

8

9

10

Seed

−0.66 −0.1 −0.02 0.3 0.35 0.4 0.48 0.57 0.63 0.65

Pearson Correlation

F IGURE 2 The seed-voxel-based AR(1) network simulation with
10 nodes. The Node 1 acts a seed and the correlation between the

seed and 9 other nodes are given in Table 2. The AR(1) model-based
signal autocorrelation is used for unfiltered time series. A practical
band pass filter with TR = 1.4 s and the passband 0.009–0.1 Hz is
considered [Color figure can be viewed at wileyonlinelibrary.com]
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2.3 | Effect of the inherent autocorrelation and the
filter parameters on variance of SPCC

Consider a temporal filter depicted as a linear time-invariant system in

Figure 1 with an impulse response h(n). Hk represents the complex fre-

quency response and Ch(n) = h(n) * h(−n) the deterministic autocorrela-

tion of the h(n). We assumed that the unfiltered time series v(n) and w(n)

in Figure 1 were jointly stationary, that is, v(n) and w(n) were stationary

and the cross-covariance sequence, γvw(n + k, n) = γvw(k), depended only

on the time difference k. Let rv(k) and rw(k) represent the respective

nontrivial autocorrelation sequences of the unfiltered time series.

Let x(n) and y(n) denote the filtered time series which are related

to the unfiltered time series v(n) and w(n) via the convolution sum:

x nð Þ =
X
k

h kð Þv n−kð Þ,

y nð Þ =
X
l

h lð Þw n− lð Þ:
ð8Þ

Let rx(k) and ry(k) represent the autocorrelation sequences of the fil-

tered time series. Our aim was to find the variance of the SPCC rxy

between the filtered time series. Using the classical result from the mul-

tivariate time series analysis (Roy, 1989) and the linear system theory

(Hayes, 1996), it may be verified that the PDF of the SPCC rxy in

Figure 1, is asymptotically normal with the mean ρxy and the variance

VFS rxy½ �= 1
N
cTDc, ð9Þ

where c is a 3 × 1 vector given by

c=
−γxy 0ð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3x 0ð Þry 0ð Þp ,

−γxy 0ð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx 0ð Þr3y 0ð Þ

q ,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rx 0ð Þry 0ð Þp
2
64

3
75
T

, ð10Þ

and D is a 3 × 3 matrix

D=2

P
pr

2
x pð Þ P

pγ
2
xy pð Þ P

prx pð Þγxy pð ÞP
pγ

2
xy pð Þ P

pr
2
y pð Þ P

pry pð Þγxy pð Þ

P
prx pð Þγxy pð Þ P

pry pð Þγxy pð Þ
1
2

X
p

½rx pð Þry pð Þ

+ γxy pð Þγyx pð Þ�

2
66666664

3
77777775
: ð11Þ

In the above equations, rx(p) = rv(p) * Ch(p), ry(p) = rw(p) * Ch(p),

γxy(p) = γvw(p) * Ch(−p), and γyx(p) = γxy(−p). The steps leading to the

variance in Equation (9) are given in Section S2. We noted that the

variance characterizes the SPCC when the autocorrelation in the fil-

tered time series is partly due to the inherent autocorrelation in the

unfiltered time series and in part due to the autocorrelation induced

by the filter through its impulse response h(n). We considered a practi-

cal band pass filter implemented in the Analysis of Functional

NeuroImages (AFNI) Cox (1996) with the impulse response

h nð Þ=2TR fh sinc 2nTRfhð Þ− fl sinc 2nTRflð Þ½ �, ð12Þ

where fh is the high cutoff frequency (HCF) and fl the low cutoff fre-

quency (LCF) of the filter. Since the h(n) is a function of the parameters

such as the TR and the fh, the variance in Equation (9) is a function of

these parameters as well. Thus, we related the variance of the SPCC to

the sampling rate and the HCF. We also considered various other

choice of band pass filters such as the Gaussian filters in FMRIB Soft-

ware Library (FSL; Smith et al., 2004) and the finite impulse response

(FIR) filters in MATLAB used in many neuroimaging analyses.

Special cases of the Equation (9)wereobtained by setting the autocor-

relation sequence of the unfiltered time series to a delta function (to study

the effect of only the filter-induced autocorrelation) or by setting the filter

impulse response to a delta function (to study the effect of only the inher-

ent autocorrelation). These two special cases are discussed below.

2.4 | Effect of filter-induced autocorrelation on
variance

2.4.1 | Approach in the literature

This approach is investigated in Davey et al. (2013). In this case, the time

series v(n) and w(n) were white, that is, rv kð Þ= σ2vδ kð Þ and rw kð Þ= σ2wδ kð Þ
(in Figure 1). Davey et al. (2013, eq. 8) have shown that in this case,

the PDF of the SPCC rxy is asymptotically normal with the variance

VFL rxy½ �= 1−ρ2vw
� �2

P
k
H4

k

P
k
H2

k

� �2
: ð13Þ

We noted that the filter frequency response affects the variance

and hence the subsequent inference on the SPCC. There are two

shortcomings to this approach: (a) The nontrivial autocorrelation of

the typical (unfiltered) fMRI time series is ignored and (b) The variance

in Equation (13) is only an upper bound to the actual variance for this

case shown (below) in Equation (14). (See Figure S1).

2.4.2 | Approach using Equation (9)

Using the white time series assumption in Equation (9), that is,

rv kð Þ= σ2v δ kð Þ, rw kð Þ= σ2wδ kð Þ, we noted that γvw(k) = 0, 8 k 6¼0, and

γvw(0) = ρvwσvσw. In this case, the variance term 1
Nc

TDc converges to

the variance (proof in Section S3):

VF rxy½ �= 1−ρ2vw
� �2

N

X
n

ρ2h nð Þ, ð14Þ

where ρh nð Þ= Ch nð Þ
Ch 0ð Þ is the normalized deterministic autocorrelation func-

tion of the impulse response. We note that the variance in Equation (14)

is a function of the filter impulse response, whereas the variance in Equa-

tion (13) is a function of filter frequency response. We showed

(in Figure S1) that the variance in Equation (13) is an upper bound to the

actual variance in Equation (14). The variance in Equation (14) is well-

known in the area of large sample theory (Shumway & Stoffer, 2011, The-

orem A.8). If we further assume h(n) = δ(n) that is, no temporal filtering

3324 JAMES ET AL.



then ρh(n) = δ(n), in which case the variance in Equation (14) converges to

1−ρ2vwð Þ2
N , which is the variance term in Equation (3).

2.5 | Variance due to inherent signal autocorrelation
alone

In this case, h(n) = δ(n) and hence Ch(k) = 0, 8 k 6¼ 0, Ch(0) = 1. There-

fore, the asymptotic variance of the SPCC in this case is

VS rxy½ �= 1
N
~cT ~D~c, ð15Þ

where the vector ~c and the matrix ~D are the same as in the Equa-

tions (10 and 11) except that the autocorrelation and cross-covariance

sequences were modified accordingly as follows: rx(k) = rv(k), ry(k)

= rw(k), γxy(k) = γvw(k) and γyx(k) = γwv(k). The result in Equation (15) is a

special case of the general result presented in (Roy, 1989, eq. 5).

Stochastic signal models such as the moving average (MA), the AR, and

the autoregressive moving average (ARMA) that are widely used to explain

the autocorrelation in the fMRI time series are categorized to this case. In

Arbabshirani et al. (2014, eq. 16), an approximate variance of the SPCC is

heuristically derived by assuming an AR(1) model for the inherent autocor-

relation. They show that this variance increases for the different values of

the model parameters. We showed that the variance derived in

Arbabshirani et al. (2014) is an upper bound to the variance in Equation (15)

(Figure S6). The large sample variance for the AR(1) was also derived in

(Fiecas et al. (2017), Appendix) which is in agreement with the variance in

Equation (15).

2.6 | Corrections for the significance tests

The variance of the SPCC derived in the previous section may be used

to correct the test statistics in Section 2.2 during inference. For the

null hypothesis of zero correlation, the corrected z- and the t-scores

are listed in Table 1 for various autocorrelation scenarios.

The values of c and D in Table 1 are in given in Equations (10) and

(11), respectively, and the ρh(n) is computed as in Equation (14). We

note that in the last row of Table 1, rxy = rvw (no filtering).

2.7 | Variance estimation

The variance of the SPCC is a function of the autocorrelation and the

cross-covariance sequences and hence must be estimated from the

time series data. In this article, we considered four types of variances:

1. Nominal variance, VN: The value of this variance is VN = 1
N−3

(Equation (6)) and it does not account for the autocorrelation of the

time series.

2. Filter only variance, V̂F: This variance is computed using the filter

impulse response as V̂F = 1
N

P
n
ρ2h nð Þ (Equation (14)) and it also does

not account for the time series autocorrelation.

3. Signal only variance, V̂S: This variance is a function of the autocor-

relation and the cross-covariance between the unfiltered time

series. With these functions estimated (explained below), the vari-

ance is computed as V̂S =
~cT ~D~c
N (Equation (15)).

4. Filter + Signal variance, V̂FS: This variance is a function of the

autocorrelation and the cross-covariance between the filtered time

series and is estimated as V̂FS = cTDc
N (Equation (9)).

We observed that the VN and the V̂F are scalar values and hence the

same level of variance correction is applied to all the voxels. On the other

hand, the V̂S and the V̂FS are specific for a voxel and hence voxel-wise

correction is used. For brevity, in this article, we illustrate the variance

correction for the Z-scores, though it is equally applicable for the

t-scores as well. The autocorrelation and cross-covariance sequences

necessary to obtain the variances are estimated via their respective

sample estimators (Shumway & Stoffer, 2011, eq. [1.34]). The sample

estimator for the autocorrelation is r̂x kð Þ= 1
N

PN−1−k
n=0 x n+ kð Þx nð Þ, r̂y kð Þ

= 1
N

PN−1−k
n=0 y n+ kð Þy nð Þ with r̂x −kð Þ= r̂x kð Þ,k =0,1, � � �, N−1ð Þ. Similarly,

the sample cross-covariance estimator is γ̂xy kð Þ= 1
N

PN−1−k
n=0 x n+ kð Þy nð Þ,

and γ̂yx kð Þ= γ̂xy −kð Þ, where we assumed zero-mean time series. Also, the

value of the time series is zero for the indices other than 0, 1, �� �, N – 1.

We replaced the true correlations with the estimated correlations to

determine the V̂S and the V̂FS. The computational load required for

estimating the V̂FS over the whole brain is given in Section 4.

2.8 | Empirical data

We used the statistical package R (R Core Team, 2017) for all analysis

in this study.

2.8.1 | Simulation 1. Inference on connectivity

Inference in the fMRI is largely based on the Z- or the t-scores. Here

we verified the accuracy of the corrected Z- and the t-scores in

Table 1 using the variances estimated from the time series. Toward

TABLE 1 The variance uncorrected and the corrected Z- and the t-scores

Z-score t-score

Autocorrelation type Uncorrected Corrected Uncorrected Corrected

Filter + signal induced (Section 2.3) Z = z rxyð Þffiffiffiffiffi
1

N−3

p Z = z rxyð Þffiffiffiffiffiffi
cTDc
N

p t= rxy
ffiffiffiffiffiffiffi
N−2

pffiffiffiffiffiffiffiffiffi
1− r2xy

p t= rxy 1ffiffiffiffiffiffiffiffiffi
1− r2xy

p ffiffiffiffiffiffi
cTDc
N

p
Only filter-induced (Section 2.4.2) Z = z rxyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P
n

ρ2
h
nð Þ

q t= rxy 1ffiffiffiffiffiffiffiffiffi
1− r2xy

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
n

ρ2
h
nð Þ

q

Only signal induced (Section 2.5) Z = z rxyð Þffiffiffiffiffiffi
~cT ~D~c
N

p t= rxy 1ffiffiffiffiffiffiffiffiffi
1− r2xy

p ffiffiffiffiffiffi
~cT ~D~c
N

p
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this end, we generated 20,000 pairs of time series. The inherent

autocorrelation in the time series is modeled using AR(1) with the

parameter α. The value of α is constrained to be | α | < 1 in order to

obtain a stationary model. A positive value of α implies signal autocor-

relation with low pass filter characteristics and a negative value implies

high pass filter characteristics (Hayes, 1996, fig. 3.12). In addition, as

the |α| increases, the filter characteristics become sharper. The

AR(1) model is widely used in the resting state fMRI literature to repre-

sent the autocorrelation of the time series as well as the error terms in

the GLM (Arbabshirani et al., 2014; Bollmann et al., 2018; Corbin, Todd,

Friston, & Callaghan, 2018). In this article, we used two AR(1) models

with parameter value 0.2 and 0.8, respectively, to generate correlated

bivariate Gaussian time series v(n) and w(n). The generation of the

AR(1) time series from the white noise time series with specific variance

is discussed in Section S4. The length of the time series was chosen to

be N = 895 that corresponded to the length of one of the real fMRI

data sets (TR = 0.645 s; see Section 2.9) evaluated in this article. We

considered a realistic band pass filter with a passband 0.009 Hz to

0.1 Hz (Section 2.9). We recorded the raw SPCC between the 20,000

unfiltered and the filtered AR(1) time series. We converted the raw cor-

relation values to Z- and t-scores and variance corrected the scores as

per Table 1. We computed the empirical PDFs of the variance

corrected and the uncorrected scores (Figure 3).

2.8.2 | Simulation 2. Simulated brain network

To illustrate the importance of the variance estimation and correc-

tion strategy for the connectivity analysis, we simulated a seed-

voxel-based AR(1) network of 10 nodes (Figure 2). The simulation of

each link in the network is discussed in Section S4. Each node repre-

sents a voxel. The color of the node denotes the strength of the raw

Pearson correlation coefficient between the filtered time series of

that node and the filtered time series of the seed node (Node 1). The

true Pearson correlation coefficient between the nodes is listed in

Table 2. The table also lists the AR(1) parameters used to generate

autocorrelation in the time series along with the ground truth vari-

ance, VFS. The ranges for the VS and the VFS were chosen to reflect

the variances found in the real data set (Figure 6). We considered

TR = 1.4 s, with N = 399; which lead to VN = 1
N−3 = 0:0025 and

V̂F = 0:0083 (Figure 5a for the HCF=0.1 Hz). After estimating the var-

iances, we computed the corrected Z-scores. We used the Benjamini-

Hochberg procedure (Benjamini & Hochberg, 1995; Benjamini &

Yekutieli, 2001; Genovese, Lazar, & Nichols, 2002) to control the false

discovery rate (FDR) for the corrected Z-scores. We used a q value

threshold of 0.001 throughout the article.

2.9 | Experimental data and preprocessing

2.9.1 | Participants

Resting state data sets were obtained from the Enhanced Nathan

Kline Institute Rockland sample, Neuroimaging Data Releases Version

8 (Nooner et al., 2012). During the scans, participants were instructed

to keep their eyes closed, relax their minds, and to not move.

2.9.2 | MRI acquisition

Imaging was performed with a Siemens 3T TimTrio scanner.

T1-weighted images were acquired using a magnetization-prepared rapid

gradient echo (MPRAGE) sequence with TR = 2,500 ms (1 mm isotropic

voxels). T1-weighted images were subsequently used for spatial normali-

zation. Functional images were acquired with a BOLD contrast-sensitive

gradient echo-planar sequence. Three resting state fMRI sequences were

included in the scan protocol with different TRs (NKI-RS, 2017). Standard

EPI sequence was used to acquire the data with TR = 2,500 ms (3 mm

isotropic voxels, 5 min duration) and two other data sets were acquired

using multi-band sequences (Feinberg et al., 2010; Smith et al., 2012)

with TR = 645 ms (3 mm isotropic voxels, 10 min duration) and

TR = 1,400 ms (2 mm isotropic voxels, 10 min duration).
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F IGURE 3 The empirical PDF of the SPCC for the filtered and the unfiltered data. We set ρxy = 0 that corresponds to null hypothesis of zero
correlation. The 20,000 pairs of bivariate Gaussian time series were generated each of length N = 895 that corresponds to one of the real fMRI time
series data considered in this article with TR = 0.645 s. The AR(1) model with parameters 0.4 and 0.9 were used for the time series autocorrelation. A
realistic band pass filter with the passband 0.009–0.1 Hz was considered. (a) Z-score (b) t-score [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 The ground truth raw Pearson correlations (unfiltered and filtered), variances and the AR(1) parameters used to simulate the
network in Figure 2

Unfiltered Filtered

Links ρvw VS ρxy VFS α β

1 $ 2 −0.004 0.000055 −0.0175 0.0027 −0.99 0.965

1 $ 3 0.51 0.0028 0.57 0.0091 −0.49 −0.79

1 $ 4 0.05 0.00032 0.35 0.0068 0.586 −0.99

1 $ 5 0.4 0.13 0.4 0.0263 −0.986 −0.986

1 $ 6 −0.1 0.02 −0.1 0.0175 0.89 0.89

1 $ 7 0.46 0.26 0.48 0.125 −0.99 −0.999

1 $ 8 −0.645 0.00087 −0.66 0.0031 0.12 0.42

1 $ 9 0.29 0.0023 0.3 0.0077 0.11 0.51

1 $ 10 0.63 0.1 0.63 0.08 −0.991 −0.991

Filtered
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Fisher Z Z score

−26 26

Unfiltered

1

2

3

4

5

67

8

9

10

(a) Nominal

1 3

5

7

8

9

10
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F IGURE 4 A 10-node simulated seed-based network. The Node 1 acts a seed and the raw Pearson correlation values of the unfiltered ρvw
and the filtered ρxy time series are given in Table 2. (a) The unfiltered Fisher Z network shows the Fisher Z values, that is, z(ρvw; Equation (4)). The

Z-score values for the unfiltered case: (b) Nominal z ρvwð Þffiffiffiffiffi
VN

p = −0:08,11:20,1:00,8:43, −2:00,9:90, −15:26,5:94,14:75½ �, (c) Signal only
z ρvwð Þffiffiffiffi

VS

p = −0:54,10:63,2:80,1:20, −0:69,0:97, −25:99,6:22,2:33½ �. (d) Filtered Fisher Z network, z(ρxy). The Z-score values for the filtered case:

(e) Nominal
z ρxyð Þffiffiffiffiffi

VN
p = −0:35,12:89,7:27,8:43, −2:00,10:41, −15:67,6:1614:75½ �, (f) Filter only z ρxyð Þffiffiffiffi

VF
p = −0:17,6:44,3:63,4:21, −1:00,5:20,½

−7:83,3:08,7:37�, and (g) filter + signal
z ρxyð Þffiffiffiffiffiffi

VFS

p = −0:34,6:79,4:42,2:61, −0:75,1:48, −14:15,3:53,2:62½ � [Color figure can be viewed at

wileyonlinelibrary.com]
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2.9.3 | fMRI preprocessing

We used AFNI (Cox, 1996) to process the images. BEaST approach

(Eskildsen et al., 2012) was used to skull strip the anatomical images and

the skull stripped images were registered to a 3 mm MNI template

(ICBM, 2009). White matter, gray matter, and cerebrospinal fluid were

segmented from the images and respective masks were obtained. The

functional image processing included the following steps: discarding of

first five EPI volumes to allow for the signal to reach equilibrium, slice

timing correction, rigid body correction of head movement with Friston

24 parameter model (Friston et al., 1996), coregistration of functional

volumes to anatomical images and subsequent normalization of cor-

egistered images to 3 mmMNI template. Nuisance-signal regression was

performed using the AFNI GLM with white matter, cerebrospinal fluid

time series and 24 motion parameters as regressors. The nuisance
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(a) (b) F IGURE 5 (a) The plot of V̂F

(Equation (14)) for various TR and

the HCF of a fixed practical band
pass filter from AFNI

(Equation (12)). (b) The plot of V̂F

comparing various filters. Without
loss of generality, we set ρvw=0
in Equation (14) [Color figure can
be viewed at
wileyonlinelibrary.com]
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regressed time series were band pass filtered. The LCF was set to

0.009 Hz, and we varied the HCF from 0.1 Hz to 1
2 TR Hz in order to

explore the effect of increasing the filter bandwidth on the FPR. The

linear and the quadratic trends were removed before filtering and no

spatial smoothening was performed. We chose 5 participants out of

114 whose frame-wise displacement (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012) was below 0.4 mm for all the three TRs.

The lengths of the time series after removing the first five volumes

respectively were 895 (for TR=0.645 s), 399 (for TR=1.4 s) and

115 (for TR=2.5 s).

We estimated the V̂F for the other choice of filters mentioned in

Section 2.3. The Gaussian filter considered was a combination of the

high pass filter (Gaussian-weighted least squares straight line fitting)

with the standard deviation σ =1/(2 fl) seconds and the low pass filter

with σ =1/(2 fh) seconds (Smith et al., 2004). The FIR filter considered

was the rectangular windowed to the inverse Fourier transform of the

specified “brick wall” band pass filter. (MATLAB, 2018; signal devel-

opers, 2014, fir1 function).

2.10 | Effect of the sampling rate

To study the effect of the sampling rate on single subject connectivity,

we consider the seed-voxel-based connectivity analysis (Biswal et al.,

1995; Mulders, van Eijndhoven, Schene, Beckmann, & Tendolkar,

2015) in the default mode network (DMN). This network consists of

posterior cingulate cortex (PCC) with its positive correlated regions

such as the medial prefrontal cortex (mPFC) with the inferior parietal

lobule (IPL) being reported consistently (Uddin, Kelly, Biswal,

Castellanos, & Milham, 2009, fig. 2b, 4-th axial slice, Mulders et al.,

2015). A peculiar negatively correlated region with the PCC is the

anterior cingulate cortex (ACC; Uddin et al., 2009, fig. 2b, 3-rd axial

slice). The seed voxel was taken in the PCC whose MNI coordinates

were (−2, − 54, 26; Uddin et al., 2009). The time series of the

19 voxels that are within the sphere of 5 mm radius around the seed

voxel were averaged and the averaged time series was used as a seed

voxel time series. We computed the raw SPCC between the seed

voxel time series and each of the voxel time series covering the whole

brain. Since the sampling rate is the inverse of the TR, we use the

terms sampling rate and the TR interchangeably.

2.10.1 | Effect on variance

We computed the variance V̂F for the three different TRs and the

HCFs considering the practical band pass filter from AFNI. Since the

variances V̂S and V̂FS depend on the voxel pairs, we estimated them

for each pair of voxels in the DMN. The set of variance values was

then used to determine the histogram of the estimated variance. The

values of the histogram were smoothed using a Gaussian kernel den-

sity estimator and the smoothed histograms were displayed for vari-

ous TRs and the HCFs. We used the rule-of-thumb bandwidth

suggested in Silverman (1986, eq. [3.31]) for the kernel smoothening.

2.10.2 | Effect on FPR

The raw SPCC, computed in the DMN, were converted to correct

Z-scores via the estimated variances as per Table 1. The corrected

scores were tested for the zero correlation (null hypothesis) against

the standard Normal distribution and the p values were adjusted for

multiple comparisons using the FDR method. The FPR was then com-

puted as the fraction of voxels whose FDR corrected p values were

less than the p-value threshold (Patel & Bullmore, 2016, Section 2.8).

We studied the FPR in terms of the TRs and various HCFs.

2.10.3 | Effect on connectivity

We determined the seed-voxel-based connectivity in the DMN for

the TR of 0.645 s and the HCF of 0.1 Hz. The estimated variances,

V̂F, V̂S, and V̂FS in this network for each subject were used to obtain

the corrected Z-score maps after adjusting them for the FDR.

3 | RESULTS

3.1 | Empirical results

3.1.1 | Simulation 1

The empirical PDF for the Z-score (Figure 3a) and the t-score

(Figure 3b) are presented. Figure 3a indicates that, for the unfiltered

case, the Z-scores that are corrected with V̂S conform to the standard

Normal distribution indicating that Z-scores are properly corrected for

the signal autocorrelation. On the other hand, the Z-scores corrected

using the VN no longer conform to the Normal distribution and hence

the inference based on VN-corrected Z-scores may lead to false posi-

tives. For example, the false positive significant correlation increases

from 2.4% to 9% if uncorrected for the signal autocorrelation at 95%

confidence interval.

Similarly, for the filtered case in Figure 3a, the Z-scores are

corrected with VN, V̂F, and V̂FS. For the filtered case, the Z-scores

corrected using V̂FS conform to the standard Normal distribution. In

this case, the false positive significant correlation increases from 2.4%

to 21% if uncorrected for the filter and the signal autocorrelation. The

increase in the false positive correlation clearly shows that filter-

induced autocorrelation is higher than that of the inherent autocorre-

lation in the fMRI time series, which is in agreement with the results

and the discussions in Davey et al. (2013). The increase in the false

positives when corrected using the V̂F (filter alone) compared to the

V̂FS (Filter+ Signal) is just 1.2% (from 2.4 to 3.6). This example shows

that the gain obtained by exploiting the signal autocorrelation appears

insignificant compared to that of using the filter-induced autocorrela-

tion alone. The signal autocorrelation, in this example, follows a simple

AR(1) model. However, in the realistic fMRI data sets, the signal auto-

correlation severely affects the false positives due to high sampling

rates (Figure 7a,b).
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3.1.2 | Simulation 2

The Fisher z-transformed unfiltered network is shown in

Figure 4a. The Z-score corrected networks, using the VN and the V̂S

are shown in Figure 4b,c, respectively. We defined the significant

nodes as the set of nodes that survive after correcting for the auto-

correlation using the V̂S (in Figure 4c) or the V̂FS (in Figure 4g). Those

nodes that do not survive the correction were deemed insignificant.

We observed from Figure 4c that only 3 out of 9 nodes survived

when correcting with the V̂S compared to the nominal case where

6 out of 9 nodes are shown as significant. The node 10, which had a

high correlation (0.63) with the seed voxel (Figure 2), was removed

from the network due to the high variance (Table 2). This example elu-

cidates the fact that the raw Pearson correlation value alone is not

sufficient to show the connectivity strength of a link. The variance of

the SPCC that reflects the autocorrelation must be incorporated in

order to infer proper connectivity strength.

Similarly, in Figure 4e,f,g, we show Z-score networks corrected

using the variances VN, V̂F, and V̂FS, respectively. Figure 4g indicates

that the variance correction with V̂FS removes those nodes just like

the variance correction using the V̂S does in Figure 4c. The correction

using the V̂F removes significant nodes, such as node 9, and includes

the insignificant nodes {5,7,10}. This is because the filter-only correc-

tion is blind to the inherent autocorrelation. This illustration clarifies

the importance of variance correction for proper inference on connec-

tivity. All the graph analyses in Figure 4 were performed using the

igraph package in R (Csardi & Nepusz, 2006).

3.2 | Experimental results

We report here the results reflecting the impact of sampling rate on

the real fMRI resting state data sets. The results are presented in the

following order:
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F IGURE 7 The false positive rates of various variance correction methods as a function of the TR and the HCF. The FPR is calculated as the
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• The plot of the V̂F for the realistic filters as a function of the TR

and the filter HCF

• The smoothed histograms of the V̂S and the V̂FS for various TRs

and the HCF

• The plot of the FPR as a function of the TR and the HCF

• The axial slices of seed-based DMN corrected Z-score maps using

VN, V̂F, V̂S, and V̂FS for a fixed TR and an HCF.

3.2.1 | Filter variance, V̂F

Figure 5a indicates the V̂F for the various HCF and shows that as the

HCF increases toward 1
2TR Hz, the V̂F approaches the VN (shown as a

triangle). For the widely used HCF of 0.1 Hz, we noted that the rela-

tive differences, V̂F −VN

V̂F
, expressed in percentage for the TRs are 86%,

70%, and 43%, respectively. Thus, the variances of the short TR data

sets are more severely affected (and hence generated more false posi-

tives) by filtering than the long TR data sets. This is consistent with

the empirical findings from Bright et al. (2017), fig. 2), and Eklund

et al. (2012), fig. 2) that shorter the TR, more severe the false posi-

tives. Figure 5b indicates the V̂F for the different band pass filters

mentioned in Section 2.3. The filter in Equation (12) has a lower vari-

ance compared to the other filters for all the filter parameters.

3.2.2 | Smoothed histograms of V̂S and V̂FS

Figure 6a indicates the histogram of the V̂S corresponding to a repre-

sentative participant for various TRs. The V̂S spreads out around the

VN showing the range of variances due to autocorrelation. In addition, as

the TR decreases (sampling rate increases), the V̂S of most of the voxel

pairs appear above the VN. The relative increases in the mean of the

V̂S compared to the VN for the TRs are 44%, 21%, and 3.4%, respec-

tively indicating that short TR data sets are more prone to autocorre-

lation effects. Similar results were obtained for the other participants.

Figure 6b shows the histogram of the V̂FS for various TRs. The pass-

band of the band pass filter considered was 0.009Hz to 0.1 Hz. Filtering

increases the variance irrespective of the TRs. The relative increases in

the mean of the histogram compared to the nominal variance for the

TRs are 87%, 70%, and 34%, respectively, reflecting the impact of filter

autocorrelation. Figure 6c shows the histogram of the V̂FS (for

TR= 0.645 s) for various HCFs of the filter. As the HCF increases, the

variance decreases due to the reduced filter-induced autocorrelation

and hence the histograms move closer to the unfiltered case

(Figure 6a). The bandwidths chosen for the kernel smoothening in

Figure 6a–c were 0.00029, 0.00037, and 0.00021, respectively.

3.2.3 | FPR

In Figure 7a, the FPR computed in the DMN using the VN (nominal)

and the V̂F (filter only) is indicated as a function of the TR and HCF.

The results are averaged over the participants. With the V̂F correction,

the FPR is reduced uniformly for all HCF relative to the correction

with the VN. In particular, for the HCF of 0.1 Hz, the relative reduction

in the FPR compared to the VN for the TRs is 84%, 80%, and 67%,

respectively (Figure 7d). As the HCF approaches 1
2 TR Hz (no filtering),

the FPR of the V̂F coincides with that of the VN. Figure 7b shows the

FPR for the variance correction using the VN and the V̂FS (filter + signal).

As in Figure 7a, the FPR of the V̂FS reduces uniformly for all HCF. For

the HCF of 0.1 Hz, the relative reduction in the FPR compared to the

VN for the TRs is 95%, 94%, and 88%, respectively (Figure 7d). As the

HCF approaches 1
2 TR Hz, unlike in Figure 7a, the FPR converges to the

FPR of the V̂S (Figure 7c). This observation confirms that the inherent

(unfiltered) signal autocorrelation can be exploited to accurately

reduce the FPR. It appears that exploiting both the inherent and the

filter-induced autocorrelation reduces the FPR for all the TRs. Similar

results were obtained for other resting state networks (data not

shown). Spatial resolution may also affect the autocorrelation of an

fMRI time series and hence the FPRs reported in Figure 7 may be

altered if the spatial resolution changes.

3.2.4 | Seed-voxel based DMN connectivity

In Figure 8, the seed-voxel-based correlation maps in the DMN for a

representative participant are shown. The Fisher Z correlation maps

for the unfiltered (Figure 8a) and the filtered (Figure 8d) data show

four clusters of Z-scores: one cluster around the PCC, one around the

mPFC, and two clusters around the IPL. We transformed the unfil-

tered Fisher Z map (Figure 8a) to a Z-score map using the VN and the

V̂S, as in Figure 8b,c, respectively. The V̂S-corrected Z map retains the

DMN structure while removing the proportion of voxels that are not

connected with the DMN. We make two observations in the

corrected map. First, the extent of the DMN region is reduced and

second, the values of the Z-scores are reduced relative to the nominal

case but still high enough to identify the DMN clusters reported in

the literature. Similarly, the filtered Fisher Z map (Figure 8d) was

transformed to Z-score map using the VN, the V̂F, and the V̂FS. The

V̂FS-corrected Z-score map reduced the possible number of the false

connective voxels that may not be the part of the DMN (Figure 8g).

Similar results for the rest of the four participants are presented in

Figures S2–S5.

Figure 9 indicates the Z-score maps corrected using the VN and

the V̂FS at various sampling rates. The Z-score maps in Figure 9a were

obtained from different (prospective) measurements of the same par-

ticipant. However, the maps in Figure 9b were obtained from retro-

spective down-sampled measurements of the actual measurement at

TR=0.645 s.

Figure 9a indicates that at TR = 2.5 s the V̂FS correction excludes

the ACC where as the VN correction retains the ACC though the

extent of the ACC is reduced. This observation (at TR=2.5 s) is for a

single measurement of the participant and hence it is difficult to make

a conclusion regarding the PCC–ACC network. Repeated measure-

ments of the same participant or a group analysis are necessary to
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investigate the effect of V̂FS correction on the networks. On the other

hand, the retrospective analysis shows the ACC (Figure 9b) after the

V̂FS correction at all the TRs, though the extent of the regions is

reduced compared to the VN correction.

4 | DISCUSSIONS

The fMRI time series is well-known for its inherent autocorrelation

structure. Besides, the preprocessing steps such as temporal filtering

induce additional autocorrelation. Exploring the ramifications of the

autocorrelation in the resting state fMRI connectivity studies is of

huge interest in the neuroimaging community. The impact of autocor-

relation is reflected in the variance of the SPCC, which is used for the

inference on the connectivity. This is investigated in Afyouni et al.

(2018); Fiecas et al. (2017); Hart et al. (2018) for a fixed sampling rate

(or TR) and a filter cutoff frequency. The purpose of the current work

was to investigate the effect of the sampling rate and the filter cutoff

frequency on the variance of the SPCC in addition to the autocorrela-

tion and cross-covariance functions of the time series (Equation (9)).

The popular inference tests using the nominal variance are notably

inflated at the high sampling rates. Thus, we suggest a variance cor-

rection for these tests (Table 1).

In our framework, we differentiate the impact of the inherent

autocorrelation from that of the filter-induced autocorrelation. We

establish that the variance correction for the temporal filtering

(without accounting for the inherent autocorrelation) proposed in

(Davey et al., 2013, Equation (8)) is an overestimate (at all sampling

rates) to the accurate variance presented by us (Section 2.4.2,

Figure S1). In addition, we demonstrate that the variance correction

accounting for only the filter-induced autocorrelation is not

sufficient.

4.1 | How big is the impact of the sampling rate?

One way to quantify the impact of the sampling rate on the seed-

based connectivity analysis is by inspecting the percentage of the

links removed after variance correction as a function of the TR. From

Section 3.2, we note that variance correction in the DMN removes on

an average 97%, 88%, and 75% of the false positive links relative to

the current practice of not accounting for autocorrelation

(at HCF = 0.1 Hz) at TRs of 0.645 s, 1.4 s, and 2.5 s, respectively. This

removal manifested as a reduction in the extent of the DMN region

while retaining its integrity. In addition, as the HCF increases, the per-

centage of links removed drops exponentially. At the HCF = 1
2 TR Hz

(corresponding to no filtering), it stays at an average of 87%, 83%, and

57% for the respective TRs. This illustrates the huge impact of the

sampling rate in the single subject analysis. One may argue that set-

ting a high threshold on the nominally corrected Z-score map

(Figure 8e) may result in the reduced region DMN map just like the

variance corrected map in Figure 8g. It is clear from the analysis of

Figure 8e that even a high threshold value such as 10 may not lead to

Unfiltered(a) Nominal(b) Signal only(c)

Filtered(d) Nominal(e) Filter only(f) Filter+Signal(g)

L RZ = 21 mm

RZ = 21 mmL

−1.5 −0.7 0.0 0.7 1.5

Fisher Z

−1.5 −0.7 0.0 0.7 1.5

Fisher Z

Z score

−38 −28 −19 −9 0 9 19 28 38

Z score

−38 −28 −19 −9 0 9 19 28 38

F IGURE 8 The seed-based
DMN connectivity maps for the
Participant 1 at TR = 0.645 s
and HCF = 0.1 Hz. (a) The Fisher
Z map for the unfiltered case.
The Z-score map for the
unfiltered case corrected using

(b) VN and (c) V̂S. (d) The Fisher
Z map for the filtered case. The
Z-score map for the filtered case

corrected using (e) VN, (f) V̂F,

and (g) V̂FS [Color figure can be
viewed at
wileyonlinelibrary.com]
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the same result as in Figure 8g. We remind the reader here that the

significant impact of the autocorrelation discussed above is valid for

the single subject results.

As illustrated in Figure 9, the conclusions regarding the impact of

sampling rate on the variance corrected resting state networks using

the single subject analysis can be misleading. Thus, group analysis is

necessary to investigate the true impact on the networks.

The graph-theoretic connectivity measures are well-known for

their sensitivity to the change in functional connectivity (Afyouni

et al., 2018; van den Heuvel et al., 2017). For example, in Afyouni

et al. (2018, Section 3.4), the measures such as the nodal strength and

the local efficiencies are shown to experience a larger impact of the

autocorrelation in the frontoparietal and the DMN nodes than the

nodes from the subcortical regions of the HCP data with a fixed sam-

pling rate (TR = 0.725 s, high pass filter).

The impact of the sampling rate in the group analysis has yet to be

explored. Fiecas et al. (2017, Section 3.1) showed that the group differ-

ence between the skilled and the dyslexic readers exhibits no signifi-

cant functional connectivity after correcting for the autocorrelation

(TR = 1.97 s, band pass filter passband: [0.01, 0.10] Hz). Similarly, the

variance corrected global functional connectivity network between

Alzheimer's disease patients and the healthy control group is insignifi-

cant (Hart et al., 2018; TR = 2.3 s, low pass filter with cutoff frequency

0.1 Hz). The results reported in these works are for the low sampling

rate (less than 0.51 Hz). Based on the observations from our single

subject results and the graph theoretic results (Afyouni et al., 2018),

we hypothesize that the effect of the high sampling rate (greater than

1.5 Hz) on the group analysis may also be significant.

The effect of sampling rate on the filter-induced autocorrelation

may be illustrated by defining correlation susceptibility as the ratio of

the SPCC between filtered time series to that of the unfiltered time

series. If the ratio is one, then the filtering does not affect the correla-

tion values. The ratio quantifies the change in correlation values due

to filtering. In addition, if the ratio is independent of the sampling rate,

then correlation susceptibility should be same for all the sampling

rates. In Figure 10, we show the ratio for the various sampling rates.

The range of the correlation susceptibility values indicates the impact

of sampling rate on the ratio. Data sets with lower sampling rates

(TR = 2.5 s) have most of the susceptibility values closer to one than

the data sets with high sampling rates.

F IGURE 9 Axial slices of the
Z-score maps (z = 33 mm) for
the participant 1 at
HCF = 0.1 Hz and for various

TRs with VN and V̂FS correction
(a) prospective analysis
(b) retrospective down-sampling
analysis [Color figure can be
viewed at wileyonlinelibrary.
com] [Color figure can be
viewed at
wileyonlinelibrary.com]
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F IGURE 10 The correlation susceptibility between the filtered
and the unfiltered real fMRI data for the various TRs and for the band
pass filter with passband 0.009–0.1 Hz [Color figure can be viewed at
wileyonlinelibrary.com] [Color figure can be viewed at
wileyonlinelibrary.com]
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4.2 | A note on whitening

An alternative approach to the variance correction is whitening. The

autocorrelation sequence estimated from an fMRI time series can

directly be used to whiten the time series before the connectivity

analysis as in Bollmann et al. (2018); Bright et al. (2017); Christova,

Lewis, Jerde, Lynch, and Georgopoulos (2011); Olszowy, Aston, Rua,

and Williams (2018). Rather, we see a value in using the variance cor-

rection approach due to the following reasons:

• The whitening is inverse filtering. The filter coefficients are obtained

by fitting a model such as the ARMA to the time series by using the

estimated autocorrelation. The invertibility of the model depends on

the model coefficients which in turn depend on the estimated auto-

correlation values. For a given estimated autocorrelation, it may be

possible that the inverse (whitening) filter may not exist at all.

• The whitening leaves behind a residual autocorrelation especially for

the data sets with high sampling rates (Bollmann et al., 2018). The

reasons for such a residual autocorrelation include mismatches in

the model type, the filter-order and the autocorrelation estimation.

If the residual autocorrelation is not corrected, it may increase the

false positives in the connectivity analysis according to Equation (9).

• As discussed in Afyouni et al. (2018), whitening modifies the defini-

tion of the SPCC of the observed time series to that of the

unobserved white time series.

Finally, it is crucial to observe that the method presented in this

article is not confined only to the fMRI time series. It may be used for

the other modalities such as the MEG and the EEG where the signals

are acquired at high sampling rates.

4.3 | Methodological limitations

The computation of the variance (in Equation (9)) needs a computa-

tional load in the seed-voxel-based connectivity analysis. The variance

computation for a pair of voxels in the DMN (Figure 8) needs a mean

CPU time of 13.12 ms in R package installed on a 64-bit laptop com-

puter with Intel Core i5-7200U processor (2.50 GHz) and 4 GB RAM.

The number of brain only voxels in the DMN for the 3 mm MNI regis-

tered images is 70,835. The mean CPU times required for a single sub-

ject whole brain analysis is therefore 15.49 min. This may be

computationally burdensome for the group analysis.

Themethodology proposed in this article is applicable for the pairwise

SPCC and thus may not be suitable for themulti-voxel connectivity analy-

sis, such as those proposed in (Anders, Heussen, Sprenger, Haynes, &

Ethofer, 2015). The estimators for the autocorrelation and the cross-

covariances in Section 2.7 behave well for a reasonably long time series.

For short-window time series such as those required in the dynamic func-

tional connectivity, the estimators may not yield reliable auto correlation

and cross-covariance estimates. In such a case, short data record estima-

tors such as those proposed in Afyouni et al. (2018)may be used.

4.4 | Potential extensions

4.4.1 | Dynamic network connectivity

It would be greatly beneficial to extend our approach to the temporal

network dynamics domain. Sliding window methods that capture the

dynamic, nonstationary network organization along time in resting

state fMRI time series have been increasingly popular (Chang &

Glover, 2010; Preti, Bolton, & Ville, 2017; Sakoglu et al., 2010). How-

ever, validating the results in the network dynamics is challenging.

This is largely due to the fact that artifacts from the high sampling

rates may manifest as significant events which may diminish or

destroy the underlying true dynamics.

4.4.2 | Autocorrelation due to other preprocessing
steps

In this work, we have exploited the effect of the temporal filtering on

the variance of the SPCC. The impact of the other preprocessing steps

such as the spatial smoothening (Worsley, 2005) and the interpolation

schemes (Power, Plitt, Kundu, Bandettini, & Martin, 2017) might be a

useful extension.

4.4.3 | Higher-order autocorrelation

Higher-order autocorrelation exploits higher-order dependencies in

the fMRI signal rather than the second-order dependencies explored

in this article. It would be interesting to investigate the impact of

higher-order dependencies on the variance of the SPCC.

5 | CONCLUSIONS

The autocorrelation, a crucial feature of the time series in the resting state

fMRI connectivity analysis, is sensitive to the sampling rate. The autocor-

relation affects the inference on connectivity if not properly accounted

for. In this study, we investigated the impact of the sampling rate on the

functional connectivity analysis that accounts for the autocorrelation.

Using the classical results from multivariate time series, we first showed

that the effect of the sampling rate is reflected in the variance of the SPCC.

Then with the simulation and the real data sets, we showed that the vari-

ance correction is an important step for proper inference of the connectiv-

ity analysis. Finally, we also showed that in the single subject analysis, the

data sets with higher sampling rates are more prone to the false positive

connectivity which may be reduced by the variance correction. Thus, our

approach brings together the existing methods in the literature and gener-

alizes the variance correction results for the arbitrary sampling rates.

6 | R CODE AVAILABILITY AND
REPRODUCIBILITY

A set of R codes, the necessary preprocessed data, and the other addi-

tional R data files to reproduce all the figures in this article has been
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uploaded in the GitHub repository, https://github.com/OliverMount/

AutocorrfMRI.
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