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Abstract: Cyclophilins are cellular peptidyl-prolyl isomerases that play an important role in viral
infections, with demonstrated roles in the replication of hepatitis C virus (HCV) and other viruses in
the Flaviviridae family, such as dengue virus (DENV) and yellow fever virus (YFV). Here, we discuss
the roles of cyclophilins in HCV infection and provide a comprehensive overview of the mecha-
nisms underlying the requirement for cyclophilins during HCV replication. Notably, cyclophilin
inhibitor therapy has been demonstrated to be effective in reducing HCV replication in chronically
infected patients. While the roles of cyclophilins are relatively well-understood for HCV infection,
cyclophilins are more recently emerging as host factors for flavivirus infection as well, providing
potential new therapeutic avenues for these viral infections which currently lack antiviral therapies.
However, further studies are required to elucidate the roles of cyclophilins in flavivirus replication.
Here, we review the current knowledge of the role of cyclophilins in HCV infection to provide a
conceptual framework to understand how cyclophilins may contribute to other viral infections, such
as DENV and YFV. Improved understanding of the roles of cyclophilins in viral infection may open
perspectives for the development of cyclophilin inhibitors as effective antiviral therapeutics for HCV
and related viruses.
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1. Introduction

Approximately 71 million people around the world are chronically infected with
hepatitis C virus (HCV) [1]. Chronic HCV infection significantly increases the risk of
progressive liver disease leading to cirrhosis and hepatocellular carcinoma, and is one of
the leading causes of liver transplantation in the U.S. [2,3]. As of 2015, the most affected
World Health Organization (WHO) regions were the Eastern Mediterranean Region and the
European Region, with HCV prevalence estimates of 2.3% and 1.5%, respectively [4]. HCV
is genetically diverse and classified into six major genotypes with distinct geographical
distributions [5]. Genotypes 1 and 3 are the most prevalent worldwide (46.2% and 30.1%
of cases, respectively), whereas genotypes 4 and 5 are more common in lower-income
countries [5]. HCV is spread mainly through the blood and, despite intensive efforts, there
is still no effective vaccine to prevent HCV infection. Despite the remarkable development
of effective direct-acting antivirals (DAAs) allowing for the cure of chronic HCV infection
in the majority of patients, DAA therapy remains prohibitively expensive and is not
accessible for all patients. For example, the extended treatment duration for patients with
compensated cirrhosis becomes unaffordable at current DAA prices [6]. Furthermore,
emergence of resistance to DAAs can lead to treatment failure [7–9], and rarer genotypes
(such as those more common in lower-income countries) are more difficult to treat [5].
Investigation into alternative therapeutic approaches is still warranted.
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HCV, classified in the hepacivirus genus of the Flaviviridae family, is an enveloped
virus with a positive-sense single-stranded RNA ((+)ssRNA) genome [10]. The HCV
genome is approximately 9 kb in length, and encodes a polyprotein that is processed into
three structural (core, E1 and E2) and seven non-structural proteins (p7, NS2, NS3, NS4A,
NS5A and NS5B). The viral replication cycle is initiated by the interaction of the E1 and E2
glycoproteins with several receptors on hepatocytes [11]. Following a complex post-binding
entry process, HCV is internalized via clathrin-mediated endocytosis and undergoes
membrane fusion dependent on low pH within the endosomal compartment [11]. Upon
uncoating and release of the (+)ssRNA genome in the cytoplasm, the viral RNA is directly
translated by the cellular ribosomal machinery into a single polyprotein precursor of
~3000 amino acids. This polyprotein is cleaved by NS2/3 and NS3/4A viral proteases [12]
and by host signal peptide protease [13,14] into the structural and non-structural proteins.

HCV non-structural proteins NS4B and NS5A drive the remodeling of intracellular
membranes into a “membranous web” comprising the replication organelle (RO) [15]. The
RO serves as a platform for viral RNA replication and also shields the replicating viral
RNA from innate immune sensors [16]. Within the RO, the (+)ssRNA genome serves as
the template for the viral RNA-dependent RNA polymerase (RdRp) NS5B to generate
negative-sense RNA intermediates that are used as templates to generate more positive-
sense genomes [17]. Viral assembly is thought to be regulated by phosphorylation of
NS5A [18,19], culminating in the delivery of (+)ssRNA genomes to core protein on cellular
lipid droplets (LDs), where the process of viral assembly occurs, forming the nucleocapsid.
The virion envelope is acquired by the budding of the nucleocapsid into the ER at sites of
lipoprotein synthesis [20]. HCV particles egress through the lipid secretory pathway and
become associated with lipoproteins to produce lipoviroparticles (LVPs) [21].

HCV replication, like that of other viruses, relies on interactions with host factors. Cy-
clophilins (Cyps) are a family of cellular proteins that have roles in the replication of many
viruses. The first cyclophilin that was identified, cyclophilin A (CypA), was described as a
cytosolic protein that could bind to the immunosuppressive drug cyclosporin A (CsA) in
lymphoid cells [22]. The discovery of CypA as the target of CsA allowed the understanding
of the immunosuppressive effects of CsA, which had been of long-standing interest due to
the potential uses of CsA in organ transplantation. However, the molecular mechanisms
underlying immunosuppression by CsA were not understood until Handschumacher
et al. identified CypA as a CsA target [22]. CsA-mediated immunosuppression results
from the binding of the CypA-CsA complex to calcineurin (Figure 1A), which inhibits
the calcineurin-dependent dephosphorylation of the nuclear factor of activated T-cells
(NFAT), a transcription factor required for T-cell activation (Figure 1B) [23–25]. Importantly,
non-immunosuppressive CsA derivatives and other CypI have been developed that retain
Cyp-binding, but do not interact with calcineurin, thus allowing for Cyp-inhibitory activity
in the absence of immunosuppression [26–32]. These non-immunosuppressive cyclophilin
inhibitors (CypI) may be useful as antiviral molecules.

CypA, like other Cyps, has peptidyl-prolyl isomerase (PPIase) activity, and Cyps
are thought to aid the folding and assembly of other proteins [33]. Cyps catalyze the
isomerization of prolines, interconverting this amino acid between cis and trans isomers [33].
There are at least 60 reported cyclophilins found in plants, fungi, animals, and bacteria.
Among them, 17 isoforms are found in humans and all of them are highly structurally
conserved in the PPIase domain [34,35] (Figure 2). Human Cyp isoforms have shared
PPIase activity, but differ in their subcellular localization. For example, CypA, CypB,
and CypD localize to the cytoplasm, endoplasmic reticulum (ER), and mitochondria,
respectively (reviewed in [36]). Interestingly, some Cyps are secreted from cells and
may function as intercellular mediators, although their extracellular roles remain poorly
understood [37–40].
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Figure 1. Immunosuppressive effect of CsA. (A) T-cell activation depends on the dephosphorylation of the transcription 
factor nuclear factor of activated T-cells (NFAT). Calcineurin catalyzes dephosphorylation of NFAT, enabling its nuclear 
translocation. (B) The CypA inhibitor, CsA, binds to CypA, enabling the CypA-CsA complex to bind to and inhibit cal-
cineurin, thus preventing dephosphorylation and nuclear translocation of NFAT. 

Cyps have been implicated in the replication of many viruses, including human im-
munodeficiency virus-1 (HIV-1) [41], HCV [32], flaviviruses [42–45], and coronaviruses 
[46–52], among others [53]. Accumulating evidence suggests that Cyps interact with viral 
proteins to regulate various aspects of viral replication, although the molecular mecha-
nisms have remained unclear, precluding the development of effective Cyp-targeting an-
tivirals. Nonetheless, Cyps are promising targets for broad-spectrum host-targeted anti-
viral therapy. Further studies are warranted to understand the roles of Cyps in viral in-
fection and elucidate the specific antiviral mechanisms, which would enable the develop-
ment of improved cyclophilin inhibitors as potent antiviral drugs. Over the past two dec-
ades, much effort has focused on unravelling the roles of Cyps in HCV infection. Here, 
we describe these research efforts and provide a comprehensive overview of the roles of 
Cyps in HCV infection, and in related flavivirus infections. Improved understanding of 
the requirement for Cyps during viral replication may pave the way for Cyp-targeted an-
tiviral therapy to address current limitations of DAA therapy for HCV, as well as to pro-
vide new treatment perspectives for other currently untreatable viral infections. 

Figure 1. Immunosuppressive effect of CsA. (A) T-cell activation depends on the dephosphorylation of the transcription
factor nuclear factor of activated T-cells (NFAT). Calcineurin catalyzes dephosphorylation of NFAT, enabling its nuclear
translocation. (B) The CypA inhibitor, CsA, binds to CypA, enabling the CypA-CsA complex to bind to and inhibit
calcineurin, thus preventing dephosphorylation and nuclear translocation of NFAT.

Cyps have been implicated in the replication of many viruses, including human immun-
odeficiency virus-1 (HIV-1) [41], HCV [32], flaviviruses [42–45], and coronaviruses [46–52],
among others [53]. Accumulating evidence suggests that Cyps interact with viral pro-
teins to regulate various aspects of viral replication, although the molecular mechanisms
have remained unclear, precluding the development of effective Cyp-targeting antivirals.
Nonetheless, Cyps are promising targets for broad-spectrum host-targeted antiviral ther-
apy. Further studies are warranted to understand the roles of Cyps in viral infection and
elucidate the specific antiviral mechanisms, which would enable the development of im-
proved cyclophilin inhibitors as potent antiviral drugs. Over the past two decades, much
effort has focused on unravelling the roles of Cyps in HCV infection. Here, we describe
these research efforts and provide a comprehensive overview of the roles of Cyps in HCV
infection, and in related flavivirus infections. Improved understanding of the requirement
for Cyps during viral replication may pave the way for Cyp-targeted antiviral therapy to
address current limitations of DAA therapy for HCV, as well as to provide new treatment
perspectives for other currently untreatable viral infections.
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Figure 2. Crystal structure of CypA. PPI active site residues R55 (pink), F60 (violet) and H126 
(cyan) are shown. The structure was rendered in PyMOL (PDB: 4IPZ). 
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combining these two agents, patient outcomes were improved, with only mild side effects 
[57,58]. Since then, non-immunosuppressive CsA derivatives, such as NIM811, alisporivir, 
and SCY-635, have been developed and shown to potently inhibit HCV replication in cell 
culture models [27–29]. Furthermore, some non-immunosuppressive CypI have shown 
promising antiviral activity against HCV in clinical trials [59,60]. Interestingly, treatment 
with the non-immunosuppressive CypI SCY-635 not only suppressed HCV replication, 
but also restored innate immune responses in patients chronically infected with HCV [60]. 

The inhibitory activity of CsA and other CypI against HCV replication suggested a 
role for Cyps during HCV infection, which was supported by mechanistic studies. Using 
a subgenomic replicon model, Nakagawa et al. showed that silencing of CypA, CypB or 
CypC expression in Huh7 cells by RNAi suppressed HCV genotype 1b replication [61], 
although silencing of CypA expression had the most profound impact on viral replication. 
Conversely, Watashi et al. showed that silencing of CypB expression, but not CypA ex-
pression, inhibited HCV genotype 1b replicon replication in MH-14 cells (a derivative of 
Huh7 cells) [62]. In yet another study, Yang et al. stably silenced expression of CypA, 
CypB or CypC in Huh7.5 cells, and found that only CypA was essential for replication of 
both genotype 1a and genotype 1b replicons [63]. Interestingly, Yang et al. also used the 
HCVcc/JFH-1 (genotype 2a) system to show that silencing of CypA expression profoundly 
inhibited authentic HCV infection in Huh7.5 cells [63]. Subsequent studies sought to clar-
ify the roles of Cyps in HCV replication and address the controversial findings in the lit-
erature. Chatterji et al. silenced expression of CypA, CypB, CypC or CypD in Huh7 cells, 
and evaluated the impact on HCV Con1 (genotype 1b) replicon replication. An inhibitory 

Figure 2. Crystal structure of CypA. PPI active site residues R55 (pink), F60 (violet) and H126 (cyan)
are shown. The structure was rendered in PyMOL (PDB: 4IPZ).

2. Cyclophilins and HCV Infection

In 2003, Watashi et al. were the first to report that HCV replication was reduced in the
presence of Cyp inhibitors, such as CsA [54]. Using genotype 1b replicon models, it was
shown that CsA treatment inhibited viral RNA replication and decreased expression of
viral proteins NS5A and NS5B, demonstrating the potential for CsA in HCV therapy [54,55].
Subsequently, CsA was shown to similarly inhibit replication of a genotype 2a replicon,
albeit with slightly less potency [56]. Importantly, the anti-HCV activity of CsA was
independent of its immunosuppressive function, as the calcineurin inhibitor FK506 did not
affect HCV replication [54]. Due to the lack of an effective treatment for HCV at the time,
CsA was added to the standard-of-care interferon (IFN) treatment regimen. By combining
these two agents, patient outcomes were improved, with only mild side effects [57,58].
Since then, non-immunosuppressive CsA derivatives, such as NIM811, alisporivir, and
SCY-635, have been developed and shown to potently inhibit HCV replication in cell
culture models [27–29]. Furthermore, some non-immunosuppressive CypI have shown
promising antiviral activity against HCV in clinical trials [59,60]. Interestingly, treatment
with the non-immunosuppressive CypI SCY-635 not only suppressed HCV replication, but
also restored innate immune responses in patients chronically infected with HCV [60].

The inhibitory activity of CsA and other CypI against HCV replication suggested a
role for Cyps during HCV infection, which was supported by mechanistic studies. Using
a subgenomic replicon model, Nakagawa et al. showed that silencing of CypA, CypB or
CypC expression in Huh7 cells by RNAi suppressed HCV genotype 1b replication [61],
although silencing of CypA expression had the most profound impact on viral replication.
Conversely, Watashi et al. showed that silencing of CypB expression, but not CypA
expression, inhibited HCV genotype 1b replicon replication in MH-14 cells (a derivative
of Huh7 cells) [62]. In yet another study, Yang et al. stably silenced expression of CypA,
CypB or CypC in Huh7.5 cells, and found that only CypA was essential for replication of
both genotype 1a and genotype 1b replicons [63]. Interestingly, Yang et al. also used the
HCVcc/JFH-1 (genotype 2a) system to show that silencing of CypA expression profoundly
inhibited authentic HCV infection in Huh7.5 cells [63]. Subsequent studies sought to clarify
the roles of Cyps in HCV replication and address the controversial findings in the literature.
Chatterji et al. silenced expression of CypA, CypB, CypC or CypD in Huh7 cells, and
evaluated the impact on HCV Con1 (genotype 1b) replicon replication. An inhibitory
effect on HCV RNA replication and viral protein expression was observed only in cells



Pathogens 2021, 10, 902 5 of 15

lacking CypA [64]. Consistently, Kaul et al. showed that silencing of CypA expression,
but not CypB expression, in Huh7-Lunet or Huh7.5 cells inhibited replication of genotype
2a HCV, evaluated using subgenomic replicon and assembly-competent full-length RNA
models [65]. Importantly, the inhibitory effect of CypA silencing could be reversed upon
re-introduction of CypA, confirming a specific role for CypA [64,65]. Furthermore, studies
with CypA mutants showed that the peptidyl-prolyl isomerase activity of CypA is required
for HCV replication [64,65]. These studies led to the conclusion that CypA is the key player
in HCV infection.

To further understand the antiviral mechanism of CsA against HCV, Fernandes et al.
took an unbiased approach and selected for resistance to CsA in HCV genotype 1b replicon
cells. After mapping the mutations that decreased susceptibility to CsA, it was found
that mutations present in NS5A and NS5B affected the susceptibility of HCV replication
to CsA [66]. Notably, mutations in NS5A conferred CsA resistance without concomitant
mutations in NS5B being required, while the NS5B mutations alone conferred only a slight
change in susceptibility to CsA, suggesting that CsA acts by two separate mechanisms
on NS5A and NS5B, or through a single antiviral effect on the NS5A/NS5B complex.
In either case, these findings were indicative of an interaction between Cyps and non-
structural proteins NS5A and NS5B. Indeed, the viral RNA polymerase NS5B was shown
to interact with both CypA and CypB [64,66], and binding of CypB to NS5B was found to
stimulate polymerase activity, with a loss of CypB-binding leading to a decrease in HCV
RNA replication [62]. Interestingly, one study reported the selection of NS5B mutants that
were resistant to CsA; these mutations in NS5B conferred an increased ability for NS5B to
bind RNA in the presence of CsA. Complementary studies supported these observations
by showing that CypB increases RNA synthesis through binding to NS5B [67], although
in vitro enzyme assays suggested that CypB may activate NS5B in a genotype-specific
manner [68]. These findings are consistent with a role for Cyps in regulating HCV RNA
replication.

More recently, research efforts have evaluated interactions between CypA and NS5A,
focusing on domain 2 (D2) and domain 3 (D3). Both NS5A-D2 and NS5A-D3 are intrinsi-
cally disordered, leading to the hypothesis that Cyp binding to these domains may induce
protein conformational changes required for NS5A activity. NS5A-D2 is critical for viral
RNA replication [69], while NS5A-D3 contributes to viral particle production and assem-
bly [70]. Biochemical studies identified a direct interaction between NS5A-D2 and the
isomerase active sites of CypA and CypB [71], and other studies similarly showed that
NS5A-D2 interacts with the CypA isomerase pocket [72,73]. Proline residues in NS5A-D2
were identified as putative substrates for CypA PPIase activity [71,74,75]. Notably, CsA
treatment selects for mutations in a proline-rich region of D2 that overlaps with the CypA-
binding site. These mutations, especially the NS5A D316E/Y317N double mutant, confer
resistance to CsA across multiple HCV genotypes [76] and were proposed to decrease the
requirement of NS5A for Cyp-mediated isomerization [75], thus enabling NS5A to carry
out its functions independently of CypA.

Although the mechanisms are not completely understood, the CypA–NS5A interac-
tion likely contributes to viral RNA replication by several mechanisms (Figure 3). First,
interaction with CypA affects the ability of NS5A to bind RNA [77]. The binding of CypA to
a proline-rich region motif in NS5A-D2 enhances its RNA-binding properties [73]. This was
corroborated by Dujardin et al. in a recent study where CypA was shown to allosterically
modulate the disordered NS5A-D2, regulating viral RNA replication efficiency [78]. CypA
and NS5B share overlapping binding sites in NS5A-D2 [79], and Ngure et al. showed
that the RNA-binding region in NS5A-D2 coincides with the binding site of CypA and
NS5B [80], suggesting the formation of a ternary complex between CypA, NS5A and NS5B
that regulates viral RNA replication [81].
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tributes to RO formation, likely through its interactions with NS5A. A CsA-resistant HCV 
mutant (NS5A D316E/Y317N) was still able to form the double-membrane vesicles com-
prising the RO in the presence of CsD [82], which is consistent with a role for the CypA–
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Figure 3. Suggested roles of cyclophilins during HCV infection. Cyps have been shown to have roles in several post-entry
steps of HCV infection. (1) Formation of the CypA–NS5A complex inhibits the function of PKR, preventing activation of
PKR-related antiviral immune responses. (2) The CypA–NS5A complex binds to the RdRp NS5B, enhancing replication of
viral RNA. CypB also acts as a cofactor of NS5B, facilitating viral RNA replication. (3) CypA is required for formation of the
HCV replication organelle and for optimal lipid droplet formation and lipid trafficking, supporting viral assembly and
egress.

In addition to these direct roles in regulating the HCV RNA replication machinery,
CypA appears to support other steps of the HCV replication cycle mediated by NS5A
(Figure 3). For example, cyclosporine D (CsD) [82], CsA [32], non-immunosuppressive
CsA derivatives [32,83] and structurally unrelated CypI [32] were shown to inhibit RO
formation, but did not appear to affect the integrity of already established ROs [82]. Fur-
thermore, silencing of CypA expression abrogated RO formation, which could be restored
by re-expression of wild-type (but not catalytically inactive) CypA [83]. Thus, CypA
contributes to RO formation, likely through its interactions with NS5A. A CsA-resistant
HCV mutant (NS5A D316E/Y317N) was still able to form the double-membrane vesicles
comprising the RO in the presence of CsD [82], which is consistent with a role for the
CypA–NS5A interaction in RO formation. Thus, CypA appears to support formation of
the HCV replication platform, which enhances RNA replication and may also contribute to
evasion of innate immune responses, as the RO was shown to shield HCV RNA replication
intermediates from innate immune recognition [16].

Interestingly, multiple studies have shown that CypI treatment more potently inhibits
replication of full-length HCV compared to subgenomic replicon models [32,65,84]. While
a possible link to polyprotein cleavage kinetics and the role of NS2 (which is lacking in
subgenomic replicons) was explored [65,84], other studies identified a role for CypA in the
HCV assembly process. Biochemically, CypA was shown to interact with NS5A-D3 [85],
which regulates viral assembly [70], suggesting roles for Cyps in HCV assembly. An
interesting observation was that CypI treatment of replicon or HCV-infected cells (but not
uninfected cells) led to an increase in lipid droplet size and a decrease in lipid droplet
number [86]. As lipid droplets are platforms for HCV assembly, it was hypothesized
that the disruption to lipid droplets would inhibit assembly of infectious HCV virions.
Furthermore, treatment with CypI, such as NIM811, impairs cellular lipid and protein
trafficking, in the VLDL pathway [86], which HCV exploits during egress. These findings
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are consistent with the observation that CypI treatment decreases the release of infectious
viral particles from HCV-infected cells [77,86].

CypA is also emerging as a regulator of PKR-dependent antiviral immunity during
HCV infection. Daito et al. first reported that the expression of the IFN-stimulated gene
(ISG) products was decreased in HCV-infected cells treated with IFN-α, compared to non-
infected control cells [87]. However, treatment with CypI, such as SCY-635, restored the
expression of ISGs at the protein level. A physical interaction between CypA and PKR was
identified, suggesting that CypA regulates PKR activity [87]. Consistently, SCY-635 or CsA
treatment of HCV-infected cells was found to reduce phosphorylation of PKR and down-
stream factor eIF2a, thus counteracting PKR-mediated shutdown of protein translation and
restoring translation of ISGs [87]. Similarly, Gallay et al. reported that distinct CypI (includ-
ing CsA, alisporivir, NIM811 and sanglifehrins), prevent the activation/phosphorylation of
PKR in HCV-infected cells. It was proposed that activation of PKR through the accumula-
tion of HCV dsRNA intermediates during viral replication reduces translation of ISGs, thus
contributing to HCV evasion of the innate immune response [88]. Recently, Colpitts et al.
showed that CsA and other CypI induce expression of IFN-β and ISGs at the mRNA level
in a PKR-dependent manner [32]. It was proposed that CypA, under normal conditions,
regulates the ability of PKR to mediate translation shutdown. In the presence of CypI, the
interaction between CypA and PKR is disrupted, preventing PKR from shutting down
translation (and thus restoring protein expression of ISGs), but enabling PKR to activate the
transcription factor interferon-regulatory factor 1 (IRF1) [89], which induces the expression
of antiviral genes with known anti-HCV activities [32]. Given that NS5A binds to and
inhibits PKR [90], and that CypA binds NS5A [72,73], one possibility is that CypA regulates
the ability of NS5A to inhibit PKR. Notably, binding sites for both CypA and PKR are
located in D2 of NS5A, in the IFN-sensitivity-determining region (ISDR) that is associated
with HCV sensitivity to IFN [90]. Although experimental validation of this model and the
underlying mechanisms is still required, these studies collectively highlight an important
role for CypA in HCV innate immune evasion. Consistently, Colpitts et al. showed that
CsA treatment is more potent against HCV replication in innate immune-competent Huh7
cells compared to Huh7.5 cells [32], which have defects in innate immunity [91]. Similarly,
CypA was required for HCV replicon replication in Huh7 cells, but not in Huh7.5 cells [32].

Despite the initial controversies surrounding the relative importance of CypA and
CypB, and their roles in HCV replication, accumulating evidence suggests that both Cyps
are necessary, although they likely have different roles in the replication cycle (Figure 3).
This likely contributes to the strong antiviral potency of CypI against HCV infection, since
by targeting multiple cyclophilins with distinct roles, CypI inhibit different aspects of the
HCV replication cycle.

3. Cyclophilins and Other Flaviviridae

Flaviviruses, closely related to HCV, are also classified in the Flaviviridae family. Unlike
HCV, however, flaviviruses are arthropod-borne viruses that cause a spectrum of disease,
ranging from hepatitis to shock syndrome, encephalitis, and congenital abnormalities [92].
DENV is one of the most important arboviruses worldwide, mainly transmitted by female
mosquitos belonging to the genus Aedes (Aedes aegypti and Aedes albopictus) [93]. It is
estimated that there are 100 to 400 million DENV infections each year [94]. Flaviviruses
can also emerge unexpectedly, such as the recent Zika virus (ZIKV) epidemic in the Amer-
icas [92] and the rapid spreading of West Nile virus (WNV) across North America since
its first detection in New York in 1999 [95]. While there are vaccines for some flaviviruses,
such as yellow fever virus (YFV) and Japanese encephalitis virus (JEV), the development of
vaccines for DENV is challenged by the antibody-dependent enhancement effect (ADE),
where live attenuated vaccines induce non-neutralizing cross-reactive antibodies that can
enhance viral entry during a subsequent infection, particularly with a heterologous DENV
serotype [96]. There are currently no approved antivirals for flaviviruses, leaving many
people around the world vulnerable to endemic and emerging flavivirus infections.
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Similarly to HCV, flaviviruses have (+)ssRNA genomes of ~11 kb in length that encode
for a polyprotein that is processed into three structural proteins and seven non-structural
proteins [97,98]. The flavivirus replication cycle begins with the attachment of the viral
envelope glycoprotein (E) to cellular receptors, followed by internalization by clathrin-
mediated endocytosis and subsequent low pH-mediated fusion [92]. Following the release
of viral RNA into the cytoplasm, the (+)ssRNA is directly translated by cellular ribosomes
into a polyprotein which is processed by NS3 and cofactor NS2B to produce structural
and non-structural proteins [99]. RNA replication occurs within ROs derived from ER
membranes through the activities of NS4A and NS4B [100], and requires the replicase
complex comprised of RdRp NS5 and the NS3 helicase domain for RNA replication. New
viral particles start to assemble as (+)ssRNA strands associate with capsid protein to form
the nucleocapsid. Virions acquire their envelope through budding into the ER, and undergo
a maturation process during egress, requiring processing of the Pr-M peptide into Pr and
M by furin, resulting in the release of infectious viral particles [92].

Given the lack of antivirals for flaviviruses, and the promising antiviral effect of CypI
against HCV, a related Flaviviridae family member, there has been interest in exploring
CypI as flavivirus antivirals. In 2009, Qing et al. showed that silencing of CypA, CypB,
CypC, or CypA and CypB expression in human hepatoma Huh7.5 cells reduces the repli-
cation of flaviviruses DENV-1, YFV, and WNV [42]. Viral replication could be rescued by
adding back CypA with a functional PPI activity [42], supporting a specific role for CypA.
Furthermore, CsA treatment was shown to inhibit DENV-1 [42], YFV [43], JEV [45] and
ZIKV [44] replication. However, CsA still inhibited WNV replication in the absence of
CypA, suggesting the involvement of additional Cyps [42]. Nevers et al. demonstrated that
a small molecule CypI called SMCypI C31, which is structurally unrelated to CsA, exerts
dose-dependent antiviral activity against multiple Flaviviridae, including HCV, DENV, YFV
and ZIKV [101], opening perspectives for the development of non-immunosuppressive
CypI as anti-flavivirus drugs. Some insights into the antiviral mechanisms of CypI against
flavivirus replication are starting to emerge. Qing et al. showed that CypA interacts
with WNV NS5 RdRp, suggesting a role for CypA in regulating viral RNA synthesis [42],
similar to what has been described for HCV. Interestingly, proteomic studies revealed that
CypA interacts with YFV NS4B [43], while another study showed that CypB binds to JEV
NS4A [45]. Since both NS4A and NS4B have roles in RO formation [100], it is tempting
to speculate that Cyps may contribute to flavivirus RO formation, as has been observed
for HCV [32,82,83]. However, further studies are required to test this model and to un-
derstand the roles of Cyps in flavivirus replication. Furthermore, the roles of Cyps in the
replication of other flaviviruses, including emerging viruses such as tick-borne encephalitis
virus [102], Alkhurma hemorrhagic fever virus [103] and Powassan virus [104], have yet to
be evaluated.

Although much work remains to be done to clarify the mechanisms underlying the
requirement for Cyps during flavivirus replication, potential roles of Cyps in flavivirus
infection are beginning to emerge (Figure 4), providing a framework to guide future
mechanistic studies and pave the way for host-targeting antiviral therapy for currently
untreatable flavivirus infections.
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4. Future Perspectives for Cyclophilin Inhibitors as Antiviral Therapy

Although its immunosuppressive activity has hampered the use of CsA as a clinical
antiviral, CsA has been instrumental as a tool to understand the roles of Cyps in viral
replication. Non-immunosuppressive CsA derivatives, such as alisporivir and NIM118,
demonstrated strong efficacy as antiviral molecules in laboratory models of HCV infection
and in clinical trials in HCV-infected patients, thus paving the way for the use of CypI
in antiviral therapy. Recently, different types of CypI that are structurally distinct from
CsA are being explored. Sanglifehrins are a group of cyclophilin-binding polyketides
naturally produced by Streptomyces species [105]. Sanglifehrins are structurally distinct
from CsA (Figure 5) and lack immunosuppressive properties. Interestingly, they have
higher affinity for CypA and were shown to inhibit HCV genotype 1b subgenomic replicon
replication more potently than CsA [105]. Consistent with the known CypI mechanisms
against HCV replication, sanglifehrins disrupt formation of NS5A-CypA and NS5A-CypB
complexes [105]. The sanglifehrin analog NV556 was found to inhibit HCV replication
in vitro and in HCV-infected human liver chimeric mice [106]. Remarkably, a single 50
mg/kg dose of NV556 suppressed established HCV infection in these mice, with no
viral rebound observed after 5 months [106]. Sanglifehrin derivatives with improved
bioavailability have also been synthesized, and have demonstrated highly potent anti-HCV
activity in the low nanomolar range in cell culture models [31,32].
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To overcome limitations associated with CypI derived from CsA or sanglifehrin (such
as poor cell permeability, potential off-target or immunosuppressive effects, and complex
synthetic pathways), Ahmed–Belkacem et al. used a fragment-based drug discovery ap-
proach to identify non-peptidic, small-molecule cyclophilin inhibitors (SMCypI), unrelated
to CsA or sanglifehrins [30]. SMCypI have potent PPIase-inhibitory activity, and were
found to have potent antiviral activity against HCV genotype 1b replication [30]. The
lead SMCypI, termed C31, was subsequently shown to disrupt the CypA–NS5A interac-
tion [101], similar to what was shown previously for CsA. Further suggesting that SMCypI
acts by the same mechanisms as CsA, C31 treatment selected for resistance mutations in
NS5A-D2 [101] (genotype 1b D320E/Y321H; analogous to the D316E/Y317N mutation in
genotype 2a selected by CsA treatment [76]). Importantly, C31 demonstrated antiviral activ-
ity against other Flaviviridae, including DENV, ZIKV and YFV, albeit with less potency than
against HCV [101]. Nonetheless, these findings highlight the potential for developing CypI
as broad-spectrum anti-Flaviviridae drugs; further structure-activity relationship studies
aimed at improving the antiviral potency through chemical modification are warranted.

Proteolysis-targeting chimeras (PROTACs) harness the ubiquitin-proteasome system
to induce degradation of target proteins. PROTACs are emerging as attractive candidates
for anticancer therapies [107], and are being explored as antiviral drugs. Colpitts et al.
recently synthesized a CsA-derived PROTAC molecule, modified with a ligand to recruit
the von Hippel–Lindau E3 ligase to CsA targets [32]. This molecule, termed CsA-Prtc1,
induced rapid proteasomal degradation of CypA and CypB, and potently inhibited HCV
genotype 2a replication, with no immunosuppressive or cytotoxic effects [32]. Overall,
these and other new approaches are paving the way for innovative antiviral strategies to
bolster current efforts in the design and development of Cyp-targeting drugs.

5. Conclusions

Given the broad requirement for cyclophilins as viral host factors, CypI are attractive
candidates for the development of host-targeting antivirals to treat multiple viral infections.
Here, we reviewed the molecular mechanisms underlying the roles of Cyps in Flaviviridae
infection. Although we have focused here on HCV and flavivirus infection, it is worth
noting that CypI have been shown to inhibit coronavirus infection, including SARS-CoV-
2 [52]. Therefore, development of CypI as an antiviral therapy may protect against a broad
range of RNA virus infections, including future emerging flaviviruses or coronaviruses.
Further studies are needed to understand the antiviral mechanisms and develop CypI
capable of exerting potent antiviral activities without compromising immune responses.
However, efforts in the HCV field over the past decades have contributed greatly to the
understanding of the roles of Cyps in viral infection, and will certainly inform future work
characterizing the roles of Cyps in flavivirus and coronavirus infections. This work paves
the way for the development of CypI inhibitors as antiviral drugs, to open perspectives for
new approaches to treat HCV and many other viral infections.
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