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1  |   INTRODUCTION

Positive reinforcement increases the probability of repeating 
actions that were previously rewarded. When a choice between 
two alternatives is offered, the one with greater expected 
value is more likely to be taken. If the potential outcomes 
change due to shifts in the environment, sampling the avail-
able choices and balancing the exploitation and exploration 
of these choices become necessary. These behaviors are con-
trolled by the brain's reward system, which signals prediction 
error and performs updates of expectation from any action 
or cue contingencies (Schultz, 2015). The strategy employed 

by humans (e.g., Holroyd & Coles,  2002; O’Doherty 
et  al.,  2003) and animals (e.g., Bayer & Glimcher,  2005; 
Fiorillo et al., 2003) when faced with a choice between prob-
abilistic rewards is consistent with reinforcement models that 
rely on temporal difference learning and may be predicted 
with algorithms developed in the machine learning field 
(Sutton et al., 2018). Reinforcement learning plays an essen-
tial role in adaptive behavior, and impaired decision-making 
has been a major focus in research on the etiology of neuro-
psychiatric disorders (Maia & Frank, 2011).

Thus far, experimental models used in studies of rein-
forcement learning have been based on choices made in 
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environments with minimized distractions, short-time scales 
and large numbers of choices performed in quick succession 
(e.g., Clark et al., 2004; Izquierdo et al., 2017)). The mecha-
nisms controlling intervals between responses have received 
considerable attention, with a focus on the ability to select 
optimal times for maximizing rewards under paradigms 
where a specific delay in response after a cue was required 
for optimum result or with different cues signaling various 
lengths of delay to reward (Fiorillo et al., 2008; Gershman 
et  al.,  2014; Gibbon,  1977; Iigaya et  al.,  2018; Killeen & 
Fetterman, 1988). Dopamine signaling in the striatum was 
attributed to an essential role in the control of the response 
delay, integrating reinforcement learning and timing of re-
sponses (Daw et al., 2006; Ludvig et al., 2008). It should be 
noted, however, that response timing is likely influenced by 
multiple pathways associated with the reward system, and 
recent reports show that serotonergic neurons may play a 
particularly significant role (Hinton & Meck, 1997; Iigaya 
et  al.,  2018; Matias et  al.,  2017). While the mechanisms 
controlling interval timing affect behaviors on the scale 
from seconds to hours, due to methodological limitations, 
behavioral models are mostly focused on intervals shorter 
than a minute. As a consequence, memory decay or other 
processes occurring on longer scales are rarely considered 
(e.g., Collins et al., 2017; Collins & Frank, 2012; Greggers & 
Menzel, 1993)). The focus on short intervals and exclusion 
of any confounding influences limits variability, conforms 
with some of the underlying assumptions in reinforcement 
learning models (e.g., resembles a Markov process), and 
has the major advantage of allowing for correlation of be-
havior with neuronal spiking activity. However, whether 
uninterrupted sequences of quick decisions are an adequate 
approximation of reinforcement learning under normal en-
vironmental conditions is arguable.

Here, we assess reinforcement in a probabilistic choice re-
versal learning paradigm in which mice were not compelled 
to perform the task in any way, and choices were performed 
freely over a period of weeks. We have tested separately two 
different types of primary rewards: saccharin and alcohol 
solutions, which differ mechanistically in the way they affect 
the reward system. We found that in a large number of cases, 
choices were significantly influenced by previous outcomes; 
however, the interval between choices played a comparable, 
if not greater, role.

2  |   METHODS

2.1  |  Animals

Experiments were performed on female C57BL/6J mice bred 
at the Maj Institute of Pharmacology of the Polish Academy 
of Sciences in Krakow. Mice were housed in a conventional 
facility in Plexiglas cages (Type II L, 2–5 animals per cage) 
with aspen laboratory bedding (MIDI LTE E-002, Abedd) 
and nest building material. Breeding rooms had a 12  hr 
light–dark cycle, with an ambient temperature of 22 ± 2°C 
and humidity of 40%–60%. Animals were provided with a 
piece of aspen wood for chewing after weaning. Mice had 
ad libitum access to water and chow (RM1 A (P), Special 
Diets Services). All experiments were conducted in accord-
ance with the European Union guidelines for the care and 
use of laboratory animals (2010/63/EU). Experimental pro-
tocols were reviewed and approved by the II Local Bioethics 
Committee in Krakow (permits 1000/2012 and 1159/2015). 
Behavior was tested on female mice to reduce the risk of ag-
gressive behaviors. The experimental groups are summarized 
in Table 1.

Cohort n Reward
Starting age 
(weeks)

Mean initial 
weight ± SEM [g]

I 14 Alcohol 4% (w/v) 8 18.79 ± 1.64

I 14 Saccharin 0.1% (w/v) 8 18.62 ± 1.79

II 14 Alcohol 4% (w/v) 8 19.04 ± 2.36

II 14a  Alcohol + Saccharin 8 19.59 ± 1.95

III 14 Saccharin 0.1% (w/v) 8 19.49 ± 2.25

IV 14 Water (control) 8 17.96 ± 0.19
aOne animal lost its transponder and was excluded. 

T A B L E  1   Experimental groups

F I G U R E  1   Schematic representation of the IntelliCage and experimental schedules. (a) The diagrams show the basic features of the cage and 
the guillotine doors through which bottles are accessed. The diagram on the bottom shows an example of the key used to label reward probabilities. 
(b) For each of the groups indicated on the left, the phases are represented with white, grey, or black boxes. Black boxes with white lines indicate 
corners with full reward access (100%), dark grey boxes indicate the high probability of reward access (90%), light grey boxes indicate the low 
probability (30%), and white indicates access to water. The duration of each phase in hours is presented below the corresponding boxes
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2.2  |  Probabilistic choice task

The IntelliCage apparatus (New Behavior, Switzerland) has 
a base made of transparent plastic (55  ×  37.5  ×  20.5  cm) 
with a metal cover and custom corner compartments. Each of 
the cage corners is a small chamber that houses two 250 ml 
bottles, with nozzles accessible through guillotine doors 
(Figure 1a). The size of the corner allows only one animal 
to enter the corner and access the bottles. Before being in-
troduced to the IntelliCage, mice are implanted with radio 
frequency identification chips (RFID chips, UNO PICO ID, 
AnimaLab, Poland). An antenna inside the corner detects the 
chip and reports the animal number to the controlling soft-
ware, which triggers preprogrammed events. The cage re-
corded the following parameters: temperature and luminosity 
in 1 min intervals, presence of an animal in a corner (com-
bined reading from a thermal sensor and an RFID antenna), 
crossing of photocell beams placed in the doors leading to the 
bottles, and lickometer contacts (the animal closing a circuit 
between the floor grating and the metal dipper of the bottle). 
Experiments were performed on groups of 14 female mice 
per cage. The number of animals was based on our previ-
ous experiments (Ruud et al., 2019; Smutek et al., 2014). At 
the start of the test, mice were introduced to the IntelliCage, 
which had standard bedding and contained four plastic 
“houses” that the animals used as nests to sleep during the 
day. The environmental conditions during the experiment 
were the same as those in the breeding rooms, with food and 
water available ad libitum. Exact schedules for each experi-
ment are shown in Figure 1b. At the start of the experiments, 
all corners had bottles filled with water. When a mouse en-
tered a corner and the RFID chip was detected, both guillotine 
doors blocking access to the bottles would open with a 0.5-s 
delay. The doors were closed when the mouse left the corner 
or 10 s after a lick of a bottle was detected. The initial period 
lasted between 4 and 7 days, and the mice were monitored 
daily to check whether all of them had learned to drink from 
the bottles. Then, the adaptation stage started, and one of the 
rewards (saccharin 0.1% (w/v), alcohol 4% (w/v), a mixture 
of the two or plain water) became available in two of the cor-
ners. Each group of animals had access to only one type of re-
ward. We chose a low concentration of alcohol to ensure high 
preference and to limit the effects of inebriation on learn-
ing. Saccharin was selected over saccharose to exclude non-
gustatory effects and to avoid clogging of the dippers. The 
adaptation stage lasted ~3 weeks, and bottle positions were 
changed regularly to reduce the formation of corner prefer-
ences (see Figure 1b). Finally, during the main stage of the 
experiment, the probability of reward access varied between 
90% and 30%, with a 2-s delay from an entrance to a corner 
to the opening of the guillotine doors. Additionally, yellow 
LED lights in the reward corners were switched on when the 
animal was detected and switched off if the animal left the 

corner or after 2 s (irrespective of whether reward access was 
granted). The LED lights were intended as an additional cue 
of a choice being in progress to reduce the effect of variabil-
ity caused by the animal detection mechanism. The positions 
of the corners with reward bottles were constant, while the 
probabilities changed between all possible states—90%:30%, 
30%:90%, 90%:90%, and 30%:30%—as shown in Figure 1. 
The two remaining corners of the cage were always fitted 
with water bottles, and mice received access to water 0.5s 
after an animal was detected inside the corner. In one case, 
the alcohol (II) group, the cage malfunctioned, and a block 
of data is missing (corresponding to the 2nd, 3rd, and 4th last 
box in Figure 1).

2.3  |  Models

Logistic regression was used to assess the effects of the out-
come and time elapsed from the previous choice on the odds 
of behavior in terms of repeating (“stay”) the previous deci-
sion. The following formula was used:

where �0 is the intercept (preference independent of predictors), 
�1 represents the outcome of the previous choice (binary, equals 
1 after win), �2 is the effect of the time interval elapsed from 
the previous choice (per minute of interval), and �3 is the cor-
ner (binary). The Wald test was used to assess the significance 
of the predictors. Data corresponding to two animals were ex-
cluded due to extreme corner preference, with only 2/135 and 
1/650 alternative choices, respectively.

The following reinforcement-learning models were tested. 
First was the random choice model, which assumed that the 
chance of either choice was equal at each step. The second 
model was the “noisy win-stay-lose-shift” model described 
by Wilson and Collins (2019). Briefly, the model predicts 
“stay” after a rewarded attempt and “shift” when no reward 
is received, adding a probability of random choice defined by 
the parameter �,

where Pa,n is the probability of selecting corner a at choice n, 
cn−1 is the previous choice, and Rn−1 is the value of the reward 
after previous choice (1 or 0). Further models fitted were based 
on Q-learning (Sutton et al., 2018; Watkins & Dayan, 1992), 
starting with the most “basic”:
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where Qa,n represents the expected value of selecting corner a 
at step n, Rn is the reward received at step n (1 or 0), and � is the 
learning rate. The model was coupled with a softmax policy,

where Pa,n+1 is the probability of choosing corner a at step n, and 
� is an “inverse temperature” parameter that determines the extent 
to which the difference between expected rewards affects choice. 
Probabilities were limited to a minimum of 0.001 and maximum 
of 0.999 to limit the effect of extreme values on the log likeli-
hood sum. The first modification to the model was “dual” learning 
rates, which depended on the reward value:

where �+ and �− are separate learning rates for rewarded and 
nonrewarded choices. The next modification included an up-
date for expected values for both the choice taken (Qa,n) and the 
nonselected alternative (Qb,n), partly based on the “fictitious” 
update described previously (Hampton et al., 2007):

An extension of this approach is the “hybrid” model, 
which combines (5) and (6) (Cieślak et al., 2018):

Next we tested a group of models that include a parame-
ter representing the effects of memory performance, starting 
with the “forgetful” model (Collins & Frank, 2012), where 
Equation (3) was followed by:

where � (in the range from 0 to 2) represents the limited abil-
ity to recall the expected values. To introduce the effect of the 

interval between choices, we tested models incorporating time-
dependent exponential decay of the expected value (“Qd”) or 
the inverse temperature parameter in the policy (“� d”). The 
exponential decay component was based on observations on 
memory decay in humans (Murre & Dros, 2015) and previous 
theoretical considerations (Woźniak et al., 1995). The interval 
was defined as the time elapsed as the last choice (end of the 
corner visit to start of the current visit). The starting model in-
troduced equal decay of expected values for both choices:

where tn+1 is the time interval between choices n and n + 1, 
and S is a parameter representing memory performance (“stor-
age”). An S value of 0 would indicate no memory decay. Due 
to computational limits, the maximum interval length was set 
to 660 min. Two extensions of the model were considered. The 
first is a fictitious update (“Qd + fictitious”):

Second, separate learning rates depending on the previous 
outcome (“Qd + hybrid”):

As an alternative way to account for the effects of the time 
intervals, we considered a decay of the inverse temperature 
parameter in the policy (“� d”):

where tn+1 is the interval from the previous choice and �n+1 re-
places � in Equation (4). The final model (“� d-ficitious”) com-
bined Equations (6) and (12). The optimal parameters for each 
model were selected based on the lowest sum of the negative 
logarithms of likelihood:

where Pa,n is the probability of the actual choice predicted by 
the model. Models with more than one parameter (all except 
noisy win-stay-lose-shift) were fitted using the Nelder and Mead 
simplex method (Nelder & Mead, 1965) implemented in the R 
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optim function using all possible combinations of the following 
starting points: {0.05, 0.15, 0.35, 0.55, 0.75, 0.95} in the cases of 
� and S, {0.05, 0.35, 0.75, 1, 1.25, 1.35, 2} in the case of �, and 
{0.25, 1.25, 2.25, 3.25, 4.25} in the case of �. Parameter values 
were limited to the ranges of (0, 1) for � and S, (0, 2) for �, and 
(0, 50) in the case of �. In the noisy win-stay-lose-shift model, 
the optimal parameter value was assessed by calculating nll for 
� in the range of 0.001–1.999 in 0.001 steps. Model fits were 
compared using Akaike's information criterion (Akaike, 1974):

where k is the number of free parameters in the model. ΔAIC 
values were calculated by subtracting the AIC value corre-
sponding to the “basic” model from the results obtained for 
each of the other models.

2.4  |  Data analysis and statistics

All analyses were performed using R (R Core Team, 2017), 
and the scripts used to analyze the data are available at https://
github.com/jmjab​lons/model​-intel​i-resea​rch2019. Statistical 
significance was assessed using the Kruskal–Wallis test 
followed a posteriori by the Dunn test adjusted for multi-
ple comparisons using the Benjamini–Hochberg correction. 

One-sample and paired-sample comparisons were performed 
with the Wilcoxon test. The significance (α) level was set 
at 5%. The complete set of behavioral data is available at 
https://figsh​are.com/s/4d393​77b1c​e5cc3​c24c2.

3  |   RESULTS

3.1  |  An unconstrained probabilistic choice 
task

We tested the behavior of group-housed female mice that 
could freely select between two probabilistic reward alterna-
tives over an extended period of time (Figure 1). Three types 
of rewards were offered in separate experiments: a saccharin 
solution (0.1% w/v), alcohol (4% w/v), and a mixture of the 
two (alcohol + saccharin). As a control, in a separate experi-
ment, the reward was replaced with plain tap water. All ex-
periments were split into two stages. The first was adaptation, 
during which the positions of the rewards were switched to 
reduce potential biases toward cage corners and to allow for 
the development of an alcohol preference. During the second, 
main stage, the positions of the reward bottles were fixed, 
but the probabilities of opening access to the bottles changed. 
Additionally, irrespective of stage, the animals also had ac-
cess to water bottles in the two remaining corners of the cage 

(14)AIC = 2 ⋅ nll + 2 ⋅ k

F I G U R E  2   Animal activity in the 
IntelliCages. The graphs show the median 
total number of visits in all corners of 
the cage per 48 hr. Circles correspond to 
activity during the adaptation, and gray 
points correspond to probability reversals. 
The error bars show 1st and 3rd quartiles. 
Each graph summarizes the results 
from one group of 14 animals, except 
alcohol + saccharin which included 13 mice 
(Table 1). The type of reward used in the 
experiment is indicated above

https://github.com/jmjablons/model-inteli-research2019
https://github.com/jmjablons/model-inteli-research2019
https://figshare.com/s/4d39377b1ce5cc3c24c2
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(empty squares in Figure 1b). As shown in Figure 2, the ac-
tivity of animals, i.e., the total number of visits to the corners 
during each 48-hr period, was similar for all types of rewards 
and remained stable throughout the main stage of testing. 
The total time the two reward corners were occupied (i.e., the 
cage detected the presence of a mouse) was generally shorter 
than 4 hr per 48-hr period (Figure S1). The only exception 
was in one of the “alcohol” cohorts, where mice were de-
tected for extended periods of time in the reward corners over 
three 48-hr periods. Based on these results, we assume that 
competition for corner access had no appreciable effect on 
choices, which is consistent with the results we have reported 
previously (Smutek et al., 2014).

The majority of animals showed preference for the re-
ward, calculated as the number of licks on the dippers of 
the bottles containing rewards, divided by the total number 
of licks on all bottles during the final 96 hr of the adapta-
tion stage (Figure 3a). The median preferences were 79.4% 
for saccharin, 80.3% for the saccharin-alcohol mixture, and 
65.0% for alcohol (all three significantly higher than 50%, 
Figure 3a). Not all the animals showed preference; there were 
3 and 7 mice in the saccharin and alcohol groups, respec-
tively, that were recorded to have less than 50% of all licks 
on reward bottles. No significant preference was observed 
in the water control group, where the median was 42.2%. 

Saccharin-containing solutions were significantly more pre-
ferred than water or alcohol, and alcohol was significantly 
more preferred than water (Figure  3a; Kruskal–Wallis test 
H = 31.94 p = 5.39 × 10–7). Despite the preferences of re-
wards over water, the median fractions of all visits in the 
reward corners during the stage with probability reversals re-
mained approximately 0.5 (Figure S2). These data show that 
animals explored and sampled bottles in all corners over the 
course of the entire experiment.

Further analyses were performed only on visits in the re-
ward corners that lasted sufficiently long for the outcome to 
occur (>2 s) — designated “choices.” There was considerable 
individual variation in the numbers of choices performed; 
the minimum was 137 (an animal in the alcohol group), 
and the maximum was 2,932 (a mouse in the alcohol + sac-
charin group). The median number of choices was signifi-
cantly higher in the alcohol  +  saccharin group than in the 
alcohol group (Figure 3b, Kruskal-Wallis test, H = 11.413, 
p = 9.692 × 10–3). During the probability reversal stage of the 
experiment, the median preference for the alternative with a 
higher reward probability was 56.6% for saccharin and 58.3% 
for the alcohol +  saccharin mixture, compared with 50.5% 
and 51.7% for alcohol and water, respectively (Figure 3c). In 
all these cases, except the alcohol-treated group, the median 
preference was significantly higher than random. Moreover, 

F I G U R E  3   Basic summary of choices. (a) Reward preference during the last 96 hr before the start of the reversals stage. (b) Number 
of attempts (visits longer than 2 s in corners with the reward) at the reversals stage. (c) Fraction of attempts corresponding to higher reward 
probability. The type of reward is indicated below the graphs. Each dot represents a single animal. Boxplots show medians, 1st and 3rd quartiles. 
Significant differences between the medians are indicated with stars (*p < .05, Dunn's post hoc test with Benjamini–Hochberg correction). The 
alcohol and saccharin groups include 28 animals, alcohol + saccharin — 13, and water — 14
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the preference of larger reward probability was higher 
in the case of saccharin-containing solutions compared 
with both alcohol or water (Kruskal–Wallis, H  =  35.121, 
p = 1.149 × 10–7). The small but significantly greater than 
random preference for water may suggest that the opening of 
the guillotine doors became a conditioned reinforcer. Reward 
consumption (drinking) was detected by the lickometers in 
the majority of cases when animals were offered access to a 
reward, though the fraction of consumed opportunities was 
lower in the case of water (mean values during the rever-
sal phase: 0.723, 0.844, 0.813, and 0.505 for alcohol, alco-
hol + saccharin, saccharin, and water, respectively).

3.2  |  Factors affecting choice

First, we assessed the frequency with which the animals re-
peated a previously rewarded choice (“win-stay”) or shifted 
to the alternative when no reward was obtained (“lose-shift”). 
As shown in Figure 4, the frequency of “win-stay” depended 
on the interval between attempts and was significantly larger 

at intervals between choices longer than 10 min compared with 
shorter than 2 min. This was the case for alcohol (Figure 4a), 
alcohol +  saccharin (Figure 4b), and saccharin (Figure 4c) 
but not when water was offered instead (Figure  4d). The 
same was observed in the cases of choices after a “lose,” at 
longer intervals, the probability of “shift” was decreased in 
the cases of all rewards (Figure 4a–c), but not in the water 
control, where in fact an opposite effect was present (higher 
probability of “shift” at longer intervals, Figure 4d).

To further assess the effect of interval and previous re-
ward on choice, we used logistic regression with three pre-
dictors: corner bias, outcome of the previous attempt (“win” 
or “lose”), and time interval from the previous attempt. 
Examples of the regression curves are presented in Figure 5. 
The first example (Figure 5a) corresponds to a mouse from 
the saccharin group. The “stay” behavior was more frequent 
at longer intervals, whereas “shifts” were more frequent for 
shorter intervals. This effect is apparent in the distribution 
of the time intervals. Conversely, in the example drawn from 
the water control group, no effects of interval or previous 
outcome are apparent (Figure 5b). Accordingly, the logistic 

F I G U R E  4   Fractions of “win-stay” 
and “lose-shift” reactions divided by length 
of interval between attempts (shorter than 
2 min and longer than 10 min). Each dot 
represents a single animal. Significant 
differences between the medians are 
indicated with stars (*p < .05, Wilcoxon 
test for paired samples). The alcohol and 
saccharin groups include 28 animals, 
alcohol + saccharin — 13, and water — 14
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regression shows that the probability of a “stay” decision in-
creased with the length of the interval, and the effect of pre-
vious outcome is noticeable as a shift of the curve (“win” vs. 
“lose”). A complete summary of logistic regression analyses 
for all mice is shown in Figure 6a–d. In the majority of cases 
(63/81), the models indicate a significant inherent propensity 
toward “stay” or “shift” responses independent of the predic-
tors considered (the regression intercept, Figure 6a). Animals 
often had significant corner bias (68/81), with varied individ-
ual corner preferences (Figure 6d). As anticipated, in most 
cases, the model also indicated a significant effect of the pre-
vious outcome: 45/81 or 44/67 excluding the water control 
group and the interval length: 45/81 and 36/67, respectively 
(Figure  6b, c). When only significant predictors were con-
sidered, the median values of the odds ratios were similar, 
and no significant effects of reward type were observed. In 
summary, more than half of the mice that were offered al-
cohol or saccharin solutions were significantly more likely 
to “stay” after a “win” and were also more likely to choose 
“stay” when more time had elapsed from the previous choice. 
It should be noted, however, that the significant effect of the 
intercept may indicate that the model has limited accuracy.

3.3  |  Learning models

The preference for the choice associated with a higher reward 
probability and significant effect of previous outcome on choice 

imply reinforcement learning. Thus, we fitted various learn-
ing models to determine which model assumptions yielded the 
closest match to the observed behavior. First, we considered a 
model that selects “stay” after “win” and “shift” after “lose,” 
with an additional chance that the choice is random instead 
(“noisy win-stay,” (Wilson & Collins, 2019)). Second, we tested 
a group of models based on the assumption that the expected 
value of a choice is updated based on the observed prediction 
error (Rescorla & Wagner, 1972; Sutton et al., 2018; Watkins 
& Dayan, 1992). The simplest, “basic,” model assumes a single 
learning rate and updates the expected value. The “dual” model 
had separate learning rates for negative and positive values of 
the prediction error. The “fictitious” model updates the value 
of both options simultaneously (Hampton et  al.,  2007), and 
“hybrid” added two learning rates to the fictive update (Cieślak 
et al., 2018). Then, we considered models introducing the ef-
fects of memory performance and the length of the interval be-
tween choices. The “forgetful” model introduces a component 
related to reverting to a base state of expected values (controlled 
by the � parameter). The decay models adjust the expected re-
ward (“Qd”) or the inverse temperature parameter (“� d”) de-
pending on the length of the interval. In both cases, we have 
also considered the effect of a fictitious update (“+fictitious” 
or “+hybrid”). In addition to the types of models listed, a “ran-
dom” choice rule with every choice probability equal to 0.5 was 
added as a negative control.

Models were fitted by finding the lowest sum of the neg-
ative log likelihoods (nll). We used Akaike's information 

F I G U R E  5   Examples of behavior 
of a single animal from the saccharin (a) 
and water (b) groups, respectively. The 
line is the fitted logistic regression of the 
probability of “stay” depending on the 
previous outcome and interval. The dots 
above and below the curve show raw results 
used for the regression (probability equal to 
1 denotes “stay,” 0 is “shift”)
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criterion (AIC) to assess the goodness of fit. A summary of 
AIC score differences (ΔAIC) is shown in Figure 7, the re-
sults for best models are summarized in Table 2, and all indi-
vidual values are provided in Table S1. Overall, the models 
approximated the observed behavior better than a purely ran-
dom choice approach for all rewards except the water control. 
Moreover, there were larger differences in the goodness of 
fit for rewards that produced stronger preference (i.e., sac-
charin and alcohol  +  saccharin). The best scoring models, 
“hybrid” and “Qd + hybrid,” shared two features: separate 
learning rates for positive and negative outcomes and a fic-
titious update of the expected value of the nonselected alter-
native. Modeled positive and negative learning rates differed 
(for all rewards except water), with median �− values close to 
0, while median �+ values were in the range of 0.017–0.088 
(Table 2). Optimal values of � in the hybrid models ranged 
from 0.81 to 2.73. Median AIC differences between the two 
top scoring models were approximately 2 or lower, which 

suggests similar goodness of fit. This is not unexpected since 
the “Qd  +  hybrid” model is equivalent to “hybrid” when 
S = 0. Accordingly, the median optimal values of S were very 
low and corresponded to an ~1% loss of the expected value 
per hour in the alcohol or saccharin groups (Table  2). We 
note that in the cases where the “Qd + hybrid” hybrid model 
had the best goodness of fit, the values tended to be above 
the median.

4  |   DISCUSSION

We show reinforcement learning in mice under conditions 
where there is no enforced schedule and the actions being 
reinforced are not being compelled by food or drink depri-
vation. The animals remained in a group and could behave 
freely in the cage environment throughout the entire proce-
dure. The only cost of a choice was a short wait period (2 s) 

F I G U R E  6   Effects of previous 
outcome and time interval on choice. Graphs 
show the change in the log odds of “stay” 
for each of the predictors: (a) the intercept 
independent of predictors, (b) after a 
rewarded choice (“win”), (c) as a function of 
the interval, and (d) due to inherent corner 
bias, respectively. Each dot represents a 
single animal, and only significant results 
are shown (Wald test p < .05). Boxplots 
show medians, 1st and 3rd quartiles. The 
type of reward and the number of cases 
where the predictor was significant are 
indicated below the graphs
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F I G U R E  7   Comparison of 
reinforcement learning model fits based 
on ΔAIC values. Panels correspond 
to (a) alcohol, (b) saccharin, (c) 
alcohol + saccharin, and (d) water. Each 
point represents an individual mouse, 
the boxplots show medians, 1st and 3rd 
quartiles. The numbers in parentheses 
shown below plots indicate how many 
times the lowest AIC score was achieved 
for that model, for the best three models. 
Each box plot in the alcohol and saccharin 
groups corresponds to 28 animals, 
alcohol + saccharin — 13, and water — 14
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before the outcome was presented, and the costs of missed 
opportunities were theoretically negligible. There was no 
trial and session structure and no maximum number of po-
tential rewards. In approximately half of the animals tested, 
when a choice was rewarded, the probability of repeating it 
was significantly increased as assessed using a logistic re-
gression model. The observed effect of previous outcomes 
is weaker than that reported in studies employing classical 
models (e.g., Cieślak et al., 2018; Frank et al., 2004; Kwak 
et al., 2014). No mouse exceeded 75% in their preference for 
the corner with higher reward probability, and median pref-
erence values were lower than 60%. Intuitively, the simplest 
explanation for the low preference for the higher reward 
probability would be lack of missed opportunity cost and 
hence limited advantage of performing optimal choices. The 
correlation between the number of choices and the preference 
for the higher probability of reward was −0.3, −0.72, 0.045 
and −0.35 for alcohol, alcohol  +  saccharin, saccharin and 
water, respectively (Pearson's r). While the value in the case 
of alcohol + saccharin is significant, this appears to be an ex-
ception, and we do not think that this gives evidence that ani-
mals compensated for a smaller fraction of rewarded choices 
by increasing the number of attempts. Furthermore, while 
both median preferences of the higher reward probability and 
the analysis of individual behavior confirm reinforcement 
learning in a large fraction of the mice tested, nevertheless, it 
should be noted that animals did not strictly try to maximize 
the number of rewards obtained. Mice generally made fewer 
than 100 choices per 48 hr, compared with 120 or more trials 
completed within 30 min in some Skinner box experiments 

(e.g., Cieślak et  al.,  2018). The limited number of choices 
is not unexpected considering that in this case, consuming 
rewards does not satisfy essential needs; however, it poses a 
problem with regard to defining what constitutes an optimal 
behavioral strategy in the test.

A major novel observation is the relation between the 
types of choice made correlated with the interval between 
decisions. As could be intuitively expected, when a choice 
was not rewarded, the delay to try again was usually shorter. 
At the same time, the length of the interval correlated with 
an increased probability of repeating the same choice, irre-
spective of the previous outcome. These effects were only 
observed when a reward was offered, particularly in the case 
of saccharin-containing solutions and were generally absent 
in the water control group. It should be stressed that the in-
terval between choices discussed here is not comparable to 
the interval timing learned when rewards are delivered after 
a specific delay or different cues predict the length of delay 
to reward delivery (e.g., Gershman et  al.,  2014). Here, the 
length of the interval had no effect on the size or probabil-
ity of a reward. Therefore, we assume that the length of the 
intervals is determined primarily by motivational processes, 
which would differ for choices performed at short (e.g., 
1–2 min) versus longer (e.g., 15–20 min) intervals. At shorter 
intervals, the pattern is somewhat similar to spontaneous al-
ternation, which is often observed during exploration of mul-
tiarmed mazes (e.g., Lalonde, 2002). Conversely, the process 
that drives choices after longer intervals is intriguing. It does 
not appear to be optimal, as it promotes choosing “stay” after 
a nonrewarded choice. Potentially, repeating the choice could 

T A B L E  2   Summary of optimized models’ parameters

Alcohol Saccharin Alcohol + Saccharin Water

Basic

� 0.00601a  (0.00426–0.0112) 0.00912 (0.00634–0.0139) 0.11 (0.0331–0.173) 0.00179 
(0.00016–0.0731)

� 6.2 (3.32–7.52) 3.85 (3.22–4.97) 0.956 (0.682–3.33) 5.05 (0.312–50)

Hybrid

�+ 0.024 (0.0113–0.0676) 0.035 (0.024–0.0513) 0.0877 (0.0298–0.104) 0.00193 (0.0001–0.0396)

�− 4.14 × 10–9 
(4.1 × 10–10–3.4 × 10–4)

4.71 × 10–9 
(1.46 × 10–9–1.21 × 10–8)

2.65 × 10–8 (3.27 × 10–10–0.0026) 4.61 × 10–5 
(1.14 × 10–8–0.623)

� 2.54 (1.62–3.1) 1.64 (1.31–1.8) 0.899 (0.795–1.25) 1.22 (0.215–36.6)

Qd hybrid

�+ 0.017 (1.03 × 10–6–0.031) 0.0303 (0.0179–0.0427) 0.0499 (0.0156–0.0971) 0.00392 
(1.10 × 10–7–0.017)

�− 3.61 × 10–5 
(2.43 × 10–8–0.94)

3.02 × 10–8 
(9.07 × 10–9–0.00348)

3.39 × 10–8 (1.14 × 10–8–8.86 × 10–6) 8.40 × 10–5 
(1.69 × 10–8–1)

� 2.73 (1.07–3.52) 1.89 (1.54–2.35) 1.62 (1.01–1.92) 0.813 (0.447–13.9)

S 9.16 × 10–5 
(1.97 × 10–5–0.116)

7.82 × 10–5 
(1.56 × 10–7–0.000512)

0.000783 (0.00052–0.0511) 0.0332 (0.00715–0.534)

aMedian value; numbers in parentheses below the median represent 5%–95% confidence intervals calculated using bootstrapping. 
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serve the purpose of reconsolidating a learned value, though 
again, the advantage this may offer is unclear. Notably, our 
finding is limited to female C57BL/6J mice, and whether the 
effect may be generalized to other species remains unknown. 
An effect of sex on operant learning in rodents was reported, 
although it was mostly observed in the context of responses 
conditioned with aversive stimuli (Dalla & Shors, 2009). In 
humans, there is ample evidence that women are more risk 
averse than men (Byrnes et al., 1999); however, gender had 
no significant effects on the win-stay or lose-shift ratios in a 
probabilistic reversal learning task (den Ouden et al., 2013). 
Assuming that generalization is possible, the findings pre-
sented here could, to an extent, explain some of the “irra-
tional” behaviors, i.e., frequent choices of an inferior, lower 
value alternative. Nonetheless, this is speculative, and we 
cannot exclude the possibility that the observed behavior is 
controlled differently in humans.

Reward-driven learning is controlled by monoamine sig-
naling, and serotonergic neuron activity in particular was at-
tributed with a role in controlling the effects of intervals on 
choices (e.g., Iigaya et  al.,  2018). However, the behavioral 
tasks employed in previous studies were focused on time 
scales of seconds. Here, the effects of interval become appar-
ent only after several minutes and reach the same magnitude 
as the effect of previous outcome after an hour or more of 
delay. Moreover, during the interval the animal likely inter-
acts with other mice present in the cage, may consume food 
or water, and freely engage in other behaviors that should 
affect dopamine and serotonin signaling. For this reason, it 
appears unlikely that the observed effect of time may directly 
correlate to changes in monoamine signaling, rather we spec-
ulate that it may be linked to an interaction between short-
term memory and the motivational processes.

A preference of higher reward probability implies rein-
forcement learning; thus, we tested fitting learning models to 
observed choices. We note, however, that there are important 
issues to consider with regard to the applicability of reinforce-
ment learning models in this case. First, while the choices 
in the task have the Markov property, nevertheless, as noted 
above, the animals did not try to accumulate the maximum 
number of rewards possible. Moreover, we did not exclude 
animals from the analysis based on their preference of the 
higher reward probability or significant effects of previous 
outcome on choice; thus, in some cases, models were applied 
to behavior where we have no evidence of reinforcement 
(e.g., most of the water control group). Despite these limita-
tions, the models approximated behavior better than random 
choice. The best goodness of fit was achieved when separate 
learning rates for positive and negative outcomes were ap-
plied, and additionally, a fictitious update of the nonselected 
alternative was also included. The latter is consistent with 
our previous results in a Skinner box-based model (Cieślak 
et al., 2018); however, we consider it surprising. In the classic 

report that provided insight into mechanisms responsible for 
the regret or disappointment over a lost opportunity, infor-
mation of the outcome for the nonselected choice was pro-
vided in a fraction of trials (Coricelli et al., 2005). Thus, the 
subject could at least partly assess the difference in outcome 
values between the actions. The fictitious model developed 
by Hampton et al., (2007) assumes that the reward value ap-
plied in the update of the nonselected choice is the opposite 
of the one obtained, which is similar, but not fully equivalent, 
to the effect of regret. Here, the cost of lost opportunity is 
minimal; therefore, an effect of regret does not appear ra-
tional. Furthermore, a fictive update implies a more model-
based approach to the decision process, which is similar to 
the conclusion drawn in a study where the optimal strategy 
involved updating the value of the nonselected option (Huh 
et al., 2009). We also wanted to point out two observations 
with regard to optimal parameters of the best models. First are 
the very low learning rates (�+ and �−). The median values 
could be interpreted as no learning from negative outcomes 
and a very small update after rewarded choices. A larger pos-
itive learning rate is consistent with previously reported re-
sults (e.g., Cieślak et al., 2018; Rutledge et al., 2009)), and 
the very low values could be speculatively attributed to the 
negligible cost of choosing the corner with a lower probabil-
ity of reward. Second, the marginal gain in goodness of mod-
els incorporated a time-dependent decay of expected value or 
the inverse temperature despite the clear correlation between 
the time interval and the probability of repeating the same 
choice. Intuitively, this is not surprising, considering that 
these models fail to predict previous outcome-independent 
preference for shift choices at short intervals or >0.5 prob-
ability of stay choices at very long intervals. The modeled 
decay constant (S) would imply only a minor effect of mem-
ory performance, though it should be noted that in the cases 
where Qd + hybrid had the best goodness, corresponding S 
values were often above median. Nevertheless, based on the 
results, we would argue that introducing the decay effect does 
not offer a plausible explanation for the correlation between 
interval lengths and the probability of “stay” choices.

A second objective of our study was to assess differences 
in the actions of saccharin and alcohol as reinforcers. The 
mechanisms by which alcohol and saccharin affect the re-
ward system are inherently different. The effects should be 
instantaneous and transient in the case of saccharin (signaling 
from the gustatory system to the midbrain dopamine neurons 
Simon et al., 2006) but are delayed by minutes and could be 
persistent in the case of alcohol (through activation of dopa-
mine release and other mechanisms Vengeliene et al., 2008; 
Weiss et  al.,  1993). Nonetheless, drug and natural rewards 
reportedly produce their long-term effects by acting on the 
same neuronal circuits (Kelley & Berridge,  2002; Pfarr 
et al., 2018). We should stress that the experiment we report 
was not intended to model compulsive alcohol drinking, 
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which persists despite increasing cost, reduced value, or 
a risk of negative consequences (Hopf & Lesscher,  2014; 
Vengeliene et  al.,  2009). Additionally, the concentration of 
alcohol used was low (4% w/v), and thus blood ethanol lev-
els would be unlikely to match the values achieved in pre-
viously described models (Rhodes et  al.,  2005; Rodriguez 
Parkitna et al., 2013). Analysis of the data shows no evidence 
of impaired learning due to the effects of alcohol on memory 
performance; the behavior of mice in the saccharin and alco-
hol + saccharin groups was similar. In both cases, the rewards 
were highly preferred over water, and there was evidence of 
reinforcement learning in the majority of animals in those 
groups. Conversely, while alcohol was preferred over water 
after the 3-week adaptation stage, only some mice showed 
significant evidence of reinforcement learning. A possibility 
that should be considered is that the reward value of the al-
cohol solution was lower, which could be in line with the re-
ported general preference of sweet taste over drugs in rodents 
(Ahmed,  2018). A lower reward value compared with sac-
charin could limit learning based on prediction error, while 
possibly remaining sufficient to produce a preference over 
water. Therefore, the only apparent difference in the effects of 
alcohol and saccharin is that at the concentrations tested, the 
former was a weaker reinforcer. We cannot exclude the pos-
sibility that in a larger tested cohort or when higher alcohol 
concentrations are offered, a subset of animals would show al-
tered reinforcement learning (as could be hypothesized based 
on, for instance, Augier et al., 2018). In conclusion, the most 
striking observation emerging from our results is that the ef-
fect of time elapsed from an action may affect the probability 
of repeating it, independent of outcome. Modeling suggests 
that this effect is not easily explained by memory decay, and 
it is unclear if it offers an adaptive advantage. We speculate 
that our observations suggest separate motivation processes 
driving decisions at short versus longer intervals; however, 
further investigation is necessary to verify this hypothesis.
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