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Abstract Malaria is a worldwide disease caused by Plas-

modium parasites. A sesquiterpene endoperoxide artemisi-

nin isolated from Artemisia annua was discovered and has

been accepted for its use in artemisinin-based combinato-

rial therapies, as the most effective current antimalarial

treatment. However, the quantity of this compound pro-

duced from the A. annua plant is very low, and the avail-

ability of artemisinin is insufficient to treat all infected

patients. In addition, the emergence of artemisinin-resistant

Plasmodium has been reported recently. Several techniques

have been applied to enhance artemisinin availability, and

studies related to its mode of action and the mechanism of

resistance of malaria-causing parasites are ongoing. In this

review, we summarize the application of modern tech-

nologies to improve the production of artemisinin,

including our ongoing research on artemisinin biosynthetic

genes in other Artemisia species. The current understand-

ing of the mode of action of artemisinin as well as the

mechanism of resistance against this compound in Plas-

modium parasites is also presented. Finally, the current

situation of malaria infection and the future direction of

antimalarial drug development are discussed.

Keywords Artemisia annua � Artemisinin � Resistant
parasites � Malaria � Metabolic engineering � Mode of
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Introduction

As a worldwide disease, malaria has been one of the main

cause of illness and death in humans for over a century,

especially in sub-Saharan Africa and Southeast Asia. More

than 200 million cases of malaria are reported every year;

in 2015, there were 214 million cases and 438,000 related

deaths [1]. This disease is caused by five species of Plas-

modium parasites: P. falciparum, P. vivax, P. malariae,

P. ovale, and P. knowlesi. Among these, P. falciparum is

the major cause of malaria infection in Africa, and P. vivax

is the most widely distributed malaria-causing parasite

globally [1]. Several antimalarial drugs have been devel-

oped since the seventeenth century. However, malaria-

causing parasites have developed resistance to these con-

ventional drugs, leading to treatment failure.

In response to the urgent need for new antimalarial

drugs, Chinese scientists Professor Youyou Tu and her

research group discovered artemisinin, the most effective

antimalarial drug derived from Artemisia annua in 1971

[2]. Artemisinin is a sesquiterpene lactone with an

endoperoxide bridge, which is necessary for antimalarial

activity during multiple stages of parasite development

[3–7]. Owing to its rapid action and high effectiveness

against malaria, the combination of artemisinin derivatives

and other antimalarial drugs, so-called artemisinin-based

combination therapies (ACTs), has been recommended as

the first-line treatments against malaria since 2006 [8].

ACTs have become the most powerful strategy to prevent

malaria and related deaths. Professor Tu was then awarded
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the Nobel Prize in Physiology or Medicine in 2015 for the

discovery of this effective antimalarial compound.

The demand for ACTs increases dramatically each year;

yet, the production yield of artemisinin fromA. annua is very

low and varies widely from 0.01 to 2 % dry weight [9].

Alternative approaches, including plant breeding technolo-

gies, synthetic biology, and total and semi-syntheses of

artemisinin, have been investigated to enhance the produc-

tion and reduce the cost of this compound. In addition, the

recent emergence of artemisinin-resistant Plasmodium par-

asites has also become a new challenge to scientists in the

elucidation of themechanism of resistance and identification

of the new strategies for malaria treatment.

In this review, we summarize recent studies on the

enhancement of artemisinin production and on artemisinin

biosynthetic genes in other Artemisia species, conducted in

our laboratory. In addition, the current understanding of the

mode of action of artemisinin against malaria-causing

parasites and, in turn, the mechanism of resistance of the

parasites to this compound are also presented. Finally, the

current situation of malaria infection and future directions,

including ongoing studies on antimalarial drug develop-

ment, are discussed.

Discovery of artemisinin

Before the discovery of artemisinin, powder derived from

cinchona tree bark had been used to treat malaria since the

seventeenth century. The active compound from this plant,

quinine, was first isolated in 1820 and was used as the only

effective antimalarial compound until the 1920s. The qui-

nine derivative chloroquine was developed as a new

effective antimalarial drug once quinine-resistant Plas-

modium strains appeared. During that time, the insecticide

DDT was widely used to control the spread of infected

mosquitoes as well. However, in the 1960s, increasing of

chloroquine-resistant Plasmodium strains and DDT-resis-

tant mosquitoes became a critical sign of the failure of

malaria prevention and treatment [10].

In response to the urgent need for new antimalarial

drugs, the Chinese government launched a national project

against malaria called Project 523 in 1967 [2]. The group,

led by Professor Youyou Tu, investigated more than 2000

Chinese herbs used as traditional Chinese medicines to

treat fever. Among these herbs, an extract from A. annua

showed highly effective inhibition against growth of

malaria-causing parasites. The active antimalarial compo-

nents were then extracted from the leaves of mature plants

in 1971 [2, 10–12]. After purification, the active anti-

malarial compound, named qinghaosu or artemisinin, was

obtained as colorless needle-like crystals. Its stereochem-

istry and chemical and X-ray crystal structures were

determined and reported several years later [2, 10, 11, 13].

Clinical trials involving either a non-toxic A. annua extract

or pure artemisinin have been conducted since 1972 by

several groups, and all patients in these trials quickly

recovered from the disease [11, 12]. These results clearly

indicated that artemisinin is an effective antimalarial

compound with rapid action and low toxicity.

Despite showing effective antimalarial activity, the low

solubility of artemisinin in both oil and water becomes a

therapeutic limitation of this compound. To address this

problem, many scientists have developed semi-synthetic

drugs and synthesized artemisinin derivatives with higher

solubility. Some of these artemisinin derivatives, which

have been used until the present, include dihy-

droartemisinin, artemether, and artesunate [14]. In addi-

tion, the combination of artemisinin or its derivatives with

other conventional antimalarial drugs greatly increased the

parasite clearance rate in patients and was first recom-

mended as a new strategy for malaria treatment in 1984

[15]. This strategy, known as ACT, has been recommended

by the World Health Organization (WHO) as a first-line

treatment for malaria to prevent recurrence and develop-

ment of resistance in malaria-causing parasites, whereas

the monotherapy is considered as an inappropriate treat-

ment [2, 8, 13, 14, 16].

Biosynthesis of artemisinin and expression pattern
of artemisinin biosynthetic genes in A. annua

A precursor of artemisinin, farnesyl pyrophosphate (FPP,

C15), is synthesized from two C-5 isoprenoid units derived

from the cytosolic mevalonate (MVA) pathway and one

isoprenoid unit derived from the non-mevalonate (MEP or

DXP) pathway [17, 18]. FPP is cyclized to amorpha-4,11-

diene by amorpha-4,11-diene synthase (ADS) [19–21] via

the generation of bisabolyl and 4-amorphenyl cation inter-

mediates [22, 23] (Fig. 1). The following step is the oxida-

tion of amorpha-4,11-diene to artemisinic alcohol by

amorpha-4,11-diene 12-monooxygenase (CYP71AV1)

[24]. This enzyme also catalyzes the oxidation of artemisinic

alcohol to artemisinic aldehyde and artemisinic acid. In

addition, alcohol dehydrogenase 1 (ADH1) and aldehyde

dehydrogenase 1 (ALDH1) also show specific oxidation

activity on artemisinic alcohol into artemisinic aldehyde and

on artemisinic aldehyde into artemisinic acid, respectively

[25, 26].Artemisinic acidwas thought to be the last precursor

of artemisinin. However, it has been revealed that this

compound is converted non-enzymatically into arteann-

uin B and related compounds, rather than artemisinin [27].

The next step of artemisinin biosynthesis is the reduction of

artemisinic aldehyde into dihydroartemisinic aldehyde by

artemisinic aldehyde D11(13) reductase (DBR2) [28]. Then,
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ALDH1 oxidizes dihydroartemisinic aldehyde into dihy-

droartemisinic acid, which is converted non-enzymatically

into artemisinin [26, 29], as shown in Fig. 1. Rydén et al. [30]

discovered dihydroartemisinic aldehyde reductase 1

(RED1), which reduces dihydroartemisinic aldehyde into

dihydroartemisinic alcohol. Although the role of RED1 in

artemisinin biosynthesis is still unclear, it has been suggested

that the silencing of RED1 might increase the production of

artemisinin in A. annua.

Artemisinin is produced mainly in glandular secretory

trichomes (GSTs) and its accumulation level declines as

plants mature. Olofsson et al. [31] showed that GSTs of

A. annua are found in all aerial tissues of plants, but not in

roots or hairy roots. The density of GSTs is highest in

flower buds and young leaves and decreases as leaves age.

The expression pattern of genes involved in the arte-

misinin biosynthetic pathway has been investigated

extensively for over a decade. The expression of genes in

the upstream pathway shows no correlation with the den-

sity of GSTs or the accumulation levels of artemisinin

intermediates [32]. In contrast, the expression of genes in

the downstream pathway is consistent with the density of

GSTs in each tissue. The expression of ADS is highest in

GSTs, high in flower buds and young leaves, low in stems,

negligible in old leaves and hairy roots, and not detected in

roots [31, 33–37]. CYP71AV1, DBR2, and ALDH1 showed

similar expression patterns: highest in GSTs and very low

in stems and roots. In hairy roots, the expression levels of

CYP71AV1 and DBR2 are relatively low, but the expres-

sion of ALDH1 is negligible [24, 26, 28, 31]. The expres-

sion levels of CYP71AV1 and DBR2 in leaves and flowers

show similar patterns, as they are high in leaf primordia

and flower buds but decrease as leaves and flowers develop

[38–40]. The expression pattern of ALDH1 in leaves at

different stages is similar to those of CYP71AV1 and DBR2

[31]. Although there is no report on the expression level of

ALDH1 during different stages of flowering, this gene

shows higher expression in flowers than in leaves [26, 31].

The expression of RED1 is relatively low in flower buds,

young leaves, and stems. In contrast, the expression of this

gene is much higher in old leaves and roots than in young

leaves [30, 31]. Interestingly, the expression of RED1 is

approximately 50-fold higher in hairy roots compared with

old leaves. Nevertheless, the function of RED1 in hairy

roots has not been established [31].

The expression levels of ADS and ALDH1, as well as

their enzymatic activities in high-artemisinin-producing

and low-artemisinin-producing A. annua cultivars, show

no differences. Even though the expression levels of

CYP71AV1 in these two cultivars are similar, CYP71AV1

in a high-artemisinin-producing cultivar shows lower

enzyme activity, which is suitable for the change in

metabolic flux to dihydro-analogues and artemisinin pro-

duction [41]. In contrast, the activity of DBR2 in both

cultivars shows no significant difference, but the gene

encoding this enzyme shows considerably higher expres-

sion levels in high-artemisinin-producing cultivars than in

low-artemisinin-producing cultivars [42].

Mode of action of artemisinin

Before artemisinin can exert its action, the endoperoxide

bridge has to be activated to generate the free radical

species. Two activation pathways of artemisinin have been

suggested, namely the mitochondrial and heme-mediated

degradation pathways [43]. Mitochondria-activated arte-

misinin is involved in lipid peroxidation inducing cyto-

toxicity via the generation of reactive oxygen species

(ROS) and depolarization of the parasite mitochondrial and

plasma membranes [43–47]. In the heme-mediated path-

way, two activation models (i.e., a reductive scission model

and an open peroxide model) have been proposed, both of

which lead to the generation of an active carbon-centered

radical [48]. Even though the non-heme Fe2? ion was

suggested to bind and activate artemisinin [7], recent

studies showed that heme plays a predominant role in

artemisinin activation rather than the Fe2? ion [5]. In

Plasmodium spp., heme is produced via endogenous heme

biosynthesis at the early ring stage and via hemoglobin

digestion at the trophozoite stage. However, the level of

bFig. 1 Summary of artemisinin biosynthesis, transgenic approaches

to enhance artemisinin production, and artemisinin mode of action.

The enzymes responsible for each reaction are indicated next to the

arrows. Suppression of competing pathways and artemisinin activity

and its targets are shown in bold. Transgenic approaches regulating

artemisinin production are shown in black boxes. Cyclization

mechanism of FPP to generate amorpha-4,11-diene is highlighted in

gray. Full names of intermediates and enzymes involved in the

pathway are as follows: HMG-CoA 3-hydroxy-3-methylglutaryl-

coenzyme A, G3P glycerol-3-phosphate, DXP 1-deoxy-D-xylulose

5-phosphate, MEP 2C-methyl-D-erythritol 4-phosphate, CDP-ME

4-diphosphocytidyl-2C-methyl D-erythritol, CDP-MEP CDP-ME

2-phosphate, MEC-PP 2C-methyl-D-erythritol 2,4-cyclodiphosphate,

HMB-PP (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, IPP

isopentenyl pyrophosphate, DMAPP dimethylallyl pyrophosphate,

atoB (ERG10) acetoacetyl-CoA thiolase, HMGS (ERG13) HMG-CoA

synthase, HMGR HMG-CoA reductase, MK (EGR12) mevalonate

kinase, PMK (ERG8) phosphomevalonate kinase, MVD1 (ERG19)

mevalonate pyrophosphate decarboxylase, dxs DXP synthase, dxr

DXP reductase, ispD CDP-ME synthase, ispE CDP-ME kinase, ispF

MEC-PP synthase, ispG HMB-PP synthase, ispH HMB-PP reductase,

IDI IPP isomerase, FPS (ispA) farnesyl pyrophosphate (FPP)

synthase, SQS (ERG9) squalene synthase, ADS amorpha-4,11-diene

synthase, CYP71AV1 amorpha-4,11-diene 12-monooxygenase, CPR

cytochrome P450 reductase, ADH1 alcohol dehydrogenase 1, ALDH1

aldehyde dehydrogenase 1, DBR2 artemisinic aldehyde D11(13)
reductase, RED1 dihydroartemisinic aldehyde reductase 1 (color

figure online)
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heme biosynthesized endogenously in the parasites is much

lower than its production via hemoglobin digestion, sug-

gesting that hemoglobin-derived heme plays a major role in

artemisinin activation [5, 49]. Recently, Xie et al. [50]

reported that falcipains FP2a and FP3 (two main cysteine

protease hemoglobinases) are also involved in the potential

activation of artemisinin at an early ring stage.

After hemoglobin digestion, the heme detoxification

protein (HDP) can trigger the conversion of free heme to

hemozoin, which is essential for parasite survival [4, 51].

However, the formation of the artemisinin-free heme

complex shows an inhibitory effect on this conversion [51].

A translationally controlled tumor protein (PfTCTP) was

also reported as a potential target of artemisinin, as it could

form a covalent bond with this protein, resulting in protein

malfunction [52, 53]. Eckstein-Ludwig et al. [54] showed

that artemisinin specifically mediated the inhibition of

PfATP6, an orthologous sarco/endoplasmic reticulum

Ca2?-ATPase (SERCA), outside the food vacuole.

Recently, five enzymes involved in the key metabolic

pathways of the parasite were also reported as potential

targets of artemisinin, namely ornithine aminotransferase

(OAT), pyruvate kinase (PyrK), L-lactate dehydrogenase

(LDH), spermidine synthase (SpdSyn), and S-adenosyl-

methionine synthetase (SAMS). All of them are covalently

modified by the interaction with artemisinin, resulting in

the irreversible malfunction of enzyme activities [5].

Enhancement of artemisinin production

The demand for artemisinin increases every year. Even

though total synthesis of artemisinin from commercially

available chemicals or semi-synthesis from its intermedi-

ates have been reported, all of those methods are costly and

require several synthesis steps [55, 56]. In this review, we

summarize recent studies regarding four approaches to

enhance the production of artemisinin: (1) plant breeding

technologies, (2) overexpression of genes involved in the

artemisinin biosynthetic pathway, (3) direct or indirect

upregulation of artemisinin biosynthesis, and (4) heterol-

ogous production.

Plant breeding technologies

Conventional plant breeding techniques to select high-

artemisinin-producing cultivars have been used for dec-

ades. These techniques include cultivation of A. annua and

collection of cultivars with the desired properties. At pre-

sent, a robust hybrid A. annua is generated from the

combination of high-artemisinin-producing and vigorous

cultivars to increase the production yield of artemisinin to

more than 2 % dry weight [57–59]. Recently, an alternative

approach to increase the production of artemisinin from the

cultivation of high-artemisinic acid or dihydroartemisinic

acid-producing cultivars was proposed, since a method for

the semi-synthesis of artemisinin from these two precursors

has been developed [56, 60].

Scientists at the University of York used advanced

breeding techniques to evaluate the distribution of traits

that contribute to artemisinin yield [61]. From the screen-

ing of 23,000 strains, they succeeded in identifying genes

and molecular markers for fast-track breeding, enabling the

construction of a detailed genetic map of A. annua with

nine linkage groups. The established quantitative trait loci

(QTL) map is also applicable for rapid identification of

A. annua parental lines with useful traits for plant breed-

ing. Two hybrids, called Hybrid 1209r Shennong and

Hybrid 8001r Zenith, were developed with high artemisinin

productivity of up to 36.3 and 54.5 kg/ha, respectively. The

diallel cross approach to determine the combining ability of

the robust parental lines for the production of artemisinin

high-yielding A. annua hybrids was also developed by the

same group and showed consistent results with the QTL-

based molecular breeding approach [62].

Hairy root culture is another method to enhance the

production of secondary (specialized) metabolites, owing

to its rapid growth capabilities [63]. Transformation pro-

tocols to obtain hairy roots containing artemisinin from this

plant have been reported [64, 65]. In our laboratory, we

also attempted to establish the conditions for A. annua

hairy root cultivation. However, we still could not detect

even trace amounts of artemisinin or its intermediates from

the extract of hairy root cultures by GC–MS (unpublished

data). Artemisinin biosynthetic genes are highly expressed

in trichomes but almost negligible in root tissue

[31, 33–40], suggesting that the production of this com-

pound by hairy root cultures could be somewhat difficult.

Therefore, the most suitable conditions for hairy root cul-

tures to enhance production of artemisinin must be inves-

tigated. In addition, the identification of artemisinin

production from root extracts requires extreme care, and

NMR spectroscopic and mass spectrometric analyses are

required.

Overexpression of genes involved in artemisinin

biosynthetic pathway

Metabolic engineering of A. annua by overexpressing

genes involved in artemisinin biosynthesis has been given

more attention during the last 20 years. To obtain suc-

cessful transformants, several parameters for Agrobac-

terium tumefaciens-mediated transformation, such as the

concentration of antibiotics, method and duration of co-

cultivation, and phytohormones supplied for plant regen-

eration, have been optimized [66–71]. Among various
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explants available for transformation, stem internodes and

young inflorescence seem to be the most appropriate

[70–72]. Phytohormones a-naphthaleneacetic acid and

6-benzylaminopurine are crucial for GST development in

young leaves, and root generation also affects GST size

[73]. Recently, Kiani et al. [72] developed miniprep

methods using A. tumefaciens- and Agrobacterium rhizo-

genes-mediated transformation. This method exhibits

higher transformation rates with faster development of

transformants within 3–4 weeks compared with other

methods.

The overexpression of several genes involved in artemi-

sinin biosynthesis in A. annua has been evaluated. Overex-

pression of farnesyl pyrophosphate synthase (FPS) increased

artemisinin production up to 2- to 3.6-fold higher than that in

the control [74, 75]. Overexpressing CYP71AV1 and its

redox partner cytochrome P450 reductase (CPR) in artemi-

sinin biosynthesis could increase artemisinin content in

planta by 38 % [76]. Xiang et al. [77] generated dxr- and

CYP71AV1/CPR-overexpressing A. annua and found that

both transformants increased the production of artemisinin.

The overexpression of DBR2 increased the production of

artemisinin as well as its precursor dihydroartemisinic acid,

up to twofold, compared with non-transgenic plants. It also

increased production of artemisinic acid up to 5.48- to 9.06-

fold and arteannuin B up to twofold [78]. The reason why

overexpression of DBR2 enhanced biosynthesis of artemi-

sinic acid and arteannuin B has not been revealed. However,

Yuan et al. [78] hypothesized that excess dihydroartemisinic

acid might be converted into artemisinic acid in planta.

Overexpression of multiple genes involved in artemisi-

nin biosynthesis could greatly increase the production of

artemisinin in planta. Chen et al. [79] showed that the co-

overexpression of FPS, CYP71AV1, and CPR increased

artemisinin levels in A. annua up to 3.6-fold. The co-

overexpression of HMGR and FPS increased production of

artemisinin up to 1.8-fold higher than that in the control

[80]. Alam et al. [81, 82] co-overexpressed HMGR and

ADS in A. annua and found greatly increased artemisinin

levels, up to 7.65-fold, in this transgenic line.

Suppressing the expression of genes involved in the

pathways competing with artemisinin biosynthesis is

another approach to enhance artemisinin content in planta.

Zhang et al. [83] used RNAi techniques to suppress the

expression of SQS, the first committed gene in sterol

biosynthesis. The suppression of this gene enhanced the

production of artemisinin up to 3.14-fold.

Direct or indirect upregulation of artemisinin

biosynthesis

The effect of several stresses on production of artemisinin

in A. annua has been analyzed since the 1990s. These

stresses usually lead to the generation of ROS (required for

the last non-enzymatic step in artemisinin biosynthesis) or

upregulate the expression of artemisinin biosynthetic genes

[84–87]. Details of the stresses placed on artemisinin pro-

duction have been summarized previously [88, 89], and the

appropriate cultivation conditions of A. annua were sug-

gested [9].

Some transcription factors upregulated the expression of

artemisinin biosynthetic genes and promoted production of

artemisinin in A. annua. The WRKY1 transcription factor

is thought to bind to the W-box cis-acting elements of

promoters to promote gene expression. It is also involved

in the regulation of plant defense responses and develop-

mental and physiological processes. Ma et al. [33] showed

that the transcript levels of HMGR, ADS, CYP71AV1, and

DBR2 were induced in transient AaWRKY1-overexpressing

leaves. Furthermore, the specific overexpression of this

transcription factor in GSTs increased transcript levels of

CYP71AV1 up to 33-fold, compared with the wild type

[90]. AaORA, one of the APETALA2/ethylene response

factor (AP2/ERF) transcription factor involved in plant

responses to biotic and abiotic stresses, showed a similar

expression pattern to those of ADS, CYP71AV1, and DBR2.

The overexpression of this transcription factor led to the

upregulation of the expression levels of ADS, CYP71AV1,

and DBR2 in planta and promoted artemisinin production

[91]. Yu et al. [92] also reported the enhancement of

artemisinin production via overexpression of two tran-

scription factors from the same family, AaERF1 and

AaERF2, which bind to the promoter regions of ADS and

CYP71AV1. Another transcription factor that positively

regulates the biosynthesis of artemisinin is a basic helix-

loop-helix (bHLH) transcription factor, involved in meta-

bolic regulation of various hormones, developmental pro-

cesses, and regulation of light signaling, iron and

phosphate homeostasis, and various abiotic stresses [93].

Recently, Zhang et al. [94] reported that a basic leucine

zipper transcription factor (AabZIP1) binds to the ABA-

responsive elements (ABRE) of ADS and CYP71AV1

promoters and upregulates the expression of ADS,

CYP71AV1, DBR2, and ALDH1.

Several phytohormones upregulating artemisinin

biosynthesis have been reported. Treatment with salicylic

acid upregulates the expression of HMGR and ADS, as well

as induces ROS generation, driving the conversion of

dihydroartemisinic acid into artemisinin [95]. Methyl jas-

monate (MeJA) promotes the formation of GSTs and

enhances the expression of several genes involved in the

artemisinin biosynthetic pathway and related transcription

factors (ORA and ERF1), leading to the enhancement of

artemisinin production [96–98]. This phytohormone also

regulates trichome-specific fatty acyl-CoA reductase 1

(TFAR1), ABCG transporter unigenes (AaABCG6 and
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AaABCG7), and allene oxide cyclase (AaAOC)

[96, 99, 100]. TFAR1 is involved in the formation of

cuticular wax during GST expansion in A. annua.

AaABCG6 and AaABCG7 are ATP-binding cassette trans-

porter G, involved in the development of trichome cuticle

and may share a common regulatory system with ADS and

CYP71AV1. AaAOC is involved in JA biosynthesis. The

expression of this gene may be upregulated by treatment

with not only MeJA but also ABA and ethylene [100]. The

overexpression of the ABA receptor, AaPYL9, also

improves the sensitivity of ABA and promotes artemisinin

biosynthesis after ABA treatment [99, 101].

The enhancement of artemisinin production can be

achieved by increased GST density. Singh et al. [102]

reported that the expression of bgl1, encoding b-glucosi-
dase from Trichoderma reesei, in A. annua improved the

density of GSTs in flowers up to 66 % and increased the

production of artemisinin up to five-fold compared with the

control. The expression of rolB and rolC of A. rhizogenes

also increases GST density and upregulates the expression

of ADS, CYP71AV1, ALDH1, and TFAR1. Artemisinin

content is then increased 2- to 9-fold and 4-fold in rolB-

and rolC-expressing plants, respectively [103].

Co-cultivation of an endophytic fungus Piriformospora

indica and a nitrogen-fixing bacterium Azotobacter

chroococcum with A. annua increases artemisinin content

up to 70 % [104]. This dual symbiosis also shows a posi-

tive effect on plant height, dry weight, and leaf yield.

Another example of using symbiosis to increase the pro-

duction of artemisinin was reported using Glomus mosseae

and Bacillus subtilis [105]. Although clear evidence for the

effect of this symbiosis on the enhancement of artemisinin

production is still unknown, Arora et al. [104] suggested

that it might be due to improved growth and nutrient status

of the plant.

Heterologous production

Metabolic engineering of several platforms, such as Nico-

tiana benthamiana or chloroplasts, has been conducted.

Although ADS and CYP71AV1 were introduced into

N. benthamiana, the production of artemisinic acid 12-b-
diglucoside, instead of artemisinic acid, was detected at

39.5 mg/kg fresh weight (FW) [106]. The production yield

of artemisinic acid in tobacco chloroplasts was also very

low (0.1 mg/g FW) [107].

The production of plant natural compounds in

microorganisms is an alternative approach with several

advantages. The metabolic pathways in microorganisms

could be modified to produce various types of natural

compounds, including isoprenoids, alkaloids, and phenyl-

propanoids. Microorganisms can grow rapidly, allowing

shorter production time compared with the biosynthesis of

desired natural compounds in plants. Scaling up production

to industrial scale is also possible [108].

The production of artemisinin precursors in microor-

ganisms was first reported in 2003. Martin et al. [109]

expressed entire genes encoding the MVA pathway from

yeast Saccharomyces cerevisiae in Escherichia coli to

increase the intracellular concentration of FPP. To prevent

the rapid loss of highly volatile amorpha-4,11-diene during

culturing, the culture media was overlaid with dodecane to

trap amorpha-4,11-diene, referred to as a two-phase parti-

tioning bioreactor. As a result, they recovered the volati-

lized amorpha-4,11-diene, improving production titers

from 24 mg/L to approximately 500 mg/L in a fed-batch

bioreactor [110].

The coexpression of MevT operon with extra copies of

HMGR reduced the accumulation of toxic HMG-CoA and

increased production of mevalonate by threefold [111]. The

replacement of lac by lacUV5 promoter with a codon-op-

timized MevT and an additional copy of MK also led to the

increase in artemisinin production [112]. Tsuruta et al.

[113] succeeded in enhancing amorpha-4,11-diene pro-

duction in E. coli up to 27.4 g/L by replacing yeast HMGS

and HMGR with the equivalent enzymes from gram-posi-

tive bacteria Staphylococcus aureus.

Engineering of the MEP pathway and membrane efflux

transporters to improve the production of amorpha-4,11-

diene in E. coli has been reported as well [114–117].

However, there are many issues regarding the expression of

membrane-bound cytochrome P450s in this bacterium

posing a limitation on the production of the subsequent

oxidized compounds. To overcome these problems, Chang

et al. [118] engineered the N-terminal transmembrane do-

main of the codon-optimized CYP71AV1 and coexpressed

it with CPR from A. annua. As a result, production of

artemisinic acid (105 mg/L) in this E. coli strain was

obtained. Two years later, the same group replaced

CYP71AV1 by engineered P450 from gram-positive bac-

teria Bacillus megaterium (P450BM3) and could produce

artemisinic-11S,12-epoxide at higher than 250 mg/L suc-

cessfully [119]. From this finding, a novel semi-biosyn-

thetic route for the production of artemisinin stemming

from the cleavage of this epoxide followed by several

oxidation steps was proposed.

Yeast is another attractive host for the production of

artemisinin precursors as it produces FPP for sterol

biosynthesis via the MVA pathway. Since the MVA

pathway in S. cerevisiae has been characterized, ADS was

introduced into this yeast, and an amorpha-4,11-diene-

producing yeast strain was generated successfully [120].

While there are many issues concerning the expression of

cytochrome P450s in E. coli, the expression of this gene in

yeast is much more feasible. Therefore, CYP71AV1 and

CPR were coexpressed, and all genes involved in the MVA
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pathway were upregulated either directly or indirectly. The

competing pathway (sterol biosynthetic pathway) was also

downregulated using a methionine-repressible promoter to

improve the production of artemisinic acid in the yeast

expression system. As a result, this transgenic yeast strain

produced artemisinic acid at up to 100 mg/L [121, 122].

Several factors were further optimized for the production

of artemisinic acid in an industrial fermenter. For example,

the carbon source for growing yeast in a fermenter was

switched from glucose to galactose, and the oxygen

transfer rate was controlled. With this development, called

the galactose fed-batch process controlled by the DO-stat

algorithm, the artemisinic acid titer increased to 2.5 g/L

[123].

Despite conferring a higher production yield of artemi-

sinic acid, the use of galactose is costly and not applicable,

especially in developing countries. Thus, lower-cost

chemicals are needed as carbon sources. Yeast with GAL1,

GAL7, GAL10, and GAL80 deletions was generated to

exclude the use of galactose, and ethanol was alternatively

used as a carbon source. Two additional copies of truncated

HMGR (tHMG1) were integrated into this yeast strain. As a

result, the production of amorpha-4,11-diene was increased

up to more than 40 g/L [124]. Further development was

performed by the introduction of artemisinin biosynthetic

genes, CYP71AV1, CPR, ADH1, and ALDH1, to oxidize

amorpha-4,11-diene into artemisinic acid. Cytochrome b5
(CYB5) was also introduced into this strain as it can

accelerate cytochrome P450 reactions [125]. High-level

production of artemisinic acid, at 25 g/L, was thereby

achieved. The semi-synthesis of artemisinin from artemi-

sinic acid was also optimized, and the overall yield after

purification increased to 40–45 % [126, 127]. A potent

coupled chromatography–crystallization method to purify

artemisinin was then developed, and the recovery yield of

this antimalarial compound from the reaction mixture

increased to 61.5 %, with 99 % purity [128]. All of the

transgenes and modifications to several heterologous hosts

mentioned here are summarized in Table 1.

Artemisinin biosynthetic genes in non-artemisinin-
producing Artemisia species

Some studies reported that artemisinin is produced in other

Artemisia species [129–134]. However, we attempted to

isolate artemisinin from other Artemisia species but failed

to detect any trace amounts of artemisinin or its interme-

diates (unpublished data). Thus, we analyzed the expres-

sion of genes highly homologous to artemisinin

biosynthetic genes in these species. Firstly, we selected

A. afra and A. absinthium as they are widely cultivated in

Africa and exhibit anti-plasmodial activity [135–138].

Putative ADS orthologs were not expressed in either

A. afra or A. absinthium [139]. However, we detected the

expression of putative CYP71AV1 orthologs in both spe-

cies. Functional analysis revealed that these orthologous

enzymes show similar catalytic activities to their corre-

spondent in A. annua on the oxidation of amorpha-4,11-

diene into artemisinic acid [139]. We also detected the

expression of DBR2 ortholog in A. absinthium, and the

encoded enzyme showed comparable activity to that of

A. annua DBR2 [140]. In addition, we showed that this

plant can convert the fed artemisinin intermediates into the

following products along the biosynthetic pathway of

artemisinin [140]. Our findings suggest that ADS might be

a limiting factor for the production of artemisinin in planta,

and A. absinthium could be an alternative host for arte-

misinin production. The introduction of ADS into A. ab-

sinthium might lead to the generation of artemisinin-

producing A. absinthium, which could be used as an

alternative approach to produce artemisinin in other Arte-

misia species. To prove this hypothesis, this research is

now ongoing in our laboratory.

Next challenge: artemisinin-resistant Plasmodium
parasites

Artemisinin is the most effective antimalarial drug and has

been used as an ACT to treat malaria for over a decade.

However, the emergence of artemisinin-resistant Plas-

modium parasites in Southeast Asia, prolonging the para-

site clearance rate in patients, has been reported recently

and has become a critical issue [141–144]. No correlation

between resistance and other previously proposed candi-

date targets of artemisinin (PfATP6 and PfTCTP) was

detected [145]. However, it has been suggested that the

resistance occurs predominantly during the early ring stage

of parasite development as a result of the multiple forms of

mutations in the PF3D7_1343700 kelch propeller domain

(K13-propeller) on chromosome 13 [146–155]. K13-pro-

peller mutations lead to the increase of phosphatidylinosi-

tol-3-kinase (PfPI3K), which is required for the mediation

of cell signaling and survival [156, 157], and prolong

parasite development at the ring stage when the activation

level of artemisinin is rather low [5, 7, 158]. The B sub-

family of ABC transporters, known as multidrug resistance

proteins (MDR), also promotes artemisinin resistance. In

artemether–lumefantrine post-treatment infections, alleles

of Pfmdr1 tended to have 86N, 184F, and 1246D, rather

than the common YYY haplotype, and increased the

number of treatment failures [159]. The deletion of Pfmdr5

induced greater sensitivity to artemisinin treatment, sug-

gesting that this gene might contribute to artemisinin

resistance as well [160].
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Table 1 Heterologous production of artemisinin intermediates

Host No. Transgenes or modifications Product Yield References

N.

benthamiana

1 P35S-tHMGR-FPS-ADS, P35S-CYP71AV1 Artemisinic acid

12-b-
diglucoside

39.5 mg/kg

FW

[106]

Tobacco

chloroplasts

2 Prrn16S-atoB-HMGS-HMGR-MK-PMK-MVD1, PpsbA-E. coli IDI-FPS-

ADS-CYP71AV1-AaCPR

Artemisinic acid 0.1 mg/g FW [107]

E. coli 3 Plac-MevTa, Plac-MBISb, Ptrc-ADS Amorpha-4,11-

diene

24 mg/L [109]

4 Same as 3 but overlaid with dodecane Amorpha-4,11-

diene

500 mg/L [110]

5 PBAD-MevT, PBAD-tHMGR1 Mevalonate Threefold from

CTc
[111]

6 PlacUV5-MevT (codon opt.)-MBIS, Ptrc-ERG12 (codon opt.)-ADS Amorpha-4,11-

diene

293 mg/L [112]

7 PlacUV5-MevT (codon opt.) with HMGS and HMGR from S. aureus,

Plac-MBIS, Plac-ADS

Amorpha-4,11-

diene

27.4 g/L [113]

8 PBAD-dxs-IDI-ispDF, ADS with Dpts and optimized medium Amorpha-4,11-

diene

182 mg/L [114]

9 PTM2-galP-glk, PT7-dxs-IDI-ispA-ADS Amorpha-4,11-

diene

201.2 mg/L [115]

10 AcrB, TolC (x2), ADS (codon opt.) Amorpha-4,11-

diene

404.83 mg/L [116]

11 PBAD-dxs-IDI-ispDF, ParaBAD-ADS, PTM1-macAB-TolC Amorpha-4,11-

diene

*30 mg/L/OD [117]

12 Same as 3 with CYP71AV1 (codon opt., engineered N-terminal

transmembrane)-AaCPR

Artemisinic acid 105 mg/L [118]

13 Same as 12 but replaced CYP71AV1 with P450BM3 Artemisinic-

11S,12-

epoxide

250 mg/L [119]

S. cerevisiae 14 PGAL1-ADS Amorpha-4,11-

diene

600 lg/L [120]

15 PGAL1-tHMGR PGAL1-upc2-1 erg9::PMET3-ERG9 PGAL1-tHMGR

PGAL1-ERG20, PGAL1-ADS PGAL10-CYP71AV1 PGAL1-AaCPR

Artemisinic acid 100 mg/L [121, 122]

16 Same as 15 with optimized culture condition Artemisinic acid 2.5 g/L [123]

17 gal80D::natr MAT a erg9D::kanr PMET3-ERG9, leu2-3,112::HIS

PGAL1-MVD1 PGAL10-ERG8 his3D1::HIS PGAL1-ERG12 PGAL10-

ERG10ade1D::PGAL1-tHMG1 PGAL10-IDI1 ADE1 ura3-52::PGAL1-

tHMG1 PGAL10-ERG13 URA3trp1-289::PGAL1-tHMG1 PGAL10-

ERG20 TRP1 [pAM322]

Amorpha-4,11-

diene

41 g/L [124]

18 Same as 17. but replaced gal80D::natr with gal1D gal7D
gal10D::hphA

Amorpha-4,11-

diene

37 g/L [124]

19 gal1D,gal10D,gal7D::PGAL3-CPR1natA, erg9D::dsdAPCTR3- ERG9,

leu2-3,112::kanAPGAL7-AaCYB5PGAL1-ERG19PGAL10- ERG8,

ade1D::PGAL1-tHMG1PGAL10-IDI1_ADE1, his3D1::hphAPGAL7-

AaALDH1PGAL1-ERG12PGAL10-ERG10, ura3-52:: PGAL1-

tHMG1PGAL10-ERG13hisG, trp1-289:: PGAL1- tHMG1PGAL10-

ERG20TRP1, ndt80D::PTDH1-HEM1HIS3PPGK1-CTT1,

gal80D::URA3PGAL7-AaADH1, [pAM552: 2l-LEU2d PGAL1-ADS

PGAL10-CYP71AV1]

Artemisinic acid 25 g/L [126, 127]

a MevT operon consists of atoB-HMGS-tHMGR
b MBIS operon consists ofERG12-ERG8-MVD1-IDI-ispA
c Production yield as compared to control (CT)
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Current situation of malaria infection and ongoing
studies on antimalarial drug development

Since ACTs have become the major treatment for malaria

and strict preventive measures against parasite-infected

mosquitoes have been implemented, the malaria-related

mortality rate and case incidence have decreased gradually

during the past 10 years [1]. Although artemisinin-resistant

Plasmodium parasites have emerged and show a significant

delay in clearance rate, the response of dihydroartemisinin

against either wild-type parasites or mutants exhibits sim-

ilar Km values suggesting that dihydroartemisinin does not

lose its activity against the mutants [161]. Extending the

treatment courses could be an effective strategy to clear

resistant parasite infection. However, the parasites can still

develop complete resistance against artemisinin-based

treatment at any point in the future. In addition, the pro-

portion of malaria-infected patients is concentrated in

countries with low national income levels. Among these,

more than 68 million infected children do not receive any

ACTs [1]. Therefore, large amounts of low-cost artemisinin

for ACTs, by either increasing the cultivation of high-

artemisinin-producing A. annua plants or developing

cheaper synthetic biological processes in the long term, are

required to prevent any further development of parasites

and meet the demand of ACTs worldwide. Moreover, novel

effective antimalarial treatments must be developed con-

tinually. Recently, low-cost plant-based artemisinin com-

bination therapy (pACT) has driven attention on the

production of no semi-synthetic artemisinin in planta as

this treatment showed higher antimalarial activity, and the

synergistic effect of artemisinin and the plant matrix

overcame resistance to artemisinin [162–169]. Several

scientists have also focused on the investigation of novel

potential drug targets [170–180] and on the synthesis of

novel antimalarial compounds including artemisinin

hybrids [181–186]. Still, further studies on these avenues

are required.

Conclusion

Several approaches to enhance the production of artemi-

sinin have been investigated for over a decade. As a result,

the availability of artemisinin for ACTs is increasing, and

the number of malaria-related deaths is decreasing gradu-

ally. Although artemisinin is still effective against malaria-

causing parasites, the emergence of artemisinin-resistant

strains has posed a new challenge to scientists worldwide.

Therefore, elucidating the mode of action of artemisinin

and the mechanism of resistance against this compound in

Plasmodium parasites is important for further development

of antimalarial drugs. We hope that the current under-

standing of artemisinin as summarized in this review will

provide clues for further investigation and development of

antimalarial treatments to overcome artemisinin resistance

in Plasmodium parasites in the future.
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153. Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V,

Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory

PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst

RM, Ménard D, Fidock DA (2015) K13-propeller mutations

confer artemisinin resistance in Plasmodium falciparum clinical

isolates. Science 347:428–431

154. Nyunt MH, Hlaing T, Oo HW, Tin-Oo LLK, Phway HP, Wang

B, Zaw NN, Han SS, Tun T, San KK, Kyaw MP, Han ET (2015)

Molecular assessment of artemisinin resistance markers, poly-

morphisms in the K13 propeller, and a multidrug-resistance

gene in the eastern and western border areas of Myanmar. Clin

Infect Dis 60:1208–1215

155. Bayih AG, Getnet G, Alemu A, Getie S, Mohon AN, Pillai DR

(2016) A unique Plasmodium falciparum Kelch 13 gene muta-

tion in northwest Ethiopia. Am J Trop Med Hyg 94:132–135

156. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G,

Stahelin RV, Rizk SS, Njimoh DL, Ryan Y, Chotivanich K,

Nguon C, Ghorbal M, Lopez-Rubio JJ, Pfrender M, Emrich S,

Mohandas N, Dondorp AM, Wiest O, Haldar K (2015) A

molecular mechanism of artemisinin resistance in Plasmodium

falciparum malaria. Nature 520:683–687

157. Mita T, Tachibana S, Hashimoto M, Hirai M (2016) Plasmod-

ium falciparum kelch 13: a potential molecular marker for

332 J Nat Med (2016) 70:318–334

123



tackling artemisinin-resistant malaria parasites. Expert Rev

Anti-Infect Ther 14:125–135

158. Wang Z, Wang Y, Cabrera M, Zhang Y, Gupta B, Wu Y,

Kemirembe K, Hu Y, Liang X, Brashear A, Shrestha S, Li X,

Miao J, Sun X, Yang Z, Cui L (2015) Artemisinin resistance at

the China–Myanmar border and association with mutations in

the K13 propeller gene. Antimicrob Agents Chemother

59:6952–6959

159. Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJM,

Mutabingwa TK, Sutherland CJ, Hallett RL (2007) Amodi-

aquine and artemether–lumefantrine select distinct alleles of the

Plasmodium falciparum mdr1 gene in Tanzanian children trea-

ted for uncomplicated malaria. Antimicrob Agents Chemother

51:991–997

160. van der Velden M, Rijpma SR, Russel FGM, Sauerwein RW,

Koenderink JB (2015) PfMDR2 and PfMDR5 are dispensable

for Plasmodium falciparum asexual parasite multiplication but

change in vitro susceptibility to anti-malarial drugs. Malar J

14:76

161. Dogovski C, A. annua SC, Burgio G, Bridgford J, Mok S,

McCaw JM, Chotivanich K, Kenny S, Gnädig N, Straimer J,

Bozdech Z, Fidock DA, Simpson JA, Dondorp AM, Foote S,

Klonis N, Tilley L (2015) Targeting the cell stress response of

Plasmodium falciparum to overcome artemisinin resistance.

PLoS Biol 13:e1002132

162. Elfawal MA, Towler MJ, Reich NG, Golenbock D, Weathers

PJ, Rich SM (2012) Dried whole plant Artemisia annua as an

antimalarial therapy. PLoS One 7:e52746

163. Onimus M, Carteron S, Lutgen P (2013) The surprising effi-

ciency of Artemisia annua powder capsules. Med Aromat Plants

2:3

164. Weathers PJ, Elfawal MA, Towler MJ, Acquaah-Mensah GK,

Rich SM (2014) Pharmacokinetics of artemisinin delivered by

oral consumption of Artemisia annua dried leaves in healthy vs.

Plasmodium chabaudi-infected mice. J Ethnopharmacol

153:732–736

165. Weathers PJ, Jordan NJ, Lasin P, Towler MJ (2014) Simulated

digestion of dried leaves of Artemisia annua consumed as a

treatment (pACT) for malaria. J Ethnopharmacol 151:858–863

166. Weathers PJ, Towler MJ (2014) Changes in key constituents of

clonally propagated Artemisia annua L. during preparation of

compressed leaf tablets for possible therapeutic use. Ind Crops

Prod 62:173–178

167. Weathers PJ, Towler MJ, Hassanali A, Lutgen P, Engeu PO

(2014) Dried-leaf Artemisia annua: a practical malaria thera-

peutic for developing countries? World J Pharmacol 3:39–55

168. Towler MJ, Weathers PJ (2015) Variations in key artemisinic

and other metabolites throughout plant development in Artemi-

sia annua L. for potential therapeutic use. Ind Crops Prod

67:185–191

169. Elfawal MA, Towler MJ, Reich NG, Weathers PJ, Rich SM

(2015) Dried whole-plant Artemisia annua slows evolution of

malaria drug resistance and overcomes resistance to artemisinin.

Proc Natl Acad Sci USA 112:821–826

170. Giganti D, Bouillon A, Tawk L, Robert F, Martinez M, Crublet

E, Weber P, Girard-Blanc C, Petres S, Haouz A, Hernandez JF,

Mercereau-Puijalon O, Alzari PM, Barale JC (2014) A novel

Plasmodium-specific prodomain fold regulates the malaria drug

target SUB1 subtilase. Nat Commun 5:4833

171. Guggisberg AM, Park J, Edwards RL, Kelly ML, Hodge DM,

Tolia NH, Odom AR (2014) A sugar phosphatase regulates the

methylerythritol phosphate (MEP) pathway in malaria parasites.

Nat Commun 5:4467

172. Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan

JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M,

Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R,

Wilkinson AJ, Holder AA, Tate EW (2013) Validation of N-

myristoyltransferase as an antimalarial drug target using an

integrated chemical biology approach. Nat Chem 6:112–121

173. Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI,

Rahlfs S, Haeussler K, Downton MT, McConville MJ, Becker

K, Ralph SA (2015) Plasmodium falciparum glucose-6-phos-

phate dehydrogenase 6-phosphogluconolactonase is a potential

drug target. FEBS J 282:3808–3823

174. Li H, van der Linden WA, Verdoes M, Florea BI, McAllister

FE, Govindaswamy K, Elias JE, Bhanot P, Overkleeft HS,

Bogyo M (2014) Assessing subunit dependency of the Plas-

modium proteasome using small molecule inhibitors and active

site probes. ACS Chem Biol 9:1869–1876

175. Yuthavong Y, Tarnchompoo B, Vilaivan T, Chitnumsub P,

Kamchonwongpaisan S, Charman SA, McLennan D, White KL,

Vivas L, Bongard E, Thongphanchang C, Taweechai S,

Vanichtanankul J, Rattanajak R, Arwon U, Fantauzzi P, Yuva-

niyama J, Charman WN, Matthews D (2012) Malarial dihy-

drofolate reductase as a paradigm for drug development against

a resistance-compromised target. Proc Natl Acad Sci USA

109:16823–16828

176. Mokmak W, Chunsrivirot S, Hannongbua S, Yuthavong Y,

Tongsima S, Kamchonwongpaisan S (2014) Molecular dynam-

ics of interactions between rigid and flexible antifolates and

dihydrofolate reductase from pyrimethamine-sensitive and pyr-

imethamine-resistant Plasmodium falciparum. Chem Biol Drug

Des 84:450–461

177. Chitnumsub P, Jaruwat A, Riangrungroj P, Ittarat W, Noytanom

K, Oonanant W, Vanichthanankul J, Chuankhayan P, Maenpuen

S, Chen CJ, Chaiyen P, Yuthavong Y, Leartsakulpanich U

(2014) Structures of Plasmodium vivax serine hydroxymethyl-

transferase: implications for ligand-binding specificity and

functional control. Acta Crystallogr D Biol Crystallogr

70:3177–3186

178. Pinthong C, Maenpuen S, Amornwatcharapong W, Yuthavong

Y, Leartsakulpanich U, Chaiyen P (2014) Distinct biochemical

properties of human serine hydroxymethyltransferase compared

with the Plasmodium enzyme: implications for selective inhi-

bition. FEBS J 281:2570–2583

179. Chitnumsub P, Ittarat W, Jaruwat A, Noytanom K, Amorn-

watcharapong W, Pomthanakasem W, Chaiyen P, Yuthavong Y,

Leartsakulpanich U (2014) The structure of Plasmodium falci-

parum serine hydroxymethyltransferase reveals a novel redox

switch that regulates its activities. Acta Crystallogr D Biol

Crystallogr 70:1517–1527

180. Maenpuen S, Amornwatcharapong W, Krasatong P, Suchari-

takul J, Palfey BA, Yuthavong Y, Chitnumsub P, Leartsakul-

panich U, Chaiyen P (2015) Kinetic mechanism and the rate-

limiting step of Plasmodium vivax serine hydroxymethyltrans-

ferase. J Biol Chem 290:8656–8665
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