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Aedes aegypti Ir8a mutant female mosquitoes show increased attraction to

standing water
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ABSTRACT

The detection of water sources is crucial for insects such as mosquitoes to avoid desiccation and
survive. In addition, mosquitoes use humidity cues to successfully navigate the environment to
find a suitable oviposition site. Previous studies have implicated some members of the ionotropic
receptor family in humidity sensing by Drosophila. Here, we investigate if IR8a co-receptor
mediates water detection in Aedes aegypti mosquitoes. Using a simple behavioral assay, we
examined the attraction of /r8a mutant mosquitoes to standing water. /r8a mutant mosquitoes
were able to discriminate between traps containing water and those without as well as wild-type
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and heterozygous control females. Surprisingly, the female mutants were more robustly drawn to
standing water than control mosquitoes. Further investigation revealed that the increased beha-
vioral attraction to water is likely not mediated by a metabolic need or an activity defect.

The ability to sense water in the environment, hygro-
sensation, has been previously studied in a number of
insect species [1-4]. The availability of water impacts
insect longevity, fitness and geographic distribution [6].
Although insects are covered in chitinous exoskeleton,
they constantly experience water loss via the cuticle and
through their open respiratory systems [7]. Insects with
large surface area to volume ratios such as mosquitoes
must figure out a way to replenish water loss and
maintain internal osmotic balance. Water vapor ema-
nating from oviposition sites have been shown to elicit
pre-oviposition behavior in Anopheles gambiae [3].
Anthropophilic mosquitoes do not only rely on heat,
odor and visual cues to find their human hosts 8], the
detection of hygrosensory cues has also been proposed
to be important during host-seeking [9]. Functional
mapping of the pathways that mediate water-seeking
behavior could inform how mosquitoes monitor and
adjust its hydration state to maintain optimum physio-
logical homeostasis or seek oviposition sites.
Understanding the molecular basis of mosquito water-
seeking behavior could lead to novel approaches for
controlling mosquito populations and manipulating
gravid female attraction to water-baited traps.

Insects possess two distinct systems for detecting
water sources: the gustatory system, which is tuned to
sensing liquid water [10,11], and the hygrosensory sys-
tem required for detecting water vapor [4,5]. In

Drosophila, behavioral response to liquid water was
disrupted by ablating the ppk28 gene function which
labels the gustatory water sensory neurons [11]. The
gustatory system was activated only after the sensory
neurons had made direct contact with liquid water.
This draws attention to the hygrosensory system that
detects water vapor from a distance. The TRP channels,
nan and wtrw, previously identified in Drosophila med-
iate two contrasting behavioral responses to dry air and
moist air respectively [12]. Studies have shown the
existence of water sensitive receptors expressed in the
coeloconic sensilla of the Drosophila antennae [13].
Some ionotropic receptors (IRs) including IR25a,
IR93a, IR68a and IR40a which are expressed in these
sensilla have been reported to mediate humidity sen-
sing in Drosophila [4,5,14].

We recently reported that the Ir8a gene
(AAEL002922) is key for yellow fever mosquitoes to
detect acids in human sweat [15]. Here, we asked if the
IR8a pathway also drives water-seeking behavior. To
test this, we presented two ramekins (3.8cm height by
5cm width) housed in a trap (16cm height, 9cm width,
6cm diameter) and set at an angle 45° opposite and
placed 3.7cm apart from each other inside a rearing
cage (30cm height, 28cm diameter, 15cm diameter).
One of the ramekins contained 25ml deionized water
whereas the other was left blank (Figure 1(a-d)).
A total of 50 mosquitoes aged 7-10 days old, previously
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Figure 1. Mosquito water trap assay. (a) lllustrations showing the dimensions of a mosquito cage, (b) trap, and (c). ramekin used
for the water trap assay (d) lllustration showing ramekin housed in a trap and set at an angle 45° opposite each other and 3.7cm
apart. One of the ramekins contained 25ml deionized water whereas the other was left blank.

starved on water for 24hr were introduced into the
cage. The assay lasted for 15hrs (27°C, 40% RH)
under a 14:10 light-dark cycle (lights on at 8 am).

Thereafter, mosquitoes were cold anesthetized at
4°C for 30 mins. The number of mosquitoes inside
each trap was visually scored. To control for possible
position effects, the ramekins containing water was
swapped after each trial. Surprisingly, Ir8a mutant
female mosquitoes were more strongly attracted to the
water trap than the wild-type and heterozygous con-
trols (Figure 2(a)). This sexually dimorphic phenotype
was observed in the Ir8a mutant females but not males
(Figure 2(b)). All the genotypes tested including males
and females show strong preference for water trap over
the blank one (Figure 2(c,d)). This suggests that Ir8a is
not required to find standing water, but rather it influ-
ences the intensity of the response to water.

We asked if the strong attraction to water recorded
in Ir8a mutant females is due to physiological need for
hydration or carbohydrates. Using the capillary feeder
assay (CAFE) as previously described [16], we

quantified the amount of water ingested after 2hrs,
and compared to the wild-type and heterozygous con-
trols. Interestingly, we found no significant difference
in the total volume of water ingested by Ir8a mutants
when compared to the wild-type and heterozygous
controls (Figure 3(a)). We then wondered if Ir8a
mutant females are more attracted to the water source
because they are looking for a sugar meal. A water
solution containing 10% sucrose was presented to the
mosquitoes using the CAFE assay. After 4hrs of ad
libitum feeding, we could not record any feeding dif-
ference between the wild-type and Ir8a mutant females
(Figure 3(b)) similar to what has been previously
reported for 18 hours of feeding [15]. Taken together,
these findings suggest that the increased attraction to
water seen in Ir8a mutants cannot be explained by
thirst or lack of carbohydrate reserves. However, the
resolution of these assays is limited. It is still formally
possible that there is a minor defect in water or sucrose
consumption due to the loss of Ir8a and this could lead
to increased sensitivity to water loss.
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Figure 2. Ir8a mutant female mosquitoes are more attracted to water (a) Response of female mosquitoes and (b) male
mosquitoes to water over a period of 15 hours. Genotypes varied in their response to water. Females (one-way ANOVA, p <0.0001
n = 12-14). Males (one-way ANOVA p =0.0023, n = 12-14). (c) Figure showing female (one-way ANOVA, p = 0.213, n = 12-14) and
(d) male mosquitoes’ preference toward water source (one-way ANOVA, p = 0.055, n = 12-14). Genotypes marked with different
letters are significantly different by post hoc Tukey’s HSD test. On the violin plot, the central line represents the median. The shape
of the kernel represents the density of the population. Wider sections of the violin plot represent a higher probability that members

of the population will fall within the section.

We next investigated if Ir8a mutant females have
increased activity in humid environments. We pre-
viously reported that the IR8a pathway does not reg-
ulate mosquito activity [15]. In the previous study, the
glass tube was plugged with a dry and a water-saturated

cotton at opposite ends to create a humidity gradient.
We reasoned that water saturating both cottons would
simulate a wet environment that favors the Ir8a
mutants, and we could record higher infrared beam
breaks triggered by the water-seeking behavior of the
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Figure 3. Ir8a mutant female mosquitoes feed normally on water and sugar as well as show normal activity. (a)Water
ingestion quantified after 2hrs (one-way ANOVA p = 0.3525, n = 45) of drinking. (b) Sucrose consumption recorded after 4hrs of
feeding, (one-way ANOVA p = 0.7772, n = 25). () lllustration of the beam break assay. The red line represents the infrared beam
triggered by mosquito movement in the glass tube. An activity count is recorded when a mosquito moves past the beam. (d)
Average daily locomotor activity after 4 days of fasting on water, measured by the number of infrared beam breaks (counts). There
were no statistical differences among genotypes (p = 0.9320, n=12). On the dot plots, long lines represent the mean and short lines
represent standard error. Data was analyzed by one-way ANOVA, and genotypes marked with the same letters are not significantly

different by post hoc Tukey’s HSD test.

mutants. Using a locomotor activity assay adapted to
mosquitoes (Figure 3(c)) [17], we found no difference
in activity in the Ir8a mutants when compared to the
wild-type and heterozygous controls (Figure 3(d)). The

results were similar to when the assay was performed
with only one water-saturated cotton ball [15]. Since
Ir8a mutants retained normal activity in a humid envir-
onment, this does not support the explanation that the



increased attraction of Ir8a mutants to standing water
is due to increased locomotor activity in the presence of
increased humidity.

Taken together, the robust water-seeking behavior
recorded in the Ir8a mutant female mosquitoes is unli-
kely to be explained by an increased physiological need
for water or sugar, but this cannot be entirely ruled out
by the data presented here. Also, the mutants show no
locomotor activity difference from controls. We pro-
pose that the strong attraction to standing water could
be mediated by chemosensation. A possibility is that
Ir8a mutant females might be compensating for the loss
of IR8a-dependent olfactory sensory input that has
been shown to mediate host-seeking by priming the
sensory system toward other vital resources key for
survival. It has been previously shown that one sensory
input may cause enhanced sensitivity to a completely
different sense [18]. Another hypothesis is that Ir8a
could be part of a neural circuit that represses water-
sensing. Ir8a may also be important for finding
a suitable habitat that is less humid. Future study is
needed to uncover the exact contribution of the Ae.
aegypti IR8a pathway in female mosquito water-seeking
behavior.
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