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Abstract 47 
 48 
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and 49 
clinical diagnostics that guide conservative vs. aggressive surgical treatments don’t exist.  Multi-50 
omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are 51 
remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population 52 
of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased 53 
expression of immune checkpoint proteins (LAG3, TIM-3). Importantly, these proteins are 54 
upregulated in the serum and the bone marrow of S. aureus PJI patients.  A multiparametric 55 
nomogram combining high serum immune checkpoint protein levels with low proinflammatory 56 
cytokine levels (IFN-g, IL-2, TNF-α, IL-17) revealed that TIM-3 was highly predictive of adverse 57 
disease outcomes (AUC=0.89). Hence, T cell impairment in the form of immune checkpoint 58 
expression and exhaustion could be a functional biomarker for S. aureus PJI disease outcome, 59 
and blockade of checkpoint proteins could potentially improve outcomes following surgery.  60 
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Introduction 61 

 62 
Chronic Staphylococcus aureus osteomyelitis, encompassing prosthetic joint infections (PJIs), is 63 
considered broadly incurable and has been the bane of orthopedic surgery1. Although the number 64 
of infections following elective orthopaedic surgery is low (1-5%), reinfection or relapse rates are 65 
very high (up to 30%) and cost up to $150,000 per patient2. Moreover, ~13% of patients infected 66 
with S. aureus become septic and die from multiorgan failure, while others recover with relatively 67 
little intervention3-5. It is also known that patients can resolve acute infections and live full lives 68 
with asymptomatic S. aureus osteomyelitis5-7. Unfortunately, evidence-based clinical diagnostics 69 
to guide conservative vs. aggressive treatment of these patients do not exist, and no 70 
immunotherapies exist that can overcome the limitations of standard-of-care antibiotic treatment8. 71 
This led to an unprecedented 2018 International Consensus Meeting on musculoskeletal 72 
infections that concluded that “development of a functional definition for treatable “acute” vs. 73 
difficult-to-treat “chronic” osteomyelitis is the greatest research priority” in this field1. Thus, 74 
definitive empirical methods to discriminate acute vs. chronic-stage bone infections are a critical 75 
need for patient care, and to this end, a better understanding of the immune mechanisms that 76 
cause incurable S. aureus osteomyelitis is critical.  77 
 A conventional T cell response to acute S. aureus infection includes a burst in proliferation 78 
and differentiation upon activation, followed by the establishment of memory and contraction after 79 
pathogen clearance9. CD4 T cells, while responding to S. aureus, exhibit extensive plasticity, 80 
allowing the subsets to finely modulate one another while orchestrating local immunity through 81 
coordination of T-helper, cytotoxic, and immunosuppressive functions to curb hyperimmunity, 82 
cytokine storm, and thus prevent tissue damage10-12. T cell immunity studies in murine 83 
osteomyelitis models found that S. aureus skews the host-induced proinflammatory Th1 and Th17 84 
responses during the early stages of infections, and then towards suppressive Treg responses in 85 
the late stages13, causing bacterial persistence in the bone. To study human T cell responses 86 
during S. aureus bone infections, we created a humanized NSG mouse model of chronic 87 
osteomyelitis, and demonstrated that the commencement of chronic implant-associated 88 
osteomyelitis occurs with large numbers of proliferating CD3+/Tbet+ adjacent to purulent 89 
abscesses in the bone marrow14. Interestingly, this coincided with increased infection and 90 
osteolysis, suggesting that human T cell infiltration in the bone does not aid with bacterial 91 
clearance at this stage.  This suggests that these T cells exhibit dysfunction or impairment in the 92 
form of diminished effector function15-18 and cellular exhaustion19-21. 93 
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 One of the known attributes of T cell dysfunction is exhaustion, which is well-characterized 94 
in chronic viral infections and cancer19-22. An exhausted T cell typically exhibits impaired effector 95 
function, reduced proliferative potential, increased expression of immune inhibitory receptors 96 
(e.g., LAG323,24, TIM-325,26, PD-127,28, CTLA-429,30), and altered cellular programming22. Our 97 
understanding of T cell exhaustion mechanisms during S. aureus infections is limited. However, 98 
it is known that S. aureus superantigens (SAgs) can trigger antigen-independent oligoclonal T cell 99 
activation and proliferation31-33, leading to secretion of high amounts of proinflammatory 100 
cytokines15-18, followed by a profound state of T cell exhaustion characterized by lack of 101 
proliferation, cytokine production, and apoptosis34-37. Nonetheless, whether T cell exhaustion 102 
occurs in a human chronic osteomyelitis setting remains to be investigated.  103 
 In the current study, we utilize humanized NSG-SGM3 mice engrafted with the human 104 
fetal liver and thymus38, human patient samples, and multi-omics to comprehensively examine 105 
CD4 T cell exhaustion in the bone niche during chronic S. aureus osteomyelitis. Importantly, we 106 
investigated whether immune checkpoint expression and exhaustion could be utilized as 107 
biomarkers of adverse disease outcomes in patients with S. aureus osteomyelitis. 108 
 109 

Results 110 

 111 
Humanized NSG-SGM3 BLT mice exhibit exacerbated S. aureus implant-associated 112 
osteomyelitis 113 
Our previous studies revealed increased susceptibility of humanization of NSG mice to S. aureus 114 
osteomyelitis, which included exacerbated suppuration and sepsis14. However, the NSG mouse 115 
model has inherent limitations, including: 1) lack of functional thymic environment that supports 116 
the human T cell development and 2) limited myeloid lineage development with diminished 117 
macrophage function39,40. Therefore, we generated an improved humanized mouse model of 118 
osteomyelitis with NSG-SGM3 mice expressing human KITLG, GM-CSF, and IL-3 to allow for 119 
enhanced human myeloid lineage development41,42. These animals were subjected to sublethal 120 
radiation-induced myeloablation and transplanted with donor-matched human CD34+ HSC fetal 121 
liver cells and thymic tissues under the mice kidney capsule to generate human immune cells and 122 
improve T cell development (Figure 1A). At 12 weeks post-engraftment, humanized NSG-SGM3 123 
BLT mice were assessed for the extent of human chimerism as described previously14. 124 

Subsequently, we examined MRSA (USA300 LAC::lux) implant-associated osteomyelitis 125 
in these animals using our established protocols14,43-47. We hypothesized that infection would be 126 
more severe in humanized NSG-SGM3 BLT mice (Hu-m) compared to murinized NSG-SGM3 127 
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(Mu-m) (engrafted with C57/BL6 bone marrow CD34+ HSCs) and C57BL6 (WT) control mice 128 
(Figure 1A-B). The results demonstrated that infected BLT mice experienced increased in vivo 129 
S. aureus growth vs. controls as measured by bioluminescence (Figure 1C-D). Additionally, BLT 130 
mice had increased infection severity in the bone niche and sepsis (Figure 1E-I). This included 131 
internal organ dissemination (Figures 1E and 1I), an over 45-fold increase in CFUs on the 132 
pin/implant (WT= 1.09 x 104, Mu-m= 1.75 x 104, Hu-m= 8.67 x 105), an over 20-fold increase in 133 
CFUs/g in the bone (WT= 6.51 x 105, Mu-m= 2.3 x 106, Hu-m= 5.29 x 107),  and an over 450-fold 134 
increase in CFUs/g in the soft tissue (WT= 1.17 x 104, Mu-m= 1.32 x 104, Hu-m=6.33 x 106) 135 
(Figure 1F-H). Lastly, histopathology analyses of Brown & Brenn-stained tibiae sections revealed 136 
that the BLT mice exhibited increased staphylococcal abscess communities (SAC) compared to 137 
control animals (Figure 1J-K, *p<0.05). These results confirmed increased susceptibility of 138 
humanized BLT mice to S. aureus osteomyelitis.  139 
 140 
The human T cell landscape in the bone niche revealed remarkable heterogeneity during 141 
S. aureus osteomyelitis 142 
We previously observed large numbers of proliferating human CD3+/Tbet+ cells in the bone niche 143 
of humanized CD34+ NSG mice14. To comprehensively elucidate the human T cell landscape in 144 
the bone microenvironment during osteomyelitis, we performed single-cell RNAseq analysis of 145 
tibial bone marrow cells isolated from MRSA-infected NSG-SGM3 BLT mice at 2 weeks post-146 
infection (Figure 2A). Specifically, bone marrow cells were isolated from MRSA-infected and 147 
sterile implant control humanized BLT mice tibias and sorted into human CD45+CD3+ T cells and 148 
CD45+CD19+ B cells, mixed at 1:1 proportion and subjected to scRNAseq analyses (Figure 2A).  149 
Approximately 30,000 cells were sequenced, and unsupervised clustering analyses were 150 
performed using R Studio Seurat packages (v4.0.3)48-51 (Figure S1). A total of 39 clusters were 151 
revealed, which, upon re-clustering, were segregated into 24 T cell clusters and 16 B cell clusters 152 
(Figure 2B-C). T cell clustering data were normalized to the total number of T cells to account for 153 
human donor-to-donor variability. Subsequent UMAP52 clustering of the identified human T cell 154 
clusters revealed remarkable heterogeneity in gene expression (Figure 2D-E) and T cell 155 
population numbers (Figure 2E) between sterile and infection surgery groups. Notably, the 156 
number of Th1/Th17 cells (red arrow, clusters 8 and 20) was prominently increased in the infected 157 
animals compared to sterile implant controls, suggesting that human Th1/Th17 responses 158 
predominate due to S. aureus in the bone niche at later stages of infection (2-weeks post-surgery), 159 
indicative of persistent osteomyelitis. 160 
 161 
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Immune checkpoint proteins are elevated in the CD4+ T cells in S. aureus-infected 162 
humanized BLT mice tibia 163 
Human Th1/Th17 cells (clusters 8 & 20) were sub-clustered to reveal 7 clusters, and differential 164 
expression of gene (DEG) analyses were performed to probe for immune activation and 165 
suppression genes (Figure 3A).  Interestingly, several of these clusters showed significantly 166 
increased expression of immune checkpoint proteins LAG-3, and TIM-3 (HAVCR2) in the infected 167 
animals (Figure 3B). Importantly, transcriptional factor TCF1 (TCF7), known to be associated with 168 
“progenitor-exhausted” cells in CD8 T cells, were up-regulated in some of the Th1/Th17 clusters. 169 
TOX and TOX2, which are associated with functional terminal exhaustion, were up-regulated in 170 
other T cell clusters (Figure 3C). Of note, we observed higher expression of CXCL13 in the 171 
infected compared to controls, and the CXCL13/CXCR5 axis has recently been implicated in 172 
driving CD8 T cells to the progenitor-exhausted phenotype53. We also observed diminished 173 
proliferative (MKi67) and cytokine-producing capacities in these cells (Figure 3C).  174 

Next, the DEGs between the experimental groups within the Th1/Th17 cluster of cells were 175 
subjected to Ingenuity Pathway Analysis (IPA) to identify the top significantly enriched canonical 176 
pathways and predicted upstream regulators (Figure 3D-E). Notably, IPA confirmed that the T 177 
cell exhaustion signaling pathway was one of the top 3 significantly enriched pathways (Figure 178 
3D). Additionally, predicted upstream-activated proteins included transmembrane receptors such 179 
as CTLA-4, PDCD1, and transcriptional factor TCF7 (Figure 3E), which are associated with 180 
exhaustion. Furthermore, inhibited upstream proteins included multiple cytokines (IL2, IFNG, 181 
TNF, and IL7), TLRs (TLR4, TLR2, TLR3, and TLR9), and transcription factors (NFKB1, STAT1, 182 
STAT4, and IRF3), suggesting diminished effector functions (Figure 3E). Collectively, these 183 
results suggest that human CD4+ Th1/Th17 cells likely undergo functional exhaustion at the 184 
chronic stage of osteomyelitis.  185 
 186 
Evidence of functional cellular exhaustion in human T cells at the bone infection site in 187 
BLT mice 188 
To confirm scRNAseq findings at the protein level, we next performed immunohistochemistry 189 
(IHC) on the tibiae of infected and uninfected humanized BLT mice. IHC confirmed the presence 190 
of LAG3+, TIM-3+, and PD-1+ T cells clustering next to SACs (Figure 4A) in the MRSA-infected 191 
animals. Importantly, spectral flow cytometric analyses revealed that the frequency of human 192 
CD3+CD4+ T cells expressing TIM-3, LAG-3 & PD-1 in tibiae from MRSA-infected BLT mice were 193 
significantly higher compared to controls (Figure 4B, Supplemental Figure S2A).  Next, we 194 
examined the responses of these CD3+CD4+ T cells following in vitro stimulation with PMA and 195 
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ionomycin via spectral flow cytometry (Figure 5A). We observed that unstimulated CD4+TIM-3+ 196 
and CD4+LAG3+ cells had a significantly lower frequency of proliferating Ki67+ cells compared to 197 
CD4+TIM-3- and CD4+LAG-3- cells in the infected samples, suggesting that these cells are 198 
functionally exhausted (Figure 5B). We also evaluated cytokine production by CD4+CD69+ T cells 199 
post-stimulation (Supplemental Figure S2B) and looked for differences between LAG-3+ and 200 
LAG-3- cells and TIM-3+ and TIM-3- cells within this population. In general, we observed that 201 
MRSA infection induced more cytokine-producing CD4+CD69+ cells (Supplemental Figure S3).  202 
The results showed that TIM-3+ cells made significantly less TNFα and IL-17A, and a trending 203 
decrease in IFN-γ and IL-2 compared to TIM-3- cells (Figure 5C, supplemental Figure S4). 204 
Similarly, LAG-3+ cells made significantly less IL-2 and IL-17a and a trending decrease in IFN-γ 205 
compared to LAG-3- cells (Figure 5C). Of note, examination of splenocytes revealed similar 206 
trends of decreased proliferative capacity and diminished effector functions, suggesting systemic 207 
effects of infection (Supplemental Figure S5). These results demonstrate the impaired functional 208 
capacity of LAG3+ and TIM-3+ cells in our model, providing further evidence of T cell exhaustion 209 
during chronic osteomyelitis. 210 

 211 

Immune checkpoint protein expression in the human bones of S. aureus PJI patients  212 
Next, we examined whether our observations from the humanized mouse model were predictive 213 
of human immunity in patients with S. aureus PJI. To test this, we performed histology on bone 214 
sections from S. aureus-infected patients. H&E staining revealed considerable immune infiltration 215 
at the site of infection (Figure 6A). IHC showed co-expression of immune checkpoint proteins in 216 
CD3+ T cells and CD66b+ neutrophils (Figure 6B-D). Specifically, PD-1+CD3+ (Figure 6B), TIM-217 
3+CD3+ (Figure 6C), and LAG-3+CD3+ (Figure 6C) cells were observed. We also observed TIM-218 
3+ neutrophils (Figure 6D). These results indicate that human bones infected with S. aureus 219 
provide an environment that is supportive of T cell exhaustion during PJI. 220 
 221 
Serum immune checkpoint proteins are prognostic of adverse outcomes in S. aureus 222 
osteomyelitis patients 223 
Next, we assessed these immune checkpoint proteins in the serum of orthopaedic patients with 224 
culture-confirmed S. aureus osteomyelitis and individuals undergoing total hip/knee arthroplasties 225 
with no infections (Figure 7A, supplemental Table 1). The serum samples collected prior to 226 
surgery were examined. Serum LAG3 levels were significantly upregulated in S. aureus patients 227 
compared to uninfected individuals. Moderate trending elevations in TIM-3 and CTLA-4 were 228 
observed in the infected patients (Figure 7B). Multivariate logistic regression analyses with risk 229 
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characterized by odds ratios (OR per 10-fold increase in protein levels) revealed that TIM-3 levels 230 
were significantly associated with adverse outcomes (OR = 485.1, 95% CI 2.49 - 94511.09, p = 231 
0.02) such as arthrodesis, reinfection, amputation, and septic death. A multiparametric nomogram 232 
(TEX) combining TIM-3 with LAG3, PD-1, and CTLA-4 was highly predictive of adverse outcomes 233 
(AUC=0.89) in osteomyelitis patients (Figure 7E-F). No correlation was observed with the 234 
anecdotal clinical classification of acute vs. chronic disease (Figure 7C-D). Our results suggest 235 
these proteins could be leveraged as prognostic biomarkers for S. aureus osteomyelitis treatment 236 
outcomes. 237 

 238 

Discussion 239 

 240 
Clinical diagnostics that guide aggressive vs. conservative treatments for serious bone infections 241 
do not exist. To this end, we studied a humanized mouse model of osteomyelitis and human 242 
patient samples to assess if T cell exhaustion could be the much-needed evidence-based 243 
prognostic for disease outcome.  244 

Identifying a biomarker predictive of adverse outcomes during bone and joint infection has 245 
been a priority in musculoskeletal research. It has led to considerable efforts evaluating the 246 
effectiveness of antibodies for S. aureus-specific antigens54, cytokines55, and host-derived 247 
proteins56. Here, we demonstrate that immune checkpoint proteins in patient serum were 248 
markedly increased in adverse outcomes compared to uninfected and cured patients. Our human 249 
serum data illustrate the potential for checkpoint proteins as a biomarker of adverse outcomes in 250 
hip and knee arthroplasty and may provide empiric data upon which to base clinical decisions. 251 

MRSA infection of NSG-SGM3 BLT mice in the bone resulted in an exacerbated infection 252 
phenotype characterized by increased bacterial load in the bone, MRSA dissemination to distant 253 
internal organs, and purulent abscess formation compared to non-humanized mice. Our group 254 
and others have extensively observed this increased severity of S. aureus in osteomyelitis, 255 
pneumonia, bacteremia, soft-tissue, and deep-tissue abscess infections14,57-61. These studies 256 
highlight the potential involvement of immunotoxins and virulence proteins that exhibit high 257 
tropism to human leukocytes62,63. For instance, SAgs exhibit a 100 to 1000-fold decreased 258 
mitogenic activity in murine and rat-derived T cells compared to human T cells15-17,64,65. 259 
 The importance of T cells in chronic S. aureus infection control has been investigated in 260 
mice and humans11. Specifically, studies have observed that S. aureus can induce an 261 
immunostimulatory Th1/Th17 response, which can transition to immunosuppressive Tregs over 262 
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time if the host fails to clear the infection13. These Tregs have been implicated in broader T cell 263 
suppression, along with myeloid-derived suppressor cells (MDSCs)66 . Additionally, in overall bone 264 
health, the balance of Th17s and Tregs is important in determining osteoclastogenesis67. 265 
Expectedly, we observed an increase in Th1/Th17 cells and moderate increases in Treg 266 
populations at 2 weeks post-infection in our humanized mouse model.   267 

A more detailed examination of Th1/Th17 cells revealed that these cells may exist in a 268 
mixed population of “activated,” “progenitor exhausted,” and “terminally exhausted” cells.  T cell 269 
exhaustion occurs in multiple tissues and organs during chronic viral infection, inflammation, or 270 
cancer22. However, evidence during bacterial infections is less clear. Studies have shown the 271 
occurrence of CD4 and CD8 exhaustion in the periphery during tuberculosis infection, but the 272 
local site of infection has not been evaluated68. Notably, a recent study examining human PJI 273 
tissue T cells and PMNs revealed enrichment of T cell exhaustion signaling pathways and immune 274 
suppression, such as PD-1/PD-L1 pathways69, consistent with our observations in humanized 275 
mice and human patient tissue samples. In addition to local bone niche, we observed splenic CD4 276 
T cell exhaustion, suggesting that S. aureus can induce systemic T cell dysfunction. Our findings 277 
corroborated a recent study in chronic osteomyelitis patients with S. aureus and non-S. aureus 278 
infections70. The authors observed systemically increased Tregs and Tfh populations in the 279 
peripheral blood of infected patients compared to uninfected controls. Curiously, they observed 280 
moderate increases in PD-1 and TIM-3 expression in B cells, dendritic cells, and monocytes but 281 
not in T cells70. Nonetheless, such studies highlight cellular exhaustion beyond T cells during 282 
osteomyelitis, and that exhaustion is likely caused by pathogens beyond S. aureus in a chronic 283 
infection setting.  284 

An important consideration in developing and maintaining T cell function is the impact of 285 
other cell types, such as macrophages, in the bone marrow local infection site. S. aureus has 286 
been known to manipulate T cell responses by inducing hypoxia and supporting MDSC 287 
development, which leads to T cell suppression 11,71. Indeed, MDSCs are key contributors to S. 288 
aureus orthopedic biofilm infections72,73, and our IHC revealed some non-T cell PD-1+ cells in the 289 
infected humanized mice, which could be MDSCs.  Moreover, T cell activities in the bone niche 290 
due to infection can further diminish oxygen, exacerbate hypoxia74,75, and ultimately promote S. 291 
aureus biofilm formation, typical of chronic S. aureus disease. It is also known that exhausted 292 
CD8 T cells promote MDSC formation76, and it remains to be investigated if exhausted CD4 T 293 
cells also do this. 294 

S. aureus-infected macrophages in the bone marrow aid in apoptotic cell clearance, 295 
ultimately leading to hypoxia77,78. This efferocytosis of apoptotic cells by macrophages inhibits 296 
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their antigen presentation and has been shown to contribute to skewing naïve T cells into Treg 297 
fate79. Our scRNAseq and IPA analyses revealed up-regulated exhaustion, apoptotic pathways 298 
in Th1/Th17 cells, and a substantial population of Tregs. Interestingly, exhaustion-indicative 299 
checkpoint expression has been observed on the CD4 Tregs in the tumors of glioblastoma 300 
patients80.  Nonetheless, further work is needed to understand the dynamics between these cells 301 
during S. aureus infection. 302 

We observed CD4 T cell exhaustion 2 weeks post-infection, which is considered the 303 
initiation of chronic infection with a set inoculation dosage. As exhaustion is driven by antigenic 304 
stimulation81, the initial bacterial load may impact the development of this dysfunction. This has 305 
been shown using transgenic mouse models but not with a pathogen82. More work is warranted 306 
into how pathogen loads influence the T cell response in PJI. This is especially relevant in bacterial 307 
infections, where a single causative agent can lead to a spectrum of disease states83.  308 

The observation of T cell exhaustion in the local infection niche naturally leads to the idea 309 
of using immune checkpoint blockade (ICB) therapies. They are routinely used in the clinic to treat 310 
specific cancer malignancies, including melanoma, non-small cell lung cancer, and esophageal 311 
squamous cell carcinoma84. The use of immunotherapy in S. aureus infections has been proposed 312 
previously. A group used anti-PD-L1 as an adjuvant with gentamycin during S. aureus 313 
osteomyelitis and found an improved histological score and decreased cortical bone loss at 314 
fourteen days post-infection85. However, such therapies should identify the ideal balance between 315 
reenergizing T cells to clear the infection and preventing excess tissue damage due to 316 
inflammation. Indeed, there is evidence from human PJI patients that prolonged pro-inflammatory 317 
immune responses can hinder bone healing86. Future immunotherapies against this disease 318 
cannot adopt a one-size-fits-all approach. Importantly, treatment responses should also be 319 
tailored to the tissue microenvironment, as a recent study demonstrated that the local tissue niche 320 
has profound effects on immune and metabolic responses to S. aureus69.   321 
 The current study has a few limitations. First, we only utilized a single time point in our 322 
murine infection studies, and it will be important to examine the temporal changes of CD4 T cell 323 
responses and exhaustion over time. Understanding the kinetics of the T cell response is crucial 324 
to determining the potential of immune checkpoint proteins as biomarkers or the use of ICB 325 
therapies.  Additionally, we used naïve humanized mice in our infection studies, which meant a 326 
lack of immunological memory. As most humans have been exposed to S. aureus87, the impact 327 
of memory T cells on the development of exhaustion during osteomyelitis and how it influences 328 
disease pathogenesis is unknown. S. aureus-specific memory CD4 T cells have been observed 329 
in human skin, but how they may respond to pathogenic challenge by S. aureus, or if they exist 330 
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in other tissues, has not yet been investigated88. Additionally, as effector memory cells can 331 
become exhausted post-reactivation, further investigation into the contributions of naïve and 332 
memory cells to the observed T cell exhaustion is warranted89. Finally, our clinical pilot study 333 
examining serum immune checkpoint proteins and outcomes was limited in sample size. A larger, 334 
more comprehensive prospective study is required to establish that these proteins are definitive 335 
biomarkers of adverse outcomes due to S. aureus osteomyelitis.   336 

 337 

Materials and Methods 338 

Ethics Statement 339 

The University Committee on Animal Resources and the Institutional Animal Care and Use 340 
Committee have reviewed and approved all animal husbandry and experimentation. All mice were 341 
maintained in an Accreditation of Laboratory Animal Care (AAALAC) International-approved 342 
facility. 343 

Human Patient Samples 344 
For Luminex Immunoassays: Recruited patients were either enrolled in an international 345 
biospecimen registry (AO Trauma Clinical Priority Program (CPP) Bone Infection Registry90) or 346 
participated in IRB-approved clinical studies at Virginia Commonwealth University91. Patient 347 
information was collected in a REDCap database managed by AO Trauma and VCU data 348 
management administrators. Laboratory investigators had access to the serum of patients and 349 
their deidentified clinical data, which was provided on request by the data management teams.  350 
 351 
For Immunofluorescence Analyses in Human Bones with Microbial Abscesses: Human bones 352 
with histological or microbiological evidence of bacterial infection were provided by Drs. Enrique 353 
Becerril-Villanueva and Armando Gamboa-Dominguez (n = 3). Specimen collection was 354 
conducted with written and signed consent from their family members in accordance with the 355 
Declaration of Helsinki and after approval from the Ethical Committee of the national Institute of 356 
Medical Sciences and Nutrition “Salvador Zubiran”. Analysis of deidentified tissue samples was 357 
performed according to protocols approved by the University of Rochester Review Board. Patients 358 
received a diagnosis of a bone infection from experienced microbiologists and pathologists. 359 

Among the three patients identified, Patient 1 (female, 51 years, type 2 diabetic) was 360 
diagnosed with an S. aureus abscess in the metatarsus, had a visible wound without exposed 361 
bone, and was not undergoing antibiotic treatment. Patient 2 (male, 28 years, type 1 diabetic) and 362 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.30.630837doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.30.630837
http://creativecommons.org/licenses/by-nc-nd/4.0/


Patient 3 (male, 45 years, type 1 diabetic), undergoing insulin treatment for diabetes 363 
management, were diagnosed with S. capitis/S. haemolyticus and E. coli osteomyelitis and had 364 
visible wounds with exposed metatarsal bone. Note that patients 2 and 3 were undergoing 365 
antibiotic therapy with Erythromycin + Dicillin and Dicillin, respectively, at the time of the biopsy. 366 

Patient biopsies were collected from a patient hospitalized for amputation of the first 367 
metatarsal of the left foot; the sample was collected in paraformaldehyde 10% for a subsequent 368 
decalcification process, and the sample was embedded in paraffin and then sectioned at a 369 
thickness of 5 μm. H&E staining showed acute ulcerated inflammation with the presence of 370 
osteomyelitis and mononuclear cells associated with the presence of large positive bacteria. 371 
Patient 1 data is presented in Figure 6. 372 
 373 
Murine model of implant-associated osteomyelitis  374 
Mouse strains/humanization: Female C57BL/6J mice (stock 000664) and NSG-SGM3 (NOD.Cg-375 
Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ  stock 013062) mice were purchased 376 
from the Jackson Laboratories (Bar Harbor, ME, USA), housed five per cage in two-way housing 377 
on a 12-h light/dark cycle, and fed a maintenance diet and water ad libitum. Humanized and 378 
murinized NSG-SGM3 mice were provided by the Humanized Mouse Core (HMC) Facility, CCTI, 379 
CUMC, Columbia University. Humanized mice were generated by engrafting NSG-SGM3 mice 380 
with CD34+ human hematopoietic stem cells from fetal liver and thymic tissues according to 381 
previously described protocols59,92-94. Briefly, NSG-SGM3 mice (4 week) were subjected to total 382 
body irradiation (1 Gy) and injected intravenously with lineage-negative human 383 
CD34+ hematopoietic stem cells (2 x 105 cells/mice) isolated from fetal liver tissue. Thymic tissue 384 
was also implanted under the kidney capsule. At 12 weeks post engraftment, mice were subjected 385 
to submandibular bleeding to isolate peripheral lymphocytes, and human immune cell 386 
reconstitution was assessed by flow cytometry as described previously14. In this study, tissue 387 
samples from a total of seven human male and female human donors were utilized for generating 388 
humanized mice, and we obtained 61.2% ± 21.8% human CD45+ cell engraftment (human T– 389 

36.5%±11.7% human B– 35.5% ± 22.1%). Murinized mice were generated by engrafting NSG-390 
SGM3 mice with lineage-negative C57BL/6J CD34+ bone marrow cells.  391 
 392 
MRSA Infection Studies: Transtibial implant-associated osteomyelitis with MRSA was performed 393 
on skeletally mature 20–24-week-old humanized NSG-SGM3 mice, and age-matched C57BL/J6 394 
and murinized NSG-SGM3 mice utilizing our well-validated protocols described previously14,47,95. 395 
A bioluminescent strain of USA300 LAC (USA300 LAC::lux) was used in the infection 396 
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studies43,47,96,97. Briefly, mice were anesthetized with isoflurane in a Plexiglass box (ca. 7% in O2, 397 
flow rate 0.6-1 L/min), maintained with isoflurane through a face mask (ca. 2-3% in O2, flow rate 398 
0.6-1 L/min). Peri- and postoperative analgesia consisted of buprenorphine extended release, 399 
which was given subcutaneously prior to surgery (25mg/L). Before surgery, a flat stainless-steel 400 
surgical wire (cross-section, 0.2 mm by 0.5 mm) 4 mm long (MicroDyne Technologies, Plainville, 401 
CT, USA) bent at 1mm to form an L-shape was steam sterilized and used for sterile implant 402 
controls, or inoculated with clinical S. aureus USA300 LAC::lux strain grown overnight. After 403 
anesthesia induction, the right leg was clipped, and the skin was aseptically prepared with 404 
chlorhexidine scrub (Hibiscrub, 4% Chlorhexidine Digluconate) and 70% ethanol. The implant 405 
localization was identified (2 to 3 mm under the tibial plateau in the proximal tibia) using the 406 
proximal patella as an anatomical landmark and the jaws of the Mayo-Hegar needle driver as the 407 
measure. A hole was pre-drilled in the proximal tibia using a percutaneous approach from the 408 
medial to lateral cortex using a 26-gauge needle. Subsequently, S. aureus infected pin (5.0 x 409 
105 colony forming units (CFU)/mL) was surgically implanted in the pre-drilled hole from the 410 
medial to the lateral cortex. Osteotomy and implant position were confirmed radiographically in 411 
the lateral plane immediately after surgery. At 14 days post-infection, mice were euthanized, and 412 
the infected leg containing the transtibial implant was excised out for either CFU quantitation, 413 
histology, flow cytometry, or single-cell RNA sequencing. Additionally, internal organs, including 414 
the liver, spleen, kidneys, and heart, were harvested for CFU enumeration. Murine infection 415 
studies were performed four independent times, and the results shown are pooled data from these 416 
experiments. 417 
 418 
Euthanasia: The tibia, tibial implant, and soft tissue abscesses surrounding the tibia were 419 
removed, weighed, and placed in 1mL or 2mL of room-temperature sterile PBS. The implant was 420 
sonicated for 15 minutes to dislodge attached bacteria, and organ tissues were homogenized 421 
(Omni TH, tissue homogenizer TH-02/TH21649, Kennesaw, GA, USA) in 2mL of PBS. Implant 422 
sonicate fluid and tissue homogenates were serially diluted, plated on blood agar (BA) plates, and 423 
incubated overnight at 37°C. To confirm S. aureus on the plates, random colonies from each 424 
plate/organ/tissue were picked, and StaphLatex agglutination test (Thermo Fisher Scientific, 425 
Waltham, MA, USA) was performed. Bacterial colonies were enumerated, and the generated CFU 426 
data were presented as CFUs per gram of tissue. 427 
 428 

Histopathology 429 
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The tibia was dissected from mice post-euthanasia and fixed for 72 hours in 4% neutral buffered 430 
formalin. Each mouse tibia was then rinsed with ddH2O and decalcified in 14% EDTA tetrasodium 431 
solution for 14 days at room temperature. Following decalcification, samples were paraffin-432 
embedded, cut into 5 μm transverse sections, and mounted on glass slides for histological 433 
staining. Slides were deparaffinized and stained with Brown and Brenn (Gram) staining as 434 
described previously14. Digital images of the stained slides were created using VS120 Virtual Slide 435 
Microscope (Olympus, Waltham, MA, USA). Numbers SACs were manually enumerated and 436 
averaged across two or more histologic sections at least 50 μm apart from 6-7 mice in each 437 
experimental group. Quantitative analysis of SAC area within the tibias of C57BL/6J WT, 438 
murinized NSG-SGM3, and humanized NSG-SGM3 animals was performed on Brown and Brenn 439 
(Gram) stained slides using Visiopharm (v.2019.07; Hoersholm, Denmark) colorimetric 440 
histomorphometry utilizing a custom Analysis Protocol Package (APP). Manual regions-of-interest 441 
(ROIs) were drawn around the tibia and SACs within the tibia on each image prior to batch 442 
processing for automated quantification of SAC area normalized to tibial area between the groups. 443 
 444 
Multicolor Immunofluorescence 445 

Primary antibodies: The following antibodies were utilized for immunostaining: goat anti-CD3e 446 
(clone M-20, sc-1127, RRID:AB_631128, Santa Cruz Biotechnology),  mouse anti-PD-1 (10377-447 
MM23, RRID:AB_2936309, Sino Biologicals), Rabbit anti-LAG3 (clone BLR027F, NBP2-76402, 448 
RRID:AB_3403543, Novus Biologicals), Mouse anti-TIM3/HAVCR2 (clone TIM3/4031, V8754-449 
20UG, NSJ Bioreagents), Rabbit anti-S. aureus (PA1-7246, RRID:AB_561546, Thermo Fisher 450 
Scientific), and Mouse anti-CD66b (G10F5, NBP2-80664, RRID:AB_3096017, Novus 451 
Biologicals).  452 
Secondary antibodies: The following antibodies were used at 1:200 dilution for the detection and 453 
visualization of primary antibodies: Alexa Fluor 568-conjugated donkey anti-goat IgG (A-11057, 454 
RRID: AB_2534104, Thermo Fisher Scientific) to detect CD3-epsilon, Alexa Flour 488-conjugated 455 
donkey anti-rabbit IgG (711-546-152, RRID:AB_2340619, Jackson ImmunoResearch 456 
Laboratories) at a 1:200 dilution for detecting LAG-3 and S. aureus, Cy3-goat anti-mouse IgM 457 
(115-165-020, RRID:AB_2338683, Jackson ImmunoResearch Laboratories) to detect CD66b, 458 
FITC-donkey anti-mouse IgG (715-095-150, RRID:AB_2340792, Jackson ImmunoResearch 459 
Laboratories) to visualize PD1, Alexa Fluor 647 donkey anti-mouse Ig G (715-606-150, RRID: 460 
AB_2340865, Jackson ImmunoResearch Laboratories)  to detect TIM-3.  461 
Staining Procedure: The 5 μm formalin-fixed paraffin sections were incubated at 60°C overnight 462 
for deparaffinization. Tissue sections were quickly transferred to xylene and gradually hydrated 463 
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by transferring slides to absolute alcohol, 96% alcohol, 70% alcohol, and then water. Slides were 464 
immersed in an antigen retrieval solution, boiled for 30 minutes, and cooled down for 10 minutes 465 
at room temperature (RT). Slides were rinsed several times in water and transferred to PBS. Non-466 
specific binding was blocked with 5% normal donkey serum in PBS containing 0.1% Tween 20, 467 
0.1% Triton-X-100 for 30 minutes, at RT in a humid chamber. Primary antibodies were added to 468 
slides and incubated in a humid chamber at RT, ON. Slides were quickly washed in PBS, and 469 
fluorescently labeled secondary antibodies were incubated for 2 hours at RT overnight in a humid 470 
chamber. Finally, slides were rinsed for 1 hour in PBS and mounted with Vectashield antifade 471 
mounting media with DAPI (H-1200, Vector Laboratories, Burlingame, CA, USA). Pictures were 472 
taken with a Zeiss Axioplan 2 microscope and recorded with a Hamamatsu camera. 473 
 474 
Cell Culture  475 
Single-cell suspensions were generated from spleens and tibias. Following euthanasia, spleens 476 
were harvested and collected in 2mL PBS, then transferred through a 70µM filter. Spleens were 477 
resuspended in 2mL ACK lysis buffer (ThermoFisher, catalog: A1049201), and then filtered 478 
through a 40µm strainer. Bone marrow cells were isolated by flushing the bone with 1mL of PBS. 479 
For phenotyping analysis, cells were frozen and stored in liquid nitrogen, and then thawed. For 480 
functional analysis, immediately post-isolation, 1 x 106 cells were stimulated (2uL/1mL, 481 
eBioscience Cell Stimulation Cocktail, ThermoFisher, catalog: 00-4970-93 in R10A2 media (RPMI 482 
(ThermoFisher, catalog: 11875093) + 10% FBS (ThermoFisher, catalog: 26130079) + 483 
antimycotic/antibiotic (ThermoFisher, catalog:15240062)) or unstimulated for 10 hours at 37°C 484 

5% CO2, then left in 4°C overnight. 485 
 486 
Flow Cytometry 487 
Two panels were used to interrogate changes in the immune response. Immunophenotyping of 488 
spleen and bone marrow from humanized NSG-SGM3 mice was performed. Briefly, for our 489 
immunophenotyping panel, single-cell suspension of splenocytes and bone marrow cells were 490 
thawed, and for our functional panel, cells were taken after stimulation. For both panels, 491 
106 cells/mouse were initially stained with fixable viability dye eFluor™ 780 (eBioscience™, 492 
Thermo Fisher Scientific catalog: 65-0865-18) for 30 minutes at 4° C to exclude dead cells from 493 
the analysis. Following washing and blocking with 5% normal mouse serum (ThermoFisher, 494 
catalog: 10410), surface antibody cocktails were added for 80 minutes at 4° C (Supplemental 495 
Tables X).  After additional washing, cells were fixed/permeabilized with the BD Cytofix/Cytoperm 496 
Fixation/Permeabilization Kit and blocked again with normal mouse serum (BD Biosciences, 497 
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catalog 554714). Intracellular antibody cocktails (Supplemental Tables X) were added for 80 498 
minutes at 4° C. After staining, the cells were fixed with 2% formaldehyde before running on a 499 
Cytek Aurora five-laser spectral flow cytometer (Cytek Biosciences). Flow data were analyzed 500 
using FlowJo version 10.6 (Tree Star Inc. Ashland, OR). For both panels, single-color 501 
compensation controls for these antibodies were created using UltraComp eBeads Plus 502 
Compensation beads (Thermo Fisher Scientific, catalog 01-3333-43). All antibodies were 503 
purchased from BioLegend, BD Biosciences (San Jose, CA, USA), or Thermo Fisher Scientific. 504 
 505 
Single-cell RNA sequencing  506 
Tibias from NSG-SGM3 BLT mice that underwent surgery with or without bioluminescent MRSA-507 
contaminated transtibial implant were harvested on day 14 post-infection. Bone marrow cells were 508 
isolated in PBS. The cell suspension was stained with viability dye 7-AAD (BD Biosciences Cat# 509 
559925, RRID:AB_2869266), anti-CD45 (Biolegend, catalog: 268530, RRID: AB_2715890), anti-510 
CD19 (Biolegend, catalog: 353006, RRID: AB_2564128), and anti-CD3 (BD Biosciences, catalog: 511 
555332, RRID: AB_395739). Isolated BM cells were sorted into human CD45+CD19+ B cells and 512 
CD45+CD3+ T cells on FACS Aria (BD Biosciences). Equal proportions of the B and T cells were 513 
subjected to scRNAseq analyses. A total # of events were collected for each sample and 514 
processed for single-cell RNA sequencing by the Genomics Research Center at the University of 515 
Rochester Medical Center. The cells were then sequenced using Illumina’s NovaSeq6000. 516 

The datasets were analyzed using the Seurat51 package version 3 in R with unsupervised 517 
SNN clustering and the Louvain method.  After initially clustering all cells at a resolution of 2.4 518 
(determined by evaluating clustree plots98), T cells were extracted based on SingerR99 519 
annotations and the absence of CD19.  T cell clustering was performed at resolution = 1.0 520 
(determined by evaluating clustree plots), using 30 principal components based on the top 2,000 521 
variable genes. For analysis, low-quality cells were removed if the cell exhibited 1) <1000 genes, 522 
2) >7000 genes, 3) >50,000 mapped reads, or 4) >5% mitochondrial reads.  Integration of 523 
samples was done using the CCA method with SCTransform100 normalization, regressing out the 524 
effect of percent mitochondrial reads. We used the Human Primary Cell Atlas to identify gene 525 
expression patterns used to manually annotate each T cell cluster’s cell type.  Sub-clustering of 526 
Th1/Th17 cells was performed at a resolution of 0.2, using 30 principal components based on the 527 
expression of exhaustion-associated genes.  Differential expression analysis was performed 528 
using Seurat’s FindMarkers function with default parameters. 529 
 530 
Luminex Immunoassay  531 
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Serum concentrations of immune checkpoint proteins (TIM-3, LAG-3, PD-1, PD-L1, PD-L2, CTLA-532 

4) and cytokines (IFN-g, IL-2, TNF-α, IL-17A, and IL-17F) were determined in individuals 533 

undergoing total hip/knee arthroplasty and orthopaedic patients with culture-confirmed S. aureus 534 
osteomyelitis using a Luminex-based Milliplex xMAP Multiplex Assay (MilliporeSigma) according 535 
to the manufacturer’s instructions. 536 
 537 
Statistics 538 
Unpaired student’s t-test was used to compare the flow cytometry data statistically. Two-way 539 
ANOVA with Sidak’s post-hoc tests were performed to compare body weight change over time. 540 
One-way ANOVA analyses with Tukey’s post-hoc tests were utilized to compare the osteolysis 541 
area, number of SACs, SAC area, log-transformed CFUs, and the number of immune cells 542 
revealed by immunostaining. The individual protein levels from patient serum samples in the 543 
clinical pilot stody were utilized to perform receiver operating characteristic (ROC) curve analysis 544 
either singly or in combination to generate the area under the curve (AUC) for differentiating acute 545 
vs. chronic S. aureus infections and prognostic prediction of outcome. All data and statistical 546 
analyses were conducted using GraphPad Prism (version 9.0), SAS version 9.4, and R Studio 547 
Seurat packages, and p < 0.05 was considered significant. 548 
 549 
Reporting summary and Data Availability  550 
All scRNAseq datasets generated are available via the Gene Expression Omnibus (GEO) under 551 
the accession code GSE269658. All other data will be made available upon reasonable request. 552 
Further information on research design is available in the Nature Portfolio Reporting Summary 553 
linked to this article. 554 
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Figure Legends 569 
 570 
Figure 1. Humanized NSG-SGM3 BLT mice have exacerbated susceptibility to S. aureus 571 
osteomyelitis compared to Murinized NSG-SGM3 and C57BL/6 WT mice. (A) Humanized 572 
NSG-SGM3 BLT mice were generated by engrafting with CD34+ human hematopoietic cells, 573 
autologous human fetal liver, and thymus from three different human donors. Murinized NSG-574 
SGM3 BLT mice were generated with CD34+ murine hematopoietic cells derived from three 575 
different C57BL/6 WT mice. (B) Schematic illustration of the experimental design of in vivo 576 
experiments. 20-week-old humanized HuNSG-SGM3 BLT mice, murinized NSG-SGM3 and 577 
C57BL6 (WT) mice (n=25) were subjected to transtibial implant-associated osteomyelitis using 578 
bioluminescent MRSA (USA300 LAC::lux). (C) Longitudinal BLI images of representative mice 579 
with (D) statistical analysis of the groups demonstrate increased in vivo S. aureus growth in 580 
humanized NSG-SGM3 BLT mice. (E) In vivo BLI images of a representative NSG-SGM3 BLT 581 
mouse with local and disseminated MRSA infections, as evidenced by the focal BLI signal in the 582 
tibia and abdominal cavity from supine and prone views, respectively.  Autopsy photograph 583 
confirmed S. aureus abscesses (yellow arrows) in the liver.  (F-I) On day14 post-operation, 584 
implants, tibiae, surrounding soft tissues, and internal organs (heart, liver, kidneys, and spleen) 585 
were harvested for CFU assays and the data are presented with the mean for each group (n= 25, 586 
and differences between groups were assessed by ANOVA, *p<0.05, **p<0.01, ***p<0.001, 587 
***p<0.0001).  (J) Representative 10x images of Brown & Brenn (B&B) stained histology of 588 
infected tibia from each group are shown, highlighting the SACs (red arrows). (K) VisioPharm 589 
histomorphometry was performed to quantify the SAC area per tibia, and the value for each tibia 590 
is presented with the mean +/- SD  (n>4, ANOVA, *p<0.05).  591 
 592 
Figure 2. Single-cell RNAseq reveals remarkable human T cell heterogeneity at the 593 
infection site in humanized BLT mice with S. aureus osteomyelitis.  (A) Schematic illustration 594 
showing the experimental overview of sc-RNAseq of humanized NSG-SGM3 BLT mice engrafted 595 
with three different human donor tissues. Bone marrow (BM) cells were collected from tibiae of 596 
humanized NSG-SGM3 BLT mice 14 days after transtibial implants surgery with or without 597 
USA300 LAC::lux, and the human CD45+CD19+ B cells and CD45+CD3+ T cells were isolated by 598 
FACS for scRNAseq. (B) UMAP of the unsupervised cluster analysis of ~30,000 BM cells with (C) 599 
Feature plots of the CD3+ T cells and CD19+ B cells. (D) UMAP and DEG clustering analyses of 600 
hCD45+/CD3+ T cells identified 24 T cell clusters with (E) bar graphs displaying the proportion of 601 
cell counts in each cluster between sterile implant and infected implant groups.  Note the marked 602 
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increase of Th1/Th17 cells (red arrows, Cluster 8,20) in the infected tibiae compared to unifected 603 
tibiae. 604 
 605 
Figure 3: Immune checkpoint gene expression is elevated in CD4+ Th1/Th17 cells from S. 606 
aureus-infected humanized BLT tibiae. (A) The scRNAseq data of the Th1/Th17 cells (clusters 607 
8 and 20) identified in Figure 2 were subjected to UMAP and differential gene expression analyses 608 
(DEG) revealed 7 sub-clusters, and the relative proportions of these sub-clusters in uninfected 609 
(blue) and infected (red) tibiae are illustrated by the bar graph. (B) Violin plot analyses 610 
demonstrated that these cells were of the Th1/Th17 phenotype. Several Th1/Th17 clusters 611 
showed significantly increased expression of immune checkpoint molecules LAG-3, TIM-3 612 
(HAVCR2), and, to a lesser extent, CTLA-4 and other immunosuppressive genes like TIGIT.  (C) 613 
DEG analyses of transcriptional factors (TCF7, TOX1-2, EOMES, NR4A1), cytokines & 614 
chemokines, and chemokine receptor (IL-1, IL-17, CXCL13, CXCR5) associated with functional 615 
T cell exhaustion, chronic antigenic stimulation (CD40L) and proliferation (MKi67). Note that the 616 
lower expression of TCF7, MKi67, IL-1, and IL-17 genes and higher expression of CXCL13 and 617 
TOX 2 indicate transcriptional reprogramming of these cells to a terminally functionally exhausted 618 
state (*p<0.05). The Th1/Th17 subclusters were annotated based on the gene expression 619 
signatures into activated, progenitor-exhausted, and terminally-exhausted cells. The DEGs 620 
between the experimental groups within the Th1/Th17 cells were subjected to Ingenuity Pathway 621 
Analysis (IPA) to identify the (D) top significantly enriched canonical pathways and (E) predicted 622 
upstream regulators (cytokines, transcriptional factors and transmembrane receptors). Red 623 
indicates activation, while blue indicates suppression. 624 
 625 
Figure 4. CD4+ T cells expressing immune checkpoint proteins are increased in S. aureus-626 
infected humanized BLT tibiae. (A) Immunofluorescent histochemistry analyses of tibia sections 627 
from uninfected and MRSA-infected humanized BLT mice 14 days post-op were performed with 628 
labeled antibodies against CD3, LAG-3, TIM-3, and PD-1 with DAPI counter stain, and 629 
representative images are shown at 4x.  Note the increased numbers of T cells near the SAC 630 
(dashed yellow line) in the infected tibiae. (B) A multichromatic spectral flow cytometry analyses 631 
were performed on tibial bone marrow cells from uninfected and MRSA-infected BLT mice. Live 632 
human CD45+/CD3+/T cells and their subpopulations (CD4+, CD8+, Tregs) were analysed for 633 
immune checkpoint expression (LAG3, TIM-3, and PD-1) and proliferation (Ki67), and 634 
representative histograms are shown. Note the frequency of human CD3+/CD4+ T cells 635 
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expressing TIM-3, LAG3 & PD-1) in the cells from MRSA-infected bone marrow (n=4-8 mice, 636 
*p<0.05, t-test). 637 
 638 
Figure 5: Bone marrow CD4+ T cells from MRSA-infected tibiae expressing TIM-3 and LAG3 639 
checkpoint proteins exhibit diminished proliferative capacity and altered cytokine 640 
production. (A) Schematic illustration of the experimental design of ex-vivo experiments. 20-641 
week-old humanized NSG-SGM3 BLT mice were subjected to aseptic or septic transtibial implant-642 
surgery for 14 days, then their splenocytes and bone marrow cells were isolated, stimulated, 643 
stained with antibodies, and analyzed by flow cytometry. (B-C) Multichromatic spectral flow 644 
cytometry was performed on uninfected and MRSA-infected tibial bone marrow cells from BLT 645 
mice (B) on unstimulated cells (C) post-stimulation with PMA/ionomycin. (B) Live human 646 
CD45+/CD3+/CD4+ T cells expressing checkpoint molecules TIM-3 and LAG-3 were probed for 647 
their proliferative capacity using the cell surface marker Ki67. Note that CD4+TIM-3+ and 648 
CD4+LAG-3+ cells have lower amounts of proliferating Ki67+ cells in the bone marrow of infected 649 
BLT mice, suggesting functional exhaustion and dysfunction. (C) Live human 650 
CD45+/CD3+/CD4+/CD69+ T cells expressing checkpoint molecules TIM-3 and LAG-3 were 651 
probed for functional capacity using the cytokines IFN-!, TNFɑ, IL-17A, and IL-2 (n=4-9 mice, 652 
*p<0.05, ANOVA). 653 
 654 
Figure 6. T cells expressing immune checkpoint proteins accumulate in S. aureus infected 655 
bone tissue from PJI patients. Bone tissues surgically removed from PJI patient with S. aureus 656 
osteomyelitis were processed for histology and immunohistochemistry. (A) Representative 100x 657 
image (bar =100  µm) of a H&E-stained section is shown to illustrate the inflammatory cells within 658 
the region of interest (box). (B-D) Parallel histology sections containing the region of interest were 659 
immunostained with labelled antibodies against CD3, PD1, S. aureus, TIM-3 (green), LAG-3, and 660 
CD66b, counter stained with DAPI, and representative fluorescent microscopy images are shown 661 
at 200x (bar = 100 µm). (B) Note CD3+/PD1+ T cells detected in areas of S. aureus infection (white 662 
arrows). (C) Note CD3+/TIM-3+ (white arrows) and CD3+/LAG-3+ (yellow arrows) T cells at the site 663 
of S. aureus infection. (D) Note TIM-3+/CD66b+ neutrophils at the site of infection (white arrows).  664 
 665 
Figure 7. TIM-3 protein level in serum is highly prognostic of adverse outcomes in patients 666 
with S. aureus osteomyelitis. (A) Serum samples were collected from healthy arthritis patients 667 
undergoing total hip/knee arthroplasty (n=15), and orthopaedic patients undergoing surgery for 668 
culture-confirmed S. aureus osteomyelitis whose clinical outcome at 1-year was adverse (n=12), 669 
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infection controlled (n=11), or inconclusive (14). (B) Immune checkpoint proteins LAG-3, TIM-3, 670 
CTLA-4, PD-1 and cytokines (IFN-γ, IL-2, TNFα, IL-17A, IL-17F) were assessed by multiplex 671 
Luminex assay, and the data are presented for each patient with the mean +/- SEM for each 672 
group. The individual protein levels were utilized to perform receiver operating characteristic 673 
(ROC) curve analysis either singly or in combination to generate the area under the curve (AUC) 674 
for (C-D) differentiating acute vs. chronic S. aureus infections and (E-F) prognostic prediction of 675 
outcome. Interestingly, no correlation was observed between levels of immune checkpoint 676 
proteins and clinical time-based, anecdotal classification of acute vs. chronic classification. On 677 
the other hand, immune checkpoint proteins, especially TIM-3, were highly predictive of adverse 678 
in these patients (*p<0.05, **p<0.01, ****p<0.00001). 679 
 680 
Supplementary Figure S1.  Quality Control, Dimension Reduction, and Clustering 681 
Overview. (A) For each sample, these plots show the distribution of genes detected per cell 682 
(nFeature_RNA), reads mapped per cell (nCount_RNA), and the percent of reads mapped to 683 
mitochondrial genes per cell (percent.mt), prior to any filtering. (B) Plots of the distributions of 684 
these QC parameters after filtering out cells with 1) fewer than 1000 genes detected, 2) greater 685 
than 7,000 genes detected, 3) greater than 50,000 mapped reads, and 4) greater than 5% 686 
mitochondrial reads. (C)  Elbow plot of the standard deviations of each principal component (PC) 687 
of the t-cell population, based on the top 3,000 most variable genes.  These values indicate how 688 
informative each PC is.  This guided our choice of 30 PCs for subsequent clustering as PCs >30 689 
contain little information. (D)  Clustree plot of the T-cell population clustered at various resolutions 690 
from 0.5 to 5.0.  Briefly, Clustree plots show how cells move between clusters as clustering 691 
resolution is increased, while the sc3 stability index indicates how stable a cluster is across all 692 
resolutions.  This allows for rational selection of the resolution parameter.  Each dot is a cluster.  693 
Each row corresponds to a resolution value, with values increasing from top to bottom.  Dot size 694 
corresponds to the number of cells in the cluster.  Arrows show how cells move from one cluster 695 
to another as resolution increases.  Arrow color indicates the number of cells that move from 696 
cluster to cluster.  Arrow transparency indicates the proportion of cells in a cluster that came from 697 
the source cluster at the previous resolution.  Cluster color corresponds to sc3 stability, which 698 
indicates how stable a cluster is overall in tested resolutions.  A final resolution of 1.0 (third row) 699 
was selected based on this plot, as clustering rapidly becomes unstable as the resolution 700 
increases much beyond this point. 701 
 702 
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Supplemental Figure S2: Representative plots of the gating strategy used for flow 703 
cytometry experiments. Multichromatic spectral flow cytometry was performed on uninfected 704 
and MRSA-infected BLT mice. (A) Gating strategy used on thawed/unstimulated cells to evaluate 705 
differences in CD4 T cells. Plots shown are using bone marrow cells. (B) Gating strategy used on 706 
stimulated cells to evaluate differences in cytokine production in activated cells. Plots shown are 707 
using bone marrow cells. 708 
 709 
Supplemental Figure S3: Increased number of activated cytokine producing CD4+ T cells 710 
in the bone marrow from MRSA-infected tibiae. Post-stimulation with PMA/ionomycin live 711 
human CD45+/CD3+/CD4+/CD69+ T cells expressing checkpoint molecules were probed for 712 
functional capacity using the cytokines IFN-!, TNFɑ, IL-17A, and IL-2 (n=4-6 mice, *p<0.05, 713 
ANOVA). 714 
 715 
Supplemental Figure S4: Examination of bone marrow CD4 T cells expressing TIM-3 and 716 
LAG-3 for their functional capacity. Post-stimulation with PMA/ionomycin live human 717 
CD45+/CD3+/CD4+/CD69+ T cells expressing checkpoint molecules were probed for functional 718 
capacity using the cytokines IFN-!, TNFɑ, IL-17A, and IL-2. Note that TIM-3+ and LAG-3+ CD4 719 
T cells generally have diminished cytokine-secreting abilities, suggesting dysfunction (n=4-6 720 
mice, *p<0.05, ANOVA).  721 
 722 
Supplemental Figure S5: Proliferation of immune cells is impaired in Hu-BLT mice infected 723 
with S. aureus. Spleen sections from non-infected and infected mice were stained with antibodies 724 
specific for CD3 (red) and PCNA (white). Nuclei were labeled with DAPI. A) Spleen from sham-725 
infected Hu-BLT mice show increased proliferating T cells. B) Spleen from Hu-BLT mice infected 726 
with S. aureus show a reduction in proliferating T cells.  To estimate the proliferative activity in the 727 
spleens of Hu-BLT mice, the area covered by PCNA signal was measured with NIH Image J. C) 728 
Proliferation is significantly reduced in the spleens of S. aureus infected Hu-BLT mice, suggesting 729 
systemic immunosuppression (n=3, t-test, * p < 0.05). 730 
 731 
Supplemental Figure S6: Splenic CD4+ T cells expressing TIM-3 and LAG3 checkpoint 732 
proteins exhibit diminished proliferative capacity and altered cytokine production due to 733 
S. aureus infection. Multichromatic spectral flow cytometry on uninfected and MRSA-infected 734 
BLT mice tibial bone marrow cells was performed (A) on unstimulated cells (B) post-stimulation 735 
with PMA/ionomycin. (A) Live human CD45+/CD3+/CD4+ T cells expressing checkpoint 736 
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molecules TIM-3, LAG3, and PD-1 were probed for their proliferative capacity using the cell 737 
surface marker Ki67. Note that CD4+TIM-3+ and CD4+LAG3+ cells have lower amounts of 738 
proliferating Ki67+ cells in the bone marrow of infected BLT mice, suggesting functional 739 
exhaustion and dysfunction. (B) Live human CD45+/CD3+/CD4+/CD69+ T cells expressing 740 
checkpoint molecules TIM-3 and LAG-3 were probed for functional capacity using the cytokines 741 
IFN-!, TNFɑ, IL-17A, and IL-2 (n=4-9 mice, *p<0.05, ANOVA). 742 
 743 
Supplemental Table 1. Demographic and outcome data of patients enrolled in the clinical 744 
study745 

  746 

Characteristic
Control Patients 

(Total patients = 15) 

Patients with                  
S. aureus infections 
(Total patients = 37)

% female 33.34 34.28
Age (yrs) 66.2 +/- 9.5 56.3 +/- 17.8

BMI (kg/m2) 29.6 +/- 4.2 30.6 +/- 7.4
% Diabetes Positive 20 22.5
% Adverse outcome 0 32.4
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Figure 1. Humanized NSG-SGM3 BLT mice have exacerbated susceptibility to S. aureus
osteomyelitis compared to Murinized NSG-SGM3 and C57BL/6 WT mice. (A) Humanized NSG-
SGM3 BLT mice were generated by engrafting with CD34+ human hematopoietic cells, autologous
human fetal liver, and thymus from three different human donors. Murinized NSG-SGM3 BLT mice
were generated with CD34+ murine hematopoietic cells derived from three different C57BL/6 WT
mice. (B) Schematic illustration of the experimental design of in vivo experiments. 20-week-old
humanized HuNSG-SGM3 BLT mice, murinized NSG-SGM3 and C57BL6 (WT) mice (n=25) were
subjected to transtibial implant-associated osteomyelitis using bioluminescent MRSA (USA300
LAC::lux). (C) Longitudinal BLI images of representative mice with (D) statistical analysis of the
groups demonstrate increased in vivo S. aureus growth in humanized NSG-SGM3 BLT mice. (E) In
vivo BLI images of a representative NSG-SGM3 BLT mouse with local and disseminated MRSA
infections, as evidenced by the focal BLI signal in the tibia and abdominal cavity from supine and
prone views, respectively. Autopsy photograph confirmed S. aureus abscesses (yellow arrows) in the
liver. (F-I) On day14 post-operation, implants, tibiae, surrounding soft tissues, and internal organs
(heart, liver, kidneys, and spleen) were harvested for CFU assays and the data are presented with the
mean for each group (n= 25, and differences between groups were assessed by ANOVA, *p<0.05,
**p<0.01, ***p<0.001, ***p<0.0001). (J) Representative 10x images of Brown & Brenn (B&B) stained
histology of infected tibia from each group are shown, highlighting the SACs (red arrows). (K)
VisioPharm histomorphometry was performed to quantify the SAC area per tibia and the value for
each tibia is presented with the mean +/- SD (n>4, ANOVA, *p<0.05).
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Figure 2. Single-cell RNAseq reveals remarkable human T cell heterogeneity at the
infection site in humanized BLT mice with S. aureus osteomyelitis. (A) Schematic illustration
showing the experimental overview of sc-RNAseq of humanized NSG-SGM3 BLT mice engrafted
with three different human donor tissues. Bone marrow (BM) cells were collected from tibiae of
humanized NSG-SGM3 BLT mice 14 days after transtibial implants surgery with or without
USA300 LAC::lux, and the human CD45+CD19+ B cells and CD45+CD3+ T cells were isolated by
FACS for scRNAseq. (B) UMAP of the unsupervised cluster analysis of ~30,000 BM cells with (C)
Feature plots of the CD3+ T cells and CD19+ B cells. (D) UMAP and DEG clustering analyses of
hCD45+/CD3+ T cells identified 24 T cell clusters with (E) bar graphs displaying the proportion of
cell counts in each cluster between sterile implant and infected implant groups. Note the marked
increase of Th1/Th17 cells (red arrows, Cluster 8,20) in the infected tibiae compared to unifected
tibiae.
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Figure 3: Immune checkpoint gene expression is elevated in CD4+ Th1/Th17 cells from S.
aureus-infected humanized BLT tibiae. (A) The scRNAseq data of the Th1/Th17 cells (clusters 8
and 20) identified in Figure 2 were subjected to UMAP and differential gene expression analyses
(DEG) revealed 7 sub-clusters, and the relative proportions of these sub-clusters in uninfected (blue)
and infected (red) tibiae are illustrated by the bar graph. (B) Violin plot analyses demonstrated that
these cells were of the Th1/Th17 phenotype. Several Th1/Th17 clusters showed significantly
increased expression of immune checkpoint molecules LAG-3, TIM-3 (HAVCR2), and, to a lesser
extent, CTLA-4 and other immunosuppressive genes like TIGIT. (C) DEG analyses of transcriptional
factors (TCF7, TOX1-2, EOMES, NR4A1), cytokines & chemokines (IL-1, IL-17, CXCL13, CXCR5)
associated with functional T cell exhaustion, chronic antigenic stimulation (CD40L) and proliferation
(MKi67). Note that the lower expression of TCF7, MKi67, IL-1, and IL-17 genes and higher expression
of CXCL13 and TOX 2 indicate transcriptional reprogramming of these cells to a terminally functionally
exhausted state (*p<0.05). The Th1/Th17 subclusters were annotated based on the gene expression
signatures into activated, progenitor-exhausted, and terminally-exhausted cells. The DEGs between
the experimental groups within the Th1/Th17 cells were subjected to Ingenuity Pathway Analysis (IPA)
to identify the (D) top significantly enriched canonical pathways and (E) predicted upstream regulators
(cytokines, transcriptional factors and transmembrane receptors). Red indicates activation, while blue
indicates suppression.
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Figure 4. Immune checkpoint proteins are elevated in CD4+ T cells from S. aureus-infected
humanized BLT tibiae. (A) Immunofluorescent histochemistry analyses of tibia sections from
uninfected and MRSA-infected humanized BLT mice 14 days post-op were performed with labeled
antibodies against CD3, LAG-3, TIM-3, and PD-1 with DAPI counter stain, and representative images
are shown at 4x. Note the increased numbers of T cells near the SAC (dashed yellow line) in the
infected tibiae. (B) A multichromatic spectral flow cytometry analyses were performed on tibial bone
marrow cells from uninfected and MRSA-infected BLT mice. Live human CD45+/CD3+/T cells and their
subpopulations (CD4+, CD8+, Tregs) were analysed for immune checkpoint expression (LAG3, TIM-3,
and PD-1) and proliferation (Ki67), and representative histograms are shown. Note the frequency of
human CD3+/CD4+ T cells expressing TIM-3, LAG3 & PD-1) in the cells from MRSA-infected bone
marrow (n=4-8 mice, *p<0.05, t-test).
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Figure 5: Bone marrow CD4+ T cells from MRSA-infected tibiae expressing TIM-3 and LAG3
checkpoint proteins exhibit diminished proliferative capacity and altered cytokine production. (A)
Schematic illustration of the experimental design of ex-vivo experiments. 20-week-old humanized NSG-
SGM3 BLT mice were subjected to aseptic or septic transtibial implant-surgery for 14 days, then their
splenocytes and bone marrow cells were isolated, stimulated, stained with antibodies, and analyzed by
flow cytometry. (B-C) Multichromatic spectral flow cytometry was performed on uninfected and MRSA-
infected tibial bone marrow cells from BLT mice (B) on unstimulated cells (C) post-stimulation with
PMA/ionomycin. (B) Live human CD45+/CD3+/CD4+ T cells expressing checkpoint molecules TIM-3 and
LAG-3 were probed for their proliferative capacity using the cell surface marker Ki67. (C) Live human
CD45+/CD3+/CD4+/CD69+ T cells expressing checkpoint molecules TIM-3 and LAG-3 were probed for
functional capacity using the cytokines IFN-!, TNFɑ, IL-17A, and IL-2. Note that CD4+TIM-3+ and
CD4+LAG-3+ cells in the bone marrow of infected BLT mice have lower amounts of proliferating Ki67+
cells and diminished cytokine production, suggesting functional exhaustion and dysfunction (n=4-9 mice,
*p<0.05, ANOVA).
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Figure 6. T cells expressing immune checkpoint proteins accumulate in S. aureus infected bone
tissue from PJI patients. Bone tissues surgically removed from PJI patients (n=2) with S. aureus
osteomyelitis were processed for histology and immunohistochemistry. (A) Representative 100x image
(bar =100 µm) of a H&E-stained section is shown to illustrate the inflammatory cells within the region
of interest (box). (B-D) Parallel histology sections containing the region of interest were immunostained
with labelled antibodies against CD3, PD1, S. aureus, TIM-3 (green), LAG-3, and CD66b, counter
stained with DAPI, and representative fluorescent microscopy images are shown at 200x (bar = 100
µm). (B) Note CD3+/PD1+ T cells detected in areas of S. aureus infection (white arrows). (C) Note
CD3+/TIM-3+ (white arrows) and CD3+/LAG-3+ (yellow arrows) T cells at the site of S. aureus infection.
(D) Note TIM-3+/CD66b+ neutrophils at the site of infection (white arrows).
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Figure 7. TIM-3 protein level in serum is highly prognostic of adverse outcomes in patients with S.
aureus osteomyelitis. (A) Serum samples were collected from healthy arthritis patients undergoing total
hip/knee arthroplasty (n=15), and orthopaedic patients undergoing surgery for culture-confirmed S. aureus
osteomyelitis whose clinical outcome at 1-year was adverse (n=12), infection controlled (n=11), or
inconclusive (14). (B) Immune checkpoint proteins LAG-3, TIM-3, CTLA-4, PD-1 and cytokines (IFN-γ, IL-
2, TNFα, IL-17A, IL-17F) were assessed by multiplex Luminex assay, and the data are presented for each
patient with the mean +/- SEM for each group. The individual protein levels were utilized to perform
receiver operating characteristic (ROC) curve analysis either singly or in combination to generate the area
under the curve (AUC) for (C-D) differentiating acute vs. chronic S. aureus infections and (E-F) prognostic
prediction of outcome. Interestingly, no correlation was observed between levels of immune checkpoint
proteins and clinical time-based, anecdotal classification of acute vs. chronic classification. On the other
hand, immune checkpoint proteins, especially TIM-3, were highly predictive of adverse in these patients
(*p<0.05, **p<0.01, ****p<0.00001).


