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Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate
of 10%. A hallmark feature of this disease is its abundant microenvironment which creates
a highly immunosuppressive milieu. This is, in large part, mediated by an abundant
infiltration of myeloid cells in the PDAC tumor microenvironment. Consequently, therapies
that modulate myeloid function may augment the efficacy of standard of care for PDAC.
Unfortunately, there is limited understanding about the various subsets of myeloid cells in
PDAC, particularly in human studies. This review highlights the application of single-cell
RNA sequencing to define the myeloid compartment in human PDAC and elucidate the
crosstalk between myeloid cells and the other components of the tumor
immune microenvironment.
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INTRODUCTION

Pancreatic cancer (PDAC) remains a deadly disease and is notoriously challenging to treat with a 5-
year survival rate of 10% (1). While the only curative treatment is complete surgical resection, fewer
than 20% of patients are eligible due to advanced stages of disease, making medical therapies the
mainstay for most PDAC patients. Unfortunately, while PDAC initially responds well to the
standard combination therapies of FOLFIRINOX or gemcitabine/nab-paclitaxel, most patients
progress due to chemoresistance, leading to poor outcomes (2). As the mechanisms of tumor
progression and chemoresistance are multifactorial and poorly understood, there is an unmet need
for the development of better treatment strategies. Growing evidence demonstrates that the tumor
microenvironment (TME) is a vital component in the pathogenesis of PDAC and plays an essential
role in tumor progression, invasion, and therapeutic resistance (3). Desmoplastic stroma comprises
up to 80% of total tumor volume and largely consists of immune cells, fibroblasts, and acellular
collagens (4). In particular, the accumulation of myeloid cells in the TME drives immune
suppression (5–7). Previous studies have shown that targeting the myeloid compartment within
PDAC tumors in murine models led to increased cytotoxic T cell activity, decreased regulatory T
cell activity, shrinkage of tumors, and improved survival (5–7); however, clinical trials targeting
myeloid cells have failed or only partially recapitulate results from preclinical models in a subset of
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patients (8, 9). This highlights the lack of fidelity in using
preclinical murine models for human PDAC.

Strategies to molecularly profile human pancreatic tumors are
thus crucial to help unravel the complexities of human disease.
Recently, single-cell RNA sequencing (scRNA-seq) has been shown
to provide the analytical power to define cell-specific molecular
signatures and map out the interactions of cell types within the
TME (10–15) (Figure 1). This analytical strategy is capable of
characterizing cell types and states in an unbiased manner, and is
key to elucidating the behavior of myeloid cells within the PDAC
TME. Ultimately, harnessing the power of scRNA-seq technology
can help unravel the intricacies of these cell-cell interactions in
human PDAC and lead to the development of novel therapies
targeting the microenvironment to improve outcomes for this
dismal disease. In this review we highlight the latest progress
made in classifying myeloid cell compartment in PDAC by
unbiased single-cell analysis (Figure 2).
THE ROLE OF MYELOID CELLS IN PDAC

With in the immune compar tmen t o f the PDAC
microenvironment, myeloid cells have been shown to be key
regulators of immunosuppression and strong correlators to poor
clinical outcomes (16, 17).They are abundant in the TME by way
of myeloid-promoting cytokines such as CSF-1 and CCL-2 (18,
19). Perhaps their most well-known role in PDAC is their ability
to mitigate anti-tumor effector T cell function through the release
of cytokines that are immunosuppressive and in turn recruit
other cells known to further dampen cytotoxic immune
responses, such as T regulatory cells (20). Myeloid cells also
mediate the expression of immune checkpoint ligands on tumor
cells as another mechanism of immune evasion (21).

Myeloid cells are also known to play other roles that are
independent of T cell responses. Tumor-infiltration of these cells
is critical for PDAC initiation, as they directly promote the
formation and maintenance of preneoplastic lesions through
factors including EGF ligand and PDGF in murine models of
PDAC (22, 23).

Interestingly, myeloid cells have been shown to directly
enhance chemoresistance in PDAC tumor cells in vitro using
Frontiers in Oncology | www.frontiersin.org 2
indirect co-culture assays, implicating soluble factors as
mediators (24, 25). It has been previously shown that
conditioned media from tumor-educated bone marrow-
derived macrophages confers chemoresistance to gemcitabine
in vitro, specifically through pyrimidine release in myeloid
cells (25).

Studies have also suggested that myeloid cells play a vital role
in the pre-metastatic niche as a precursor colonizer to metastatic
sites that allow for a favorable environment for tumor cell
seeding and growth (26, 27). Recently, a new role of myeloid
cells was uncovered in mouse models linking myeloid cell
invasion into the central nervous system leading to cachexia
symptoms in PDAC (28).

While these studies provide information about the behavior
of myeloid cells and their response to numerous environmental
stimuli to promote PDAC pathogenesis, the bulk of these studies
were performed in preclinical murine models, with limited
correlation in human studies. Recent single cell studies on
human tumor tissue have allowed for a better understanding of
the transcriptional diversity and putative function of myeloid
cells in human disease.
PDAC MYELOID CELL SUBTYPES IN
SINGLE CELL TRANSCRIPTOMICS

Previously, characterization of the myeloid compartment within
TME in human studies was limited to immunostaining and flow
cytometric techniques, while more in-depth study of
transcriptional networks involved in the myeloid compartment
of PDAC tumors could only be determined through
deconvolution methods (29) (See Table 1). However, with the
advent of multidimensional single-cell and spatial techniques, we
now know that the myeloid compartment in PDAC has a
complex heterogeneity. It is important to note that there is a
diverse array of different transcriptomic patterns of myeloid cells
across different cancer types, and care should be taken before
generalizations are made regarding the myeloid transcriptome of
PDAC, which varies from other solid tumor types (30). Table 2
summarizes significant contribution to human single cell
sequencing on PDAC to date.
FIGURE 1 | Workflow of Single-Cell RNA-sequencing PDAC tissue from patients. PDAC tissue is collected from patient donors and digested into a single cell
suspension of live cells. Cells are lysed, cellular mRNA captured, and cDNA libraries are generated and subjected to high-throughput sequencing. This is followed by
bioinformatics analysis, including downstream feature generation and visualization of cells clusters by Uniform Manifold Approximation and Projection (UMAP).
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Myeloid-Derived Suppressor
Cells (MDSCs)
MDSCs are a heterogeneous population of immature myeloid
cells that have the ability to suppress adaptive T-cell immunity,
resulting in mitigation of cytotoxic anti-tumor activity (32). In
PDAC patients, levels of MDSCs in the peripheral blood
correlate with stage of disease progression (33, 34). Their
primary role in inhibiting anti-tumor immunity of effector T
Cells is accomplished via direct and indirect mechanisms,
including crosstalk with other immunosuppressive cell types.
MDSCs have been shown to influence regulatory T cells,
dendritic cells, and TAMs (tumor associated macrophages),
thereby promoting tumor immunotolerance (20, 33, 35, 36). In
a subset of cancers, temporal decline in MDSC levels with
treatment has correlated with better survival (37–40). Further
Frontiers in Oncology | www.frontiersin.org 3
studies are needed to determine whether changes in MDSC levels
over time bear clinical relevance in PDAC.

It is important to note that because there is no consensus set
of protein markers for MDSCs, and an even more poorly-
defined transcriptomic signature, MDSCs have yet to be
identified within PDAC single cell datasets. MDSCs are
comprised largely of monocytic MDSCs and granulocytic
MDSCs in a nomenclature to mimic their normal
counterparts. In murine model of breast cancer, one group
arrived at a transcriptomic signature for monocyte MDSCs and
granulocytic MDSCs; the signature for monocytic MDSCs did
not translate to any population in a human dataset for breast
cancer, but the granulocytic signature was enriched in breast
cancer-associated neutrophils (41). More studies need to be
done in PDAC to identify whether the MDSCs transcriptionally
TABLE 1 | Advantages and disadvantages of technologies used for classifying myeloid compartments in pancreatic cancer.

Technique Advantages Disadvantages

Single Cell RNA
Sequencing

• Distinguish cell types at high-resolution in an unbiased manner
• Identify states of cells in different development, differentiation, and cell cycle

states in tissues
• Gene expression profiles could be used to computationally map the cell

trajectory

• Requires processing of fresh tissue
• Determining spatial distribution of the cell type is

not possible.
• Read dropout and false discoveries

Flow Cytometry • Identity frequency and activate state of the cells
• Characterize heterogenous cell populations.
• Cell populations can be sorted
• Results can be obtained in a short time.

• Cannot classify new cell types and their states in
an unbiased manner

• Cell morphology cannot be visualized
• Cell populations with similar marker expression

cannot be differentiated
• Fluorophore signal spillover

Immunohistochemistry • Identify localization of the protein in tissue
• Acquire information about tissue architecture, size, and shape of the cells
• Results can be obtained in days

• Restricted to limited number of markers
• Immunolabelling depends on the specificity of

primary antibodies
• Semi-quantitative approach
FIGURE 2 | Defining myeloid cell markers by single cell transcriptomics.
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represent a subpopulation unique from their normal
myeloid counterparts.

Tumor Associated Macrophages (TAMs)
Traditionally, the macrophages in PDAC have been
oversimplified into a proinflammatory/antitumorigenic
phenotype (M1) and an anti-inflammatory/protumorigenic
phenotype (M2) (42), which does not accurately reflect the in
vivo heterogeneity seen in human tumors. Indeed, traditional M1
and M2 markers do not dichotomize macrophage populations
within single cell datasets and often canonical markers for both
are found within the same cell (43).

Recent single cells studies on human PDAC tumor tissue have
reclassified these macrophages into subtypes that more
accurately represent their in vivo state, namely resident,
classical, alternatively-activated TAMs (10, 13). Alternatively
activated macrophages express APOE, SPP1, LY6E, and the
macrophage scavenger receptor MARCO, while resident TAMs
lack MARCO expression. Of note, in other solid tumor cancers,
MARCO expression has been associated with a pro-tumor,
immunosuppressive phenotype of macrophage activation (44,
45). APOE has recently been found in mouse models to promote
an immunosuppressive microenvironment in PDAC through
NF-kB signaling (46). Classical TAMs express less of a
committed macrophage transcriptomic phenotype (lower
expression of CD68 and HLA-DR) and suggest an
intermediary state of monocytes migrating from blood to tissue
and maturing into macrophages (30, 43).

Another classification system has also emerged whereby TAMs
are subdivided into FCN1+ TAMs (monocyte-like, and akin to
classical TAMs), SPP1+ TAMs, or C1QC+ TAMs (12, 30). Together,
SPP1+ and C1QC+ TAMs overlap with resident and alternatively-
activated TAMs in the previous classification system. Of note,
complement-high macrophages (C1QA, C1QB, and TREM2) may
play an important role is establishing the premetastatic niche, as
these particular macrophages have been found to be further enriched
in liver metastatic lesions compared to primary tumors in human
PDAC (26). C1QC+ TAMs have been found to be associated with
basal-like tumors where T cells are notably sparse (12).

Neutrophils
Neutrophils are abundant in the TME of PDAC, and have been
shown to have dual tumor-promoting and anti-tumorigenic
Frontiers in Oncology | www.frontiersin.org 4
functions (47, 48). Despite this, most single cell transcriptomic
studies do not identify a neutrophil population, with possible
causes for this underrepresentation including the techniques
used to process and purify cells and the difficulty in capturing
adequate RNA reads for this particular cell type (11, 12, 14, 30).
Of note, in the dataset by Elyada, et al., it was noted that
neutrophil markers were present within the myeloid dataset,
but these particular genes were intermixed within the monocyte/
macrophage populations (10). Steele and colleagues were able to
identify a separate granulocytic population in their dataset that
was defined by expression of FCGR3B (CD16), S100A8, CXCR2,
and absence of HLA-DRA (13). Further studies need to be
performed to dissect whether heterogeneity in the neutrophil
population can be captured with single-cell transcriptomics.

Dendritic Cells
Dendritic Cells are a specialized group of antigen-presenting cells
that play a key role in initiating both innate and adaptive
immune responses (49). The relative absence of dendritic cells
in the PDAC TME has been linked to dysfunctional immune
surveillance in PDAC, with poor T cell responses to tumor
neoantigens (50). Single cell transcriptomic studies have
identified several subsets of dendritic cells: conventional (cDC),
plasmacytoid (pDC), and Langerhans-like. The cDCs can be
further subdivided into cDC1 (Type 1), which cross‐present
antigens via MHC class I to activate CD8+ T cells, and cDC2
(type 2), which produce high levels of IL‐12 and are potent
activators of CD4 T helper responses (51). By single cell
sequencing, dendritic cells have been named using different
defining markers, likely due to technical differences in
specimen processing and read depth. cDC1s have been
identified previously by expression of CLEC9A, BATF3, IRF8,
IDO1 (10). cDC2 have been characterized by expression of
CD1C, FCER1A (14). Additionally, XCR1, a chemokine
receptor, is selectively expressed on cDC1s and also has been
used to subset cDC1 cells (12). Plasmacytoid dendritic cells
(pDCs), in comparison to cDCs have poor antigen-presenting
function, but are potent producers of type 1 interferons (51).
They have been defined in single cell transcriptomics by TCR7,
IRF7 and GZMB positivity, as well as LILRA4 positivity (10, 12,
14). Langerhans-like DC, which are immature dendritic cells that
mediate immune tolerance, are defined by CD207 and CD1A
expression (10).
TABLE 2 | All significant published studies that have provided new single cell RNA sequencing datasets in pancreatic cancer.

Year Study Reference

2019 Elyada, E. et al.-Single cell sequencing of 6 treatment-naive PDAC tumors and 2 adjacent normal pancreas tissue. (10)
2019 Peng, J. et al.-Single cell sequencing of 24 treatment-naive PDAC tumors and 11 normal pancreas tissue. (11)
2019 Bernard, V. et al.-Single cell sequencing of 2 PDAC and 4 IPMN specimens. (14)
2020 Steele, N.G. et al.-Single cell sequencing of 16 treatment-naïve PDAC tumors from surgical resections and fine needle biopsies as well as 3

adjacent normal pancreas tissue.
(13)

2020 Hwang, W.L. et al.-Single nucleus sequencing of frozen archival surgically resected tumors from 26 patients, 11 treated and 15 treatment naïve (15)
2021 Raghavan, S. et al.-Single cell sequencing of core needle biopsies from 17 untreated and 6 treated liver metastasis (12)
2021 Kemp, S.B. et al.- Single cell sequencing of 2 treated and 3 treatment-naive liver metastasis (26)
2021 Cheng, S. et al.-Single cell sequencing of 6 treatment-naïve PDAC tumors and 3 adjacent normal pancreas tissue (30)
2021 Zhou, D.C. et al.-Single cell sequencing of 7 treatment-naïve, 14 treated PDAC tumors and 4 adjacent normal pancreas tissue. (31)
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LEVERAGING SINGLE CELL STUDIES FOR
THE MYELOID COMPARTMENT IN PDAC

Myeloid Expression of Checkpoints
Immunotherapy has notoriously been unsuccessful in improving
outcomes in PDAC (52, 53). The reason for this has, in part, been
elucidated through single cell studies showing abundant and
varied expression of immune checkpoints across the myeloid
compartments. For example, TAMs have upregulated LGALS
(ligand for TIM3) as well as its binding counterpart TIM3, PVR
(ligand for TIGIT), and HLA-DRA (13, 31). Certain subsets of
dendritic cells also had elevated expression of immune
checkpoint ligands, suggesting a potential immunosuppressive
role (13). Of note, wide heterogeneity of immune checkpoint
expression within the myeloid compartment was observed
between patients, suggesting the need for a precision pipeline
in identifying appropriate immunotherapeutic regimens for each
patient (13).

Myeloid Crosstalk Within the Tumor
Microenvironment
Prior to single cell studies, several mediators of crosstalk
involving the myeloid compartment of the TME have been
identified, including the CSF1/CSF1R axis, the CCL2/CCR2
axis, and the ELR+ chemokine/CXCR2 axis (7, 18, 19). With
the advent of singe cell signaling, one useful tool to identify
putative cross-talk interactions in single cell datasets is the use of
mapping algorithms of known ligand-receptor interactions
across different cell types (54). Mapping these interactions are
a boon in the study of the TME, which relies on the complex
interplay between tumor and non-tumor cells. Using this
technique, new putative ligand-receptor interactions between
myeloid/epithelial cells and myeloid/lymphocytes have been
identified. In the dataset published by Lee et al., myeloid
populations were the most well-connected to epithelial cells,
with notable interactions including MIF/CD74 (HLA-DR allele),
and APP/CD74 (14). Steele and colleagues also reported multiple
interactions between the myeloid and T cell compartment,
including ICOS/ICOSLG, SIRPA/CD47, and TIGIT/PVR (13).

These data are in concordance with previous studies showing
that myeloid cells are major drivers of the immunosuppressive
TME, and provide insights for potential new combination
immunotherapy trials in PDAC.

Another recent area of interest in TME crosstalk is the
myeloid/fibroblast axis. Using a combination of functional
studies and single cell analysis, a recent murine PDAC study
demonstrated that hypoxia inducible factor signaling in cancer-
associated fibroblasts drives CD86 and PDL1 expression on
tumor associated macrophages (55) to dampen anti-tumor
immune responses. Similarly, while the TGFb signaling axis
has also been implicated as a key modulator of regulatory T
cells and fibroblast crosstalk in the microenvironment (56–58),
its axis has also been shown recently to influence myeloid cell
activity in PDAC. Both functional studies with patient-derived
organoids and human single cells studies confirm that TGFb
ligand is produced by tumor epithelial cells and is associated with
Frontiers in Oncology | www.frontiersin.org 5
the more aggressive basal subtype of PDAC (10, 12, 57). In
murine studies, TGFb was found to decrease the proportion of
MDSCs in liver metastasis and increase the expression of PD-
L1High TAMs. Additionally, in correlative human bulk tumor
sequencing studies TGFb was found to be associated with an
increased TAM signature (59). As TGFb signaling has gained
recent traction in cancer-associated fibroblast polarization (57),
further studies are needed to determine if the role of TGFb in
myeloid cells is direct or involves the fibroblast compartment as
an intermediary.
DISCUSSION

Single cell transcriptomic technology has shed much-needed light
on the heterogeneity and function of the myeloid compartment in
human PDAC. While pre-clinical murine models have dominated
the field in the study of the tumor immune microenvironment,
results from these studies have led to an oversimplification of the
myeloid cell types and have resulted in identifying targets that thus
far have had mixed patient outcomes (8, 9, 53). The patient
heterogeneity in drug response of these clinical trials is
supported by single-cell studies, which highlight the inter-
patient heterogeneity of the myeloid compartment. In many of
the trials reviewed above, a small subset of patients had some
response to the given immunotherapeutic strategy, suggesting that
a precision medicine-based platform is needed which can match
therapy to each tumor’s microenvironmental characteristics.
While there is no such tool in place to tailor these therapies,
single-cell transcriptomics bring a promising avenue for both
biomarker and therapeutic discovery.

One caveat to note is that the technique of single cell
transcriptomics is not without its own flaws, which include
variation in tissue acquisition and processing, read “dropout”,
and, unfortunately, false discoveries (60, 61). Therefore, validation
of gene expression through complementary techniques such as
multiplex immunofluorescence or mass cytometry is necessary
(Table 1). Furthermore, putative interactions and identified
signaling networks should be investigated with further
functional studies using in vitro or in vivo systems.

Another limitation to single cell RNA sequencing is that spatial
data is not preserved, and validating targets via immunostaining can
be laborious. Indeed, work using multiplex immunofluoresence has
shown that immune cell localization of myeloid cells within the
tumor had important clinical significance in PDAC patients (62).
Recent developments in spatial transcriptomics and multiplex
staining can add a crucial dimension to identifying cell subtypes
in the TME and validating putative crosstalk between cells (16, 63).
Alternatively, machine learning has been leveraged with
multiplexed immunofluorescence and whole-slide imaging for
tissue segmentation and classification (64, 65). Recent
bioinformatics pipelines are actively working to integrate these
multi-dimensional datasets for a seamless approach and yield new
insights on myeloid cells in the TME (66–68).

In conclusion, PDAC remains a deadly disease with an urgent
need to find new and better therapies. Targeting the myeloid
May 2022 | Volume 12 | Article 881871

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kadiyala et al. The Myeloid Compartment in Pancreatic Cancer
compartment of the TME is a promising avenue to pursue;
although given the complexities of these cells shown by single
cell studies, single-agent immunotherapy is likely not sufficient and
combinatorial approaches may be required. One exciting avenue to
apply single-cell transcriptomics is through the study of tumor
tissue longitudinally throughout the course of disease and therapy
treatment, as myeloid cells have been shown in preclinical studies
to play a major role in the development of chemoresistance (24,
25). Leveraging this technique to comprehensively study the
immune microenvironment in the treatment-naïve and post-
treatment states may provide new insights to the role of the
TME in the development of chemoresistance and ultimately
identify new pathways to target in this dismal disease.
Frontiers in Oncology | www.frontiersin.org 6
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