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Article History: Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D).
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assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and
cardiometabolic risk in people at risk of or living with T2D.
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Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from
the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1
n =403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n =458 individuals
with new onset of T2D. A dietary metabolite profile model (Tyreq) Was constructed using multivariable
regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpreq
score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk
via multiple linear regression models.
Findings: A higher Tpeq score was associated with healthier diets high in wholegrain (8=3.36 g, 95% CI 0.31,
6.40 and B=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (f=-75.53 kcal, 95% CI -144.71, -2.35 and
=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat ($=-0.92 g, 95% CI -1.56, -0.28 and $=-0.98 g, 95%
(I -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpeq Score was also associated
with lower total body adiposity and favourable lipid profiles HDL-cholesterol (8=0.07 mmol/L, 95% CI 0.03,
0.1), (8=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (8=-0.1 mmol/L, 95% CI -0.2, -0.03), (8=-0.2 mmol/L,
95% C1-0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tp,.q Score was negatively associated with
liver fat (8=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (8=-0.9 mmol/mol, 95% CI
-1.5,-0.1), glucose (8=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (8=-11.0 pmol/mol, 95% CI -19.5, -2.6). Lon-
gitudinal analysis showed at 18-month follow up a higher Tpeq score was also associated lower total body
adiposity in both cohorts and lower fasting glucose (B=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin
(B=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2.
Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a rela-
tionship to glycaemic deterioration and cardiometabolic health.
Funding: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant
agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the Euro-

pean Union’s Seventh Framework Programme (FP7/2007—-2013) and EFPIA companies.
Crown Copyright © 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research in context

Evidence before this study

We searched PubMed and Google Scholar for all studies on
metabolic profiling of dietary patterns and/or single nutrient
intake. Studies were restricted to those with abstracts in
English. Our background review showed a wide range of RCT
measuring single nutrients metabolites based on small sample
sizes and distinct diets. Few studies investigated metabolic pro-
filing derived from multiple metabolites associated with dietary
patterns and none was found in our review on a population
level. To our knowledge no similar study has been conducted
before.

We also searched studies investigating metabolomics and
risk of T2D. A substantial literature exists on metabolites linked
with glycaemic and associated metabolic traits, though the
majority of these studies were limited to single or a few metab-
olites specific to phenotypic traits, and none of these included
dietary metabolic profiling.

Added value of this study

To our knowledge this study provides the first assessment of
combined dietary metabolite profiling and risk of T2D. We
show that application of dietary metabolic profiling at the pop-
ulation level provides an objective measurement of dietary pat-
terns and is associated with glycaemic and cardiometabolic risk
profiles.

The methodology of the model Tp,.eq demonstrate to capture
distinct dietary patterns and intake of single nutrients both in
plasma samples. Metabolic profiling is a novel and pragmatic
approach, which may serve as validation tool for self-reported
diet recording and strengthened the precision of diet-disease
relationships in epidemiological studies.

Implications of all the available evidence

Finding from our background review and this study show that
use of metabolomics is a novel approach in profiling individuals

diets and cardiometabolic risk in epidemiological studies. The
metabolic profile model Tpeq is an objective measurement tool,
which should be utilised in nutritional studies to help reduce
misreporting and measurement bias existing in traditional
nutritional analysis methods.

1. Introduction

Worldwide, over 425 million people are estimated to be living
with type 2 diabetes (T2D) [1]. People with T2D have a five-fold risk
of developing cardiovascular disease (CVD) and are 1.6 times more
likely to die prematurely life expectancy reduced by at least 10 years,
compared with those without T2D [2]. Identifying high-risk individu-
als and intervening before diabetes is manifest may disrupt the dete-
rioration of the pancreatic beta cells and minimize damage to the
vasculature associated with chronic hyperglycaemia [1].

The aetiology of T2D is multi-factorial, with obesity, poor diet
quality, physical inactivity and genetic factors being some of the driv-
ing forces [2]. Diet is a key modifiable component in the development
and management of T2D and associated cardiometabolic risk factors
[2-5]. The World Health Organisation (WHO) [2] report along with
other randomised controlled trials (RCTs) and epidemiological stud-
ies, has found the effectiveness of diet in relation to management and
prevention of T2D is related to global dietary profiling of numerous
nutrients and food groups rather than change in individual nutrients
[6-10].

However, assessing a person’s diet can be challenging as diet
recording is prone to numerous sources of error and bias, such as
estimating portion sizes and misreporting by participants [11-13].
The extent of underreporting of energy intake in nutritional studies
is estimated to be between 30 and 88% [11-13]. This contributes to
data inaccuracy and misinterpretation, which adversely affects the
extent to which the effects of diet in health and disease can be esti-
mated [13,14] Diet underreporting have shown a strong direct rela-
tionship with obesity [11-14]. A large health survey found analysis
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based only on plausible respondents re-establishes the theoretical
relationship between energy intake and body weight, which a was
lost in analysis using samples including misreporters [14]. Although
it is possible to objectively assess dietary biomarkers, these are gen-
erally constrained to a few specific nutrients such as sodium, potas-
sium and nitrogen and are not suitable for the overall assessment of
dietary patterns. Evolving discoveries of dietary metabolites may
serve as a novel tool in nutritional epidemiology for measuring
nutrients and foods in our diets [15-17]. Garcia-Perez et al. [17]
developed a predictive model (Tpreq) using metabolic profiles to clas-
sify diets by training urinary metabolomics data on diet allocation in
a cross-over trial of four WHO-defined diets [2]. However, many of
these studies are limited by their small numbers of participants and
use of specific diets. Furthermore, the studies have not investigated
the use of the models with health outcomes. More evidence is needed
from larger samples size and testing its relationship with dietary pat-
terns in free-living populations and health outcomes.

Here we applied the Tpeq diet classifier to plasma metabolomics
from a free-living population in the Innovative Medicines Initiative
(IMI) Diabetes Research on Patient Stratification (DIRECT) Consor-
tium cohorts (https://[www.direct-diabetes.org). The richly pheno-
typed IMI DIRECT cohorts were designed for the discovery of
biomarkers for glycaemic deterioration in individuals at risk of or
diagnosed with T2D [18]. In this analysis, we applied the Tpq Score
in the IMI DIRECT cohorts to explore the relationships between diet,
glycaemic deterioration and cardiometabolic risk.

2. Materials and methods
2.1. Study design and participants

The IMI DIRECT multicentre study is a European Union Innovative
Medicines Initiative project collaborating amongst investigators from
European leading academic institutions and pharmaceutical
companies. The overarching objective of the DIRECT study is to dis-
cover and validate biomarkers of glycaemic deterioration before and
after onset of T2D and has been reported in detail elsewhere [19].
DIRECT established two multicentre prospective cohort studies com-
prised of adults of Northern European-ancestry; cohort 1 n=2127
participants with normal or impaired glucose regulation (pre-dia-
betic) and cohort 2 n =789 participants with new onset T2D. Study
inclusion and exclusion criteria for cohort 1 and 2 are outlined in
table 1. Screening examinations at baseline and 18 months follow up
were carried out the morning after a 10-hour overnight fast in the

DIRECT study centres by trained nurses. Study protocol have been
described in details elsewhere [18]. Loss of follow up at 18 months
were 138 (6.5%) from cohort 1 and 121 (15.3%) from cohort 2.

This manuscript analyses included all participants from the five
study centres Malmo Sweden, Copenhagen Denmark, Exeter UK, New-
castle UK and Dundee UK with baseline and 18 months follow up data
available n =861 participants (cohort 1 n=403, cohort 2 n=458). Par-
ticipants from study centres Kuopio Finland (cohort 1 n=1236) and
Amsterdam the Netherlands (cohort 1 n=500; cohort 2 n=121) were
excluded due to the required data was not yet available.

2.2. Ethical approval

All participants provided written informed consent and the study
protocol was approved by the regional research ethics review boards.
The research conformed to the ethical principles for medical research
involving human participants outlined in the declaration of Helsinki.
Clinical Trial Registration NCT03814915.

2.3. Data collection

2.3.1. Biochemistry assays

Fasting plasma glucose and insulin assays were analysed using the
enzymatic glucose hexokinase method and photometric measurement
on Konelab 20 XT Clinical Chemistry analyser (Thermo Fisher Scien-
tific, Vantaa, Finland). Fasting HbA1c was measured by ion-exchange
high-performance liquid chromatography using Tosoh G8 analysers
(Tosoh Bioscience, San Francisco, CA, USA). Fasting blood lipids; cho-
lesterol, triacylglycerol and HDL-cholesterol were measured using a
Roche MODULAR P analyser (Roche Diagnostics, Indianapolis, IN, USA).
LDL-cholesterol was calculated from the Friedewald formula. Each bio-
chemical assay was performed using validated standard methods. Ref-
erence samples were included in all procedures to control for inter-
assay variation and laboratories regularly participated in international
external quality assessment schemes. Methodology is reported else-
where [19].

2.3.2. Body composition

BMI was calculated as weight in kg divided by height in meters
squared (kg/m?), and waist circumference was measured at the level
of the umbilicus at mid-respiration.

Table 1
Study inclusion and exclusion criteria for the IMI DIRECT cohorts.
Cohort 1 Cohort 2
Inclusion criteria Inclusion criteria
* No treatment with insulin-sensitising, glucose-lowering or other antidiabetic e Patients diagnosed with T2D not <6 months and not >24 months before baseline
drugs

o Fasting capillary blood glucose <10 mmol/I at baseline
e White European
e Age >35 and <75 years

Exclusion criteria

* Diagnosed diabetes of any type, HbA1c >48 mmol/mol or fasting plasma glucose
>7.0 mmol/l or 2 h plasma glucose

>11.0 mmol/l previously

* For women, pregnancy, lactation or plans to conceive within the study period

* Use of a pacemaker
* Any other significant medical reason for exclusion as determined by the
investigator

* Management by lifestyle with or without metformin therapy
o White European

e Age >35and <75

e Estimated GFR >50 ml/min

¢ All HbA1c <60 mmol/mol within previous 3 months
Exclusion criteria

¢ Type 1 diabetes

® A previous HbA1c >75 mmol/mol

e Prior treatment with insulin or an oral hypoglycaemic agent other than
metformin

® BMI <20 or >50 kg/m2

¢ For women, pregnancy, lactation or plans to conceive within the study period

¢ Any other significant medical reason for exclusion as determined by the
investigator
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2.3.3. Magnetic resonance imaging

Whole body tissue composition was assessed using magnetic res-
onance imaging (MRI). Local protocols standardised across study
centres by an experienced radiographer to harmonise the scan meth-
odology. Multi-echo imaging sequencing was applied to identify liver
fat. Methodology has been described in detail elsewhere [20].

2.3.4. Dietary data

Self-reported dietary intake was assessed by 24-hour multi-pass
method and a food habit questionnaire, which was filled in by each
participant the day before the study visit. The methods for the dietary
record and the food habit questionnaire have been validated as part
of the Euroaction Study [21]. The method is structured into three lev-
els of dietary questioning or ‘passes’. The first pass aims to document
a ‘usual’ day’s meal. The second pass aims to give the respondent the
time to reflect and add to the foods recorded in the first pass. The
third pass of the food record aims to obtain information about por-
tion size and method of preparation using a food portion size atlas.
Nutritional analysis was undertaken using Dietplan-7 software (For-
estfield Software Ltd, Horsham, UK) based on the McCance and Wid-
dowson’s 7th Edition Composition of Foods UK Nutritional Dataset.
All diet coders were trained by a lead research dietician/nutritionist
using a study specific operational manual protocol. Detailed descrip-
tion of the coding and diet analysis protocol are reported elsewhere
[22].

Dietary patterns were assessed as concordance with WHO dietary
guidelines using the validated ‘Healthy Diet Indicator’ (HDI) [9]. The
HDI priori score include assessment of six nutritional variables;
fruits/vegetables, dietary fibre, total fats, saturated fat, sugars and
salt. Mean daily intake of each of the seven components is assessed
and scored according to their concordance with WHO dietary guide-
lines; 1 point represent +/- two standard deviation of criteria, 0 point
if intake was worse than WHO criteria and 2 points if intake was bet-
ter than WHO criteria. The points are summed to calculate an overall
score between 0 and 12 points; a higher score indicates a more
favourable diet. The score was calculated from the dietary intakes of
all food and drink consumed except alcohol, which was analysed sep-
arately and adjusted for with other known confounders.

2.3.5. Metabolic profiling

Fasting plasma blood samples were collected from participants at
their baseline visit and processed using a targeted metabolomic assay
AbsoluteIDQ™ p150 Kit (BIOCRATES Life Sciences, Innsbruck, Austria)
quantifying 163 metabolites (amino acids, acylcarnitnes, sugars, glyc-
eropholipids, sphingolipids) (Supplementary table S6) [23]. Samples
were processed and quality controlled according to established pro-
tocols described in supplementary material, 116 metabolites passed
quality control (Supplementary material). Plasma blood samples
from a controlled clinical trial [17] (CCT) of participants undergoing
four dietary interventions (with different levels of adherence to WHO
guidelines for healthy eating) in random order were analysed using
the same AbsolutelDQ™ p180 Kit. This targeted metabolomic data
was used to build a regression model (see below) to predict the step-
wise adherence of participants to WHO guidelines. This model was
constructed using the same methodology as exemplified previously
by Garcia-Perez et al. for urine (16,000 'H NMR variables measured,
28 significant metabolites identified) [17] and applied here to fasting
plasma (113 metabolites) to develop the predictive metabolomic
score, Tpreq for healthiness of diets using the 113 plasma metabolites.
The 113 metabolites included in the model were selected based on
metabolites found both from p180 Kit and from the 116 metabolites
which passed the quality control in p150 Kit.

2.3.6. Statistical analysis
Baseline characteristics of participants were analysed across the
two cohorts using a t-test.

The Tpreq score was modelled with the 113 plasma metabolites of
the CCT data with multivariable regression (partial least squares, PLS)
and Monte Carlo cross-validation (MCCV) to assess model robustness
[24]. The MCCV model consisted of 1000 iterations and the data were
centred and scaled to account for the repeated-measures design of
the CCT. The regression coefficients of each of the 1000 MCCV itera-
tions were used to calculate the predicted score (mean of all scores,
Tprea)- The samples of CCT individuals left out of each iteration of the
training model, were used as test set for that iteration. This resulted
in a goodness of prediction value of 0.94 for the CCT test data. The
Tprea is indicative of how a metabolite profile relates to the plasma
metabolite profiles of two dietary interventions with different levels
of concordance with WHO healthy eating guidelines that were con-
sumed in a highly controlled environment that assured full adher-
ence to intervention diet [17]. The Tpeq (trained on plasma
metabolomics data) ranged roughly from —3.5 to 3.5; a more positive
Tprea indicate that the metabolite profiles have a greater resemblance
to the diet with higher concordance with WHO healthy eating guide-
lines, whereas a negative Tpq is reflective of lower concordance
with WHO guidelines. This model was then used to predict the
DIRECT samples and obtain a Tpeq for each sample. The Tpeq score
was log-transformed for analysis due to a right-skewed distribution
(Supplementary figure S1).Associations between baseline data
metabolite score Tpreq, dietary pattern, single nutrients and food
groups were analysed via multivariable generalised linear models.
Models were adjusted for covariates including age, gender, BMI, ciga-
rette smoking, alcohol consumption, energy intake, study centre and
cohort.

Associations between baseline data Tpeq score and glycaemic and
cardiometabolic traits were analysed via multivariable generalised
linear models. Models were adjusted for covariates including age,
gender, smoking, alcohol consumption, energy intake and study cen-
tre; analyses where glycaemic traits outcomes were additionally
adjusted for usage of glucose-lowering medication.

Relationships between baseline Tpeq score and association with
longitudinal changes in glycaemic traits and body composition were
analysed at 18 months using generalised estimating equation regres-
sions models [25]. All models were adjusted for baseline age, gender,
cigarette smoking, study centre and models with glycaemic traits
(fasting glucose, insulin and HbA1c) were additionally adjusted for
usage of glucose lowering medication.

Sensitivity analyses were conducted using models adjusted for
BMI. Additional longitudinal data analyses were conducted using
mathematically modelled glycaemic progression rates for fasting
plasma glucose and HbAlc concentrations from 36-month data
adjusted for changes in BMI and usage of glucose-lowering medica-
tion [25]. Each trajectory was described with a conditional linear
mixed-effect model, in which the longitudinal component of the data
was described as a proportional function of time, with normally dis-
tributed slopes describing individual progression rates. The slopes
were additionally adjusted for age, gender and study centre. (Supple-
mentary data).

Discordant and concordant analyses between Tpreq and HDI quar-
tiles were compared using a t-test. To assess discordant; upper HDI
diet quartile (healthiest diet) and lower Tpeq quartile (least favour-
able metabolic profile) and concordant; upper HDI diet quartile
(healthiest diet) and upper Tpreq quartile (most favourable metabolic
profile).

Selection bias was explored by analysing characteristics of partici-
pants not included in the 18 months analysis due to lost at follow up,
did not fill in a food record or filled incorrectly. (Supplementary
data). Variables which did not follow a normal statistical distribution
and was log transformed for the purpose of this study and coeffi-
cients were exponentiated. SAS version 9.4 (SAS Institute Inc. VX,
Cary, NC, USA) was used for all analyses. The statistical significance
threshold was set at p<0.05.
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Table 2 in cohort 2 were younger with a higher percentage of women than in
Baseline characteristics of study participants, the IMI DIRECT cohorts. cohort 1. Cohort 2 had higher BMI and a worse glycaemic profile

Cohort1(n=403) Cohort Il (11=458) compared to cohort 1 (unadjusted).

Mean SD Mean SD

orn or% orn or% . .. . .

3.2. Tprq metabolite profile score association with dietary patterns

Sex (female)% 234 59.1 183 41.8
g‘?;(gsziist)y 64 8 62 79 Table 3 shows the linear regression coefficients, which represent
Tpred Metabolic score [range ~3.5,3.5] 0.6 0.9 _06 0.7 mean changes in the nutritional variable per one-unit increase in
HDI diet score [range 0, 12] 46 27 48 26 Tprea score. A higher Tpreq score (healthier metabolite profile) was
Daily energy (kcal) intake 17535 6107 18025 6189 associated with healthier dietary patterns based on WHO HDI score
Alcohol’% in cohort 2 (8=0.45, p =0.006) and a higher intake of fibre (8=0.45g,
No alcohol 315 69 380 73 . .
Within UK guidelines 76 17 64 12 p=0.03), fruit and vegetables ($=23.22 gp= 0.01), and lower intake
Above UK guidelines 65 14 77 15 of added sugars (8=—1.21g, p=0.002) in cohort 2. In both cohort 1
Cigarette smoking% and 2, a higher Tpreq score was associated with a higher intake of
gef’er }‘9‘3 i; }gg jg wholegrain (8=3.36g, p=0.03 and p=2.82g p=0.04) and fish
P 57 ot 51 o (8=9.17 g, p=0.0006 and B=12.17 g, p<0.0001) and lower intake of
Body mass index (kg/m?) 28.9 42 308 51 energy (f=—73.53 kcal, p=0.04 and B=-122.51 kcal, p=0.003), and
Waist circumference (cm) 102.1 11 102.6 13.8 saturated fat ($=—0.92 g, p=0.005 and 8=-0.98 g, p = 0.0006), respec-
Liver fat (%) 5.2 4.6 8.6 7.8 tively.
Glycaemic & cardio-metabolic traits
Glucose (mmol/L) 5.6 0.9 6.9 14
Insulin (pmol/mol) 11.9 16.3 103.9 70.4 . o . .
HbA1c (mmol/mol) 38.1 32 465 59 3.3. Tyrea metabolite profile score association with glycaemic and
Triglycerides (mmol/L) 13 0.6 14 0.8 cardiometabolic traits
LDL-cholesterol (mmol/L) 34 0.9 23 0.9
HDL-cholesterol (mmol/L) 1.2 03 1.2 0.4

Table 4 shows the mean changes in the phenotypic traits per one
Abbreviations: Cohort 1; participants with normal or impaired glucose regulation,

ot 2 e P i T o o it unit increase in Tpreq Score in the baseline data. A higher Tpreq Was
cohort 2; participants with diabetes type 2, Tprea, metabolic profile score; HDIL, associated with a lower weight in both cohorts f=—1.8kg, p=0.01

Healthy Diet Indicator WHO diet score. .
3Values are unadjusted means (standard deviation) or n (%). and B=-2.1kg, p=0.03, respectively for cohort 1 and 2. In cohort 2 a
higher Tpreqa Was also associated with a lower liver fat content

(B=—0.74%, p<0.0001), and lower fasting HbA1c (=—0.9 mmol/mol,

3. Results p=0.02), glucose (B=—02mmol/L, p=0.01) and insulin
(B=—11.0 pmol/mol, p=0.01), lower TG (S=—0.8 mmol/L, p =0.0002)
3.1. Baseline characteristics of participants in the direct cohorts and higher HDL cholesterol (8=0.08 mmol/L, p =0.0002). In cohort 1,

a higher Tpreq was associated with a lower HbAlc (8=—0.4 mmol/

Table 2 shows descriptive characteristics for the two cohorts in mol, p =0.04), lower TG (8=—0.1 mmol/L, p =0.003) and a higher HDL

DIRECT; Cohort 1 (participants with normal or impaired glucose reg- cholesterol (8=0.07 mmol/L, p<0.0001). No associations were
ulation) and cohort 2 (participants diagnosed with T2D). Participants  observed for fasting LDL-cholesterol in either of the cohorts.

Table 3
Metabolic profile score Tpeq association with mean dietary intake adjusted for age, gender, smoking, alcohol con-
sumption, BMI and study centre, the IMI DIRECT cohorts.

Cohort I n=403 Cohort Il n=458
I’ 95% CI Pvalue f*? 95% C1 Pvalue

Fibre (NSP) per 0.34 -0.07,0.74 0.09 0.45 0.04, 0.85 0.03
1000 kcal

Fruit/vegetables per ~ 11.85 —-7.05,30.75 0.22 23.22 5.11,41.33 0.01
1000 kcal

Wholegrains per 3.36 0.31, 6.40 0.03 2.82 0.06, 5.57 0.04
1000 kcal

Fish per 9.17 3.98,14.36 0.0006 12.17 7.23,17.11 <0.0001
1000 kcal

Carbohydrate —0.65 —-1.89,0.58 0.31 -1.27 -2.47,-0.07 0.04
%TEL

Protein 0.66 1.30,0.02 0.04 1.51 0.87,2.17 <0.0001
%TEI

Fat -0.11 —-1.26,1.05 0.86 —-0.69 -1.77,0.39 0.21
%TEL

Saturated fat -0.92 —-1.56, -0.28 0.005 -0.98 —1.53,-042 0.0006
%TEL

Added sugar -0.39 -1.2,0.42 0.35 -1.21 -1.98,-043 0.002
%TEI

Mean kcal —7353  -14471,-235 0.04 —122.51 —186.56, —-38.46  0.003

HDI score 0.24 -0.07,0.55 0.09 0.45 0.12,0.76 0.006

Abbreviation: Cohort 1; participants with normal or impaired glucose regulation, cohort 2; participants with Dia-
betes type 2, NSP, non—starch polysaccharides,%TEI, percentage of total energy intake, 95% CI, confidential inter-
val, HDI, Healthy Diet Indicator. a, Generalised linear regression model coefficient represents the mean change in
the nutritional variable for one unit change (increase) in Tpreq score fully adjusted models.
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Table 4

Metabolic profile score Tyeq association with phenotypic traits adjusted for age, gender, smoking, alcohol consump-

tion and study centre at baseline, the IMI DIRECT cohorts.

Cohort I n=403 Cohort Il n=458

B2 95% C1 Pvalue B2 95% CI Pvalue
Waist circumference (cm) -0.9 -2.1,03 0.09 -1.5 -2.9,0.08 0.06
Weight (kg) -1.8 -32,-04 0.01 -2.1 -3.8,-0.2 0.03
Body mass index (kg/m2) -0.5 -1.0, -0.1 0.02 -0.5 -1.1,0.1 0.09
Liver fat (%) -097 -0.82,1.11 0.63 -0.74  -0.67,-0.81 <0.0001
Fasting HbA1c (mmol/mol)' -04 -0.7,-0.01 0.04 -0.9 -1.5,-0.1 0.02
Fasting glucose (mmol/L)’ 0.04 —0.04,0.1 0.32 -0.2 —0.4, -0.05 0.01
Fasting insulin (pmol/mol)’ 0.2 -0.7,0.7 0.88 -11.0 -19.5, -2.6 0.01
Fasting triglycerides (mmol/L) -0.1 -0.2,-0.03 0.003 -0.2 —-0.3,-0.09 0.0002
Fasting LDL-cholesterol (mmol/L) 0.001 -0.1,0.1 0.86 -0.06  -0.2,0.04 0.24
Fasting HDL-cholesterol (mmol/L)  0.07 0.03,0.1 <0.0001 0.08 0.04,0.1 0.0002

Abbreviations: Cohort I; participants with normal or impaired glucose regulation, Cohort II; participants with type 2
diabetes, HDL; high density lipoprotein cholesterol, LDL; low density lipoprotein cholesterol, HbA1lc; glycated hae-
moglobin. a: Generalised linear regression model coefficient represents the mean change in the phenotypic trait for

one unit change (increase) in Tpeq ScoTe.

¥ Cohort Ilis additionally adjusted for usage of glucose lowering medication.

3.4. HDI dietary pattern score association with glycaemic and
cardiometabolic traits

Supplementary table S2 shows the mean changes in phenotypic
traits per one point increase in HDI diet score (indicating a healthier
diet). Baseline data showed a higher HDI score was associated with
lower weight in both cohorts. In cohort 2 a higher HDI was also asso-
ciated with a lower waist circumference (8=—0.7 cm, p=0.002), a
lower BMI (8=—0.3 kg/m?, p =0.0002), liver fat (8=—0.7%, p=0.0001).
A higher HDI score was associated with a lower fasting glucose and
insulin in both cohorts, in cohort 1 ($=—0.04 mmol/L, p =0.002) and
cohort (5=—0.2 pmol/mol, p = 0.04), respectively. In cohort 2 this was
only significant for fasting glucose (8=—0.06 mmol/L, p=0.03) and
insulin (B8=—1.9 pmol/mol, p=0.09). No associations were observed
between HDI score and lipid profile fasting HDL cholesterol, LDL-cho-
lesterol and triglycerides in either cohort.

3.5. Tprea metabolite profile score effect on adiposity and glycaemic
traits changes

Table 5 shows the generalised estimating equation regression
coefficient representing the mean changes in phenotypic traits for
one unit increase in Tpreq score. A higher baseline Tpreq score (health-
ier metabolite profile) was associated with decreasing body adiposity
in both cohorts at 18 months follow up. In cohort 1 Tpeq SCOre was
associated with a decrease in weight by —1.6 kg (p=0.02) and BMI
—0.5 kg/m? (p =0.03). Cohort 2 also showed a reduction in waist cir-
cumference —1.6 cm (p =0.04). A higher Tpreq Score was also associ-
ated with lower glycaemic traits in cohort 2; per one unit increase in

Table 5

Tprea score glucose was reduced by —0.2 mmol/L (p =0.03) and insulin
was reduced by 9.2 pmol/mol (p =0.04). No other significant changes
were observed for other glycaemic traits in cohort 1. Sensitivity anal-
ysis with glycaemic traits was done using same models with addi-
tional BMI adjustment (Supplementary Table 3). The results showed
per one point increase in the Tpeq score glucose was reduced by
0.2 mmol/L (p =0.05) in cohort 2. No other significant changes were
observed in either cohort.

The Tpreq score showed no significant effect with the two glycae-
mic  progression slopes modelled on fasting glucose
(f=—0.007 mmol/L, p = 0.6) or HbA1c (8=—0.07 mmol/mol, p=0.3) at
36-month follow up data in cohort 2 (Supplementary Table 4).

3.6. Discordance analysis between tp..q metabolite profile score and hdi
score

Discordance analyses of participants who were both in the lowest
quartile of the metabolite score Tpreq (Worst metabolic profile) and in
the highest diet score quartile (healthiest diets) were worse metabol-
ically compared to those participants who were concordant with
both scores i.e. highest Tpeq score (healthiest metabolic profile) and
highest diet score (healthiest diets) (supplementary material Table
1). Participants concordant with both Tpeq and HDI diet score had a
lower BMI (mean=27.8 kg/m?) compared to those who were discor-
dant (mean= 303 kg/m?) p=0.02, a lower mean fasting HbAlc
(41.6 mmol/mol vs (42.9 mmol/mol) p=0.03, a lower mean fasting
glucose (5.9 mmol/L vs 6.3 mmol/L) p<0.0001, and a lower mean fast-
ing insulin (42.6 pmol/mol vs 65.8 pmol/mol) p<0.0001. Those con-
cordant with the scores also had a better lipid profile: a lower mean

Metabolic profile score Tyeq effect on phenotypic traits changes adjusted for gender, age, smoking, alco-
hol consumption and study centre at 18 months follow up, the IMI DIRECT cohorts.

Cohort I n=403

Cohort Il n=458

B2 95% CI Pvalue fB°? 95% CI Pvalue
Fasting insulin (pmol/mol) -0.2 -0.9,0.5 0.61 -9.2 -179,-04  0.04
Fasting glucose (mmol/L) { 0.03 —0.03,0.1 0.28 -02  -03,-0.01 0.03
Fasting HbA1c (mmol/mol) { -04 -0.7,0.01 0.06 -0.6 -1.5,0.1 0.09
Body mass index (kg/m?) -0.5 -0.9,-0.06 0.03 -0.7 -1.6,0.1 0.09
Waist circumference (cm) -1.1 -2.2,0.03 0.05 -1.6 -3.0,-0.1 0.04
Weight (kg) -16  -3.05,-02 0.02 -1.7  -35,-01 0.06

Abbreviation: cohort [ participants with normal or impaired glucose regulation,

tionally adjusted for usage of glucose lowering medication.

cohort II participants with
type 2 diabetes. a, Generalised estimating equation regression coefficient represent the mean change in
phenotypic trait for one unit change (increase) in Ty eq score adjusted for covariates. t Cohort II is addi-
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fasting triglycerides (1.09 mmol/L vs 1.55 mmol/L) p<0.0001, and a
higher mean HDL-cholesterol (1.28 mmol/L vs 1.11 mmol/L) p = 0.02.
No significant differences were observed in body measurement or
liver fat between the two groups.

4. Discussion

Dietary advice remains one of the cornerstone of prevention and
management of T2D. The effectiveness of dietary intervention is
related to global dietary profiling of numerous nutrients and food
groups (increased fruit, vegetable, wholegrain and dietary fibre,
decreased added sugars and total fat intake) rather than change in
individual nutrients. However, understanding the relationship
between diets and T2D is challenging because of the inaccuracy of
traditional dietary assessment tools [15,17,26]. We recently demon-
strated the utility of urinary metabolite profiling in diet assessment
[17]. Here, we applied similar methodology to derive a plasma
metabolite profiling score Tpreq and demonstrated that it captures
distinct dietary patterns in free-living populations. Furthermore, a
more favourable Tpreq Score was associated with a better glycaemic
homoeostasis and body composition, liver fat, triglycerides and HDL-
cholesterol. Our findings demonstrate that metabolic profiling vali-
dated self-reported diet recording and strengthened the precision of
diet-disease relationships in epidemiological studies.

Firstly, we showed that the plasma metabolite profile score Tpreq
was associated with four distinct dietary patterns as defined by WHO
dietary guidelines (HDI diet score), replicating findings from our pre-
vious RCT [17]. Furthermore, a higher Ty.q score (favourable meta-
bolic profile) was associated with higher intake of healthy foods and
nutrients including fibre, wholegrains, fish, fruit and vegetables and a
lower intake of unhealthy nutrients including saturated fat, added
sugars and lower energy intake despite the metabolites included in
the Tpreq score are not direct dietary metabolites. Similar findings
were reported in the TwinsUK cohort which analysed same set of
metabolites (AbsoluteIDQ™ p150 Kit) separately and found correla-
tions between two thirds of the metabolites and dietary patterns
driven by food groups including meat intake, energy intake, fruit and
vegetables [27].

We have demonstrated using discordant analyses that partici-
pants who both were in the lowest quartiles of Tpeq (least favourable
metabolic profile) and the highest diet score quartile (healthiest diet)
are worse metabolically both in their glycaemic traits and lipid pro-
files compared to those concordant in both scores top quartiles
(healthiest metabolite profile and healthiest diet). Few studies have
conducted discordance analyses. We found two other cohorts (Car-
diovascular Risk in Young Finns Study and Whitehall II) reporting
similar findings when studying participants in concordance with
higher adherence to a healthy diet and associated metabolites. The
studies found participants had a better (more favourable) blood lipid
profile and lower incidence of CVD [28], which was argued was
driven by healthy dietary patterns.

Our findings may further imply that Tp.q Score can capture die-
tary misreporting known to confound the association between diet
and health outcomes. This aligns with other nutritional studies,
which show that participants “classified” as misreporters or energy
underreporters in their diet recordings are more likely to have a
worse cardio-metabolic profile compared to those who do not under-
report their diet intake [11-13,29]. Metabolic profiling may serve as a
more accurate and unbiased diet assessment method compared to
existing methods relying mainly on BMI and physical activity report-
ing. Studies with high levels of underreporting/misreporting should
adjust for such bias in their analyses or conduct sensitivity analyses
to assess the impact on the relationship between diet and health out-
comes [14, 30]. In this study, we applied a statistical method using
quartiles to identify the discordant and concordant groups in our
dataset as both the Tpeq and HDI score are arbitrary and no known or

validated cut-off value exist. However, due to lack of published
metabolomics discordance analysis in nutritional epidemiological
studies such statistical principals have not yet been set for discor-
dance as for bias of energy under-reporting.

A key finding of this study, the Tpeq Score was strongly associated
with glycaemic and other cardiometabolic traits at baseline in both
people at risk of diabetes and those living with the disease. Similar
findings were observed in two other cohorts investigating the associ-
ation between metabolic profiling with dietary patterns and CVD risk
[28]. They found 41 metabolites (amino acids, glycerophospholipids
and sphingolipids) associated with healthy dietary patterns also pre-
dicted a favourable lipid (fatty acids) profile and lower incidence of
CVD risk. However, glycaemic and adiposity traits were not included
in these studies. We also show that self-report diet data (HDI score)
was associated with some of the same cardiometabolic traits as the
Tprea Score, but these relationships were less robust. This may imply a
metabolic profile more accurately capture these associations between
diet and health outcomes compared to self-reported dietary data,
which are more prone to confounding from misreporting.

Mechanisms driving these nutritional and metabolic pathways are
complex and multi-factorial. A metabolite profile score may capture
metabolites, such as acylcarnitines, glycerophospholipids, and sphin-
golipids which are not captured in HDI score. Such metabolites have
been associated with increased risks of fatty acid oxidation, insulin
resistance and T2D [31,32]. Furthermore, the Tyrq Score may also
capture other non-lifestyle factors such as interactions with an indi-
vidual's microbiome [33,34]. Gut microbiota modified by diet may
also play a role in the relationships between acylcarnitines, phospha-
tidylcholine and cardiometabolic traits [35,36]. Numerous metabo-
lites such as acylcarnitines and phosphatidylcholine, are involved in
gut microbe—dependant pathways that contribute to the formation
of hepatic production of trimethylamine-N-oxide (TMAO) from cho-
line and sequentially into trimethylamine in the microbiota, which
may increase risk of atherosclerosis [37]and glucose metabolism
[36,38]. TMAO has been shown to play a causal role in cardiovascular
disease via promotion of macrophage foam cell accumulation, leading
to inhibition of the reverse cholesterol transport that affect aspects of
bile and sterol metabolism, which in turn enhances platelet hyperac-
tivity and initiates atherosclerotic plaque formation [39,40]. A study
that characterized faecal microbiome and serum metabolome of non-
diabetic individuals found serum levels of branched-chain amino
acids (BCAA) were higher in insulin-resistant individuals and also
correlated with specific strains of faecal microbiomes with higher
biosynthetic potential for BCAAs [34]. These predictions were further
validated in an animal study by showing that same microbiome
strains could induce insulin resistance while increasing circulating
BCAA levels when introduced into high fat diet [34]. Further investi-
gations are needed to elucidate the interplay between specific dietary
components and these metabolic and biological pathways.

The baseline Tpeq score also showed favourable relationships with
BMI and waist measurement in both cohorts at 18 months and signifi-
cant lower fasting glucose and insulin in cohort 2 at 18 months. It is of
interest that the Prevencion con Dieta Mediterranea (PREDIMED)
study showed that baseline metabolite profiles characterized by ele-
vated concentrations of 28 acylcarnitines are independently associated
with risks of CVD (serum lipid profile and adiposity markers) after 1
year and that these effects were lessened in participants consuming
healthier diet patterns (Mediterranean diet compared to a control
diet) [41]. The Tpreq metabolic profile score also included 18 of these
acylcarnitines, which could suggest that the relationships observed in
our study between Tpeq score and serum lipid profile (HDL-cholesterol
and triglycerides) and lower adiposity measurements were partially
driving by the differences in acylcarnitines captured by Tpeq Score and
other beneficial interaction effects of healthy dietary patterns. The Fra-
mingham study found association between 217 metabolites (amino
acids, acylcarnitines, glycerophospholipids and sphingolipids) and
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body compositions, glycaemic and cardiometabolic traits [32]. Their
discoveries defined three distinct factors; dyslipidaemia, insulin resis-
tance and adiposity at baseline. However, similar to our findings, their
baseline metabolite profiles associations with longitudinal changes in
these traits were distinct from the cross-sectional findings. They
showed body compositions remained unchanged, whereas glycaemic
traits varied across BMI strata, modifying metabolic signatures of insu-
lin resistance. BMI was also associated with broad alteration in other
multiple biochemical pathways [32].

4.1. Strengths and limitations of study

This study builds on previous metabolomics studies, but contrib-
utes a larger sample size, more detailed phenotyping and compre-
hensive dietary data analysis. Most epidemiological studies rely on
dietary data from food frequency questionnaires, which may be lim-
ited by the specific nutrients and food groups studied. The IMI-
DIRECT comprehensive dietary data analysis permitted us to study a
range of single nutrients and food groups and overall dietary patterns
and their relationships. This gives us a better understanding of what
is driving a person’s diet in relation to the metabolic impact and its
association with important phenotypic traits. Furthermore, the data
are derived from two well-designed and rigorously conducted cohort
studies. These longitudinal data allow us to study the longer-term
effects of the metabolite profile score on phenotypic traits in both
participants with normal and impaired glucose regulation.

Lastly, the integration of metabolic and dietary profiling strength-
ens our findings as the metabolic profiling serves as an objective and
unbiased approach, that does not rely on arbitrary cut-offs, which
can strengthen accuracy in dietary data and nutritional epidemiol-
ogy.

An important limitation is that our study design does not allow for
determination of the temporality of the observed associations, which
is important when considering the longitudinal dimension of T2D
development and the complexity of nutrient and metabolomics. We
performed metabolic profiling at one single time point, precluding
the study of glycaemic and cardiometabolic effects on longitudinal
changes in metabolite profile.

It also remains unclear whether metabolites represent biomarkers
or actual mediators of metabolic disease or are acting as surrogate
markers, thus, and causal inferences cannot be drawn from our
observational study without further investigation. Another important
limitation of this study is the use of a short-term dietary assessment
method. A single 24-hour recall is unable to account for day-to-day
variation, two or more non-consecutive recalls are required to esti-
mate usual dietary intake distributions on an individual level. Multi-
ple recalls are also recommended when used to examine diet and
health. Though, the main focus of our study was to apply the meta-
bolic model Tpreq 0N a large free-living population. The Tyreq Was also
derived from a single time point sample. Hence, to confirm these
finding replication studies are needed using data collected over mul-
tiple time points to gain better accuracy and understanding on how
the two methods compare in relation to each other and health out-
comes.

This study demonstrates that application of dietary metabolic pro-
filing at the population level provides an objective measurement of
dietary patterns and is associated with glycaemic and cardiometa-
bolic risk profiles.
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