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A B S T R A C T   

PIWI-interacting RNAs (piRNAs), an emergent type of non-coding RNAs during oncogenesis, play critical roles in 
regulating tumor microenvironment. Systematic analysis of piRNAs’ roles in modulating immune pathways is 
important for tumor immunotherapy. In this study, in-depth analysis of piRNAs was performed to develop an 
integrated computational algorithm, the immunology piRNA (ImmPI) pipeline, for uncovering the global 
expression landscape of piRNAs and identifying their regulatory roles in immune pathways. The immunology 
piRNAs show a tendency towards overexpression patterns in immune cells, causing perturbations in tumors, 
being significantly associated with infiltration of immune cells, and having prognostic value. The ImmPI score 
can contribute to prioritizing tumor-related piRNAs and distinguish two subtypes of SKCM (immune-cold and hot 
phenotypes), as characterized by different prognoses, immunogenicity and antitumor immunity. Finally, we 
developed an interactive web resource (ImmPI portal: http://www.hbpding.com/ImmPi) for the biomedical 
research community, with several useful modules to browse, visualize, and download the results of immunology 
piRNAs analysis. Overall, our work provides a comprehensive landscape of piRNAs across multiple cancer types 
and sheds light on their regulatory and functional roles in tumor immunity. These findings pave the way for 
future research and development of piRNA-based immunotherapies for cancer treatment.   

1. Introduction 

Aberrant gene expression has been demonstrated to result in a 
multifarious series of diseases in humans, including tumors [1]. Thou-
sands of regulators control gene expression in mammals, including 
transcription factors (TFs), chromatin modifiers, and non-coding RNAs 
(ncRNAs) [2]. piRNAs, a type of small ncRNA with 24–31 nucleotides, 
primarily are found in the germline of mammals and play crucial roles, 
including inhibiting transposable element activity through binding to 
PIWI-related molecules [3–5]. Moreover, recent studies have demon-
strated that piRNAs can be expressed and function in somatic tissues of 
humans [6], and exhibit dysregulated expression in several specific 
cancer types [7–10]. However, knowledge about their regulatory roles 
in tumorigenesis is still largely unavailable. 

Various studies have concentrated on the biological roles of piRNAs 
and their underlying mechanisms are reported to be highly diversified 
[11]. Previous studies have principally reported that piRNAs correlate 

with distinct cellular responses, including cell proliferation, differenti-
ation, and apoptosis [12]. It has also been shown that piRNAs play 
important roles in the initiation and development of various cancers, 
including urogenital carcinoma [13], and diffuse large B-cell lymphoma 
[14]. Moreover, piRNAs can act as potential diagnostic indicators for 
early detection of lung [15], colorectal [16], and gastric carcinomas 
[17]. piRNAs are also crucial prognosis-related biomarkers for colorectal 
and kidney carcinoma after anti-tumor therapy [8,13]. Recent studies 
have demonstrated that piRNAs impact the survival activity of cancer 
cells under exposure of chemotherapies and might function as potential 
therapeutic targets for treating human malignancy [18]. On the other 
hand, accumulating research has demonstrated that the tumor micro-
environment (TIME) plays crucial functions in oncogenesis [19]. A 
dysregulated anti-tumor immune system might be one of the foremost 
causes of tumor occurrence, and immunotherapy has emerged as a 
useful antitumor therapy [20]. Therefore, precise regulation of immune 
pathways is crucial for a powerful anti-tumor immunity 
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microenvironment [21]. Nevertheless, the main focus of recent works is 
on protein molecules, particularly the role of cell-surface ligands, re-
ceptors, cytokines, and TFs [22]. In addition, the key roles of piRNAs 
investigated in previous studies were confined to their impacts on tumor 
phenotypes [23], and whether they may be involved in regulating tumor 
immunity remains unclear. Meanwhile, the function of piRNAs in 
regulating the efficiency of tumor immune checkpoint inhibitors has not 
even been evaluated. Consequently, further in-depth investigations on 
piRNAs and their impacts in regulating tumor immunity will contribute 
to development of effective immunotherapies. 

To detect the underlying immunology piRNAs (namely, immune- 
related piRNAs) involved in oncogenesis, multi-omics profiles from 32 
cancer types were integrated to characterize the comprehensive tran-
scriptional landscape, and a novel ImmPI score pipeline was built. Our 
work identified multiple piRNAs significantly associated with the ac-
tivity of immune pathways, and its robustness was validated in other 
independent cohorts. These immunology piRNAs tend to present over-
expression patterns within immune cells, exhibit perturbed expression 
in tumor samples, be significantly associated with infiltration of immune 
cells and show prognostic value. With tumor-related piRNA prioritiza-
tion and tumor clustering, our work indicates that the ImmPI score 
pipeline and ImmPI web portal are beneficial resources for exploring the 
roles of piRNAs in regulating tumor immunity. In-depth recognition of 
the thorough repertoire of underlying piRNAs regulating immune 
pathways is a crucial requirement for comprehending the architecture of 
the integrated regulatory network within the tumor immune microen-
vironment (TIME). 

2. Results 

2.1. Dynamic expression landscape of piRNAs in human cancers 

To comprehensively depict the landscape of piRNAs across cancers, 
we included genome-wide small RNA-seq results of 9788 tumor and 
1289 paracancerous samples across 32 cancer types (Fig. 1A, Table S2). 
We mapped TCGA raw small RNA-seq reads to piRNA referential tran-
scriptomics based on the piRBase database [46] and retained piRNAs 
with TPM more than 1 and available expression in more than 70% of 
samples for subsequent analysis. Our analysis recognized a total of 
12952 detectable piRNAs across human cancers (Fig. 1B and Fig. S2A). 
The count of identifiable piRNAs varied from 2539 in sarcomas (SARC) 
to 7897 in Testicular Germ Cell Cancer (TGCT). These detectable piR-
NAs were classified into three subgroups: 3525 ubiquitous piRNAs 
expressed in more than 20 cancers, 6063 intermediately specific piRNAs 
expressed in 2–20 cancers, and 3364 cancer-specific piRNAs expressed 
in only one cancer (Fig. 1B). Ubiquitous piRNAs accounted for 43.9% of 
detectable piRNAs in OV, but for 96.9% of piRNAs in SARC. More 
interestingly, ubiquitous piRNAs presented higher expression patterns 
than intermediately specific piRNAs and cancer-specific piRNAs 
(Fig. S2C). This situation mirrors the traits of protein-coding genes, 
where housekeeping genes typically exhibit higher expression levels 
compared to their tissue-specific counterparts [24]. The numbers of 
cancer-specific piRNAs exhibited an expansive range, from zero in six 
cancers, including BRCA, CESC, CHOL, COAD, SARC, and STAD, to 873 
in OV (Fig. 1B). This cancer-specific expression pattern of piRNAs was 
still observed with an even more stringent cut-off (TPM ≥ 10, Fig. S2D), 
demonstrating that it is not due to their expression level. The tran-
scriptional similarity between any two tumors was calculated, and the 
results indicated that a robust cancer-specific pattern of piRNAs and 
patients from the same tumor type clustered together on the basis of 
k-means (Fig. 1C). In addition, we utilized another dimensionality 
reduction algorithm, t-SNE, to validate this cancer-specific phenomenon 
obtained from k-means method. After dimensionality reduction using 
t-SNE, the LGG in the bottom left is distinctly separated in terms of 
piRNA expression from PRAD directly above and OV to the bottom right 
(Fig. S2B). The expression of piRNAs in cancers with analogous 

histology were more similar, whereas the expression patterns between 
piRNAs in different cancers were relatively distinct, such as pan-kidney 
tumors (KIRC, KIRP and KICH) [25], indicating that piRNAs might act as 
potential biomarkers with clinical utility in identifying specific tumor 
types. 

2.2. Identification of immunology piRNAs across cancer types 

In order to detect potential piRNAs associated with immune path-
ways, a computational pipeline named the ImmPI score was developed 
(Fig. 2A). This pipeline is able to comprehensively infer potential piR-
NAs regulating immune pathways on the basis of a large quantity of 
sample-matched protein coding genes and piRNA transcriptomics. It is 
reasoned that if piRNAs play crucial roles in immune biology, their 
associated protein coding genes should be enriched in relevant immune 
pathways. In brief, our pipeline identified potential immunology piRNAs 
in three procedures (Fig. 2A). Firsty, we collected genome-wide protein 
coding gene and piRNA transcriptomics of the same sample. Secondly, 
the tumor purity for each sample was estimated, and protein coding 
genes were ranked on the basis of the rank score (RS) for each candidate 
piRNA. Thirdly, the estimated level of piRNA-related immune pathways 
(ImmPI score) was calculated on the basis of modified GSEA [26]. We 
converted the P-value of GSEA into an ImmPI score, and piRNA–path-
way pairs with absolute ImmPI scores greater than 0.995 and FDR less 
than 0.05 were identified as significant for subsequent analysis. 

Taking advantage of the multi-omics in TCGA database, the ImmPI 
score pipeline was applied to detect immunology piRNA in more than 
10,400 samples across 32 cancers (Fig. 1A). In particular, our analysis 
mainly concentrated on immunology gene sets representing diverse 
immune pathways originating from ImmPort [27], one of the largest 
public repositories of immunological resources. The number of genes 
involved in the aforementioned pathways ranged from three to 516 
(Fig. 2B). When the ImmPI score pipeline was employed for 32 cancer 
types, genome-wide screening generated a series of piRNA-related 
pathways. On average, each cancer type generated ~1840 piRNAs 
associated with immune pathways (Fig. 2C). Higher amounts of immu-
nology piRNAs were recognized in cancer types with more piRNAs 
available (Fig. S3). These immunology piRNAs accounted for ~39.7% of 
all piRNAs (Fig. 2C). In particular, “antigen processing and presenta-
tion”, “TCR signaling”, “cytokine receptors” and “cytokines” pathways, 
emerging as promising targets for immunotherapy [28], were found to 
be regulated by more piRNAs across cancers (Fig. 2D and Fig. S4), and 
these immunology piRNAs will be a valuable resource for further un-
derstanding potential regulation within the tumor microenvironment. 
All of the above results indicate that the ImmPI score pipeline can 
identify important piRNAs involved in immune biological processes and 
provide an invaluable resource for precision medicine. 

2.3. Expression perturbation of immunology piRNAs across cancers 

To identify the biological function of immunology piRNAs, we 
evaluated the 360 top-ranked piRNA–pathway pairs identified across 
cancer types (Table S3), and further constructed a piRNA–pathway 
regulatory network. As a result, there were 212 piRNAs, which were 
available in all 17 cancer types, and 8 immune pathways involved in this 
network (Fig. 3A), and the majority of these piRNAs were significantly 
associated with the “Antigen Processing and Presentation” pathway 
(Fig. S5A). Furthermore, the expression pattern of these piRNAs was 
investigated and the results demonstrated most of these piRNAs to be 
upregulated in tumor (Fig. 3A). For instance, five specific piRNAs 
showed more than two-fold upregulation in 15 cancer types (Fig. S5B). 
In order to further evaluate which subtype of the “antigen processing 
and presentation” pathway correlated with these five piRNAs, we 
calculated the activity of its multiple subtypes by GSVA analysis, and the 
results demonstrated five piRNAs to be significantly associated with 
several subtypes, including T and dendritic cells (Fig. S5C). These results 
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Fig. 1. Expression landscape of piRNAs across cancer types. (A) Distribution of samples across 32 different cancer types, with red and blue numbers indicating the 
count of cancer and normal samples, respectively. (B) piRNA expression patterns in various human cancers. The green, blue, and red bars represent ubiquitous, 
intermediately specific, and cancer-type-specific piRNAs, respectively. The pie charts show the proportion of each piRNA category within each cancer type. Refer to 
Table S2 for abbreviations of the cancer types. The scale bar indicates the expression levels of piRNA in terms of TPM. (C) The heatmap illustrates the similarity in 
piRNA expression across all tumor samples. Each cell reflects the average correlation coefficient of piRNA expression between samples from the corresponding pair of 
cancer types. The color bar represents each type of cancer. The scale bar signifies the degree of piRNA expression similarity among TCGA tumor samples, with the 
intensity of the red hue indicating the correlation coefficient level. 
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Fig. 2. Identification of immunology piRNAs across cancer types. (A) Schematic illustration of three steps of ImmPI for identifying piRNA regulators. (B) The count of 
genes present in 17 immune-associated pathways. (C) The tally of immunology piRNAs detected for each cancer type. The upper y-axis indicates the number of 
piRNAs, while the lower y-axis represents the percentage of immunology piRNAs. (D) Overview of piRNAs identified by extending ImmPI across cancer types. The 
panel shows the proportion of piRNAs enriched in each immune pathway across cancers. 
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imply that these piRNAs might play crucial roles in antigen processing 
and presentation-related biological processes. 

To evaluate the robustness of the results obtained from the ImmPI 
score pipeline, we then investigated the reproducibility of the piR-
NA–pathway pairs in different piRNA datasets for the same tumor. We 
downloaded another seven sample-matched mRNA and piRNA expres-
sion profiles (Fig. S6, and Table S4) from Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) [29]. The piRNA–pathway pairs were 
again recognized by the ImmPI score pipeline in each tumor type 
separately, and significant piRNA-pathway overlap was found for the 
same tumor type (Fig. 3B). These results demonstrate that our pipeline is 
efficient in detecting immunology piRNAs. 

Dysregulation of immune pathways has been identified as corre-
lating with the initiation and development of multiple tumors. Next, we 
evaluated whether perturbations of immunology piRNAs can be 
observed in tumor. The results suggested hundreds of immunology 
piRNAs to be dysregulated across multiple cancers (Fig. 3C and Fig. S7, | 
log2FC= > 1 and FDR <0.05). Although some immunology piRNAs 
might present an opposite trend of expression pattern in different tumor 
types, a number of immunology piRNAs presented concordant up- or 
down-regulated expression in more than two tumor types (Fig. S8). By 
comparing the proportion of differentially expressed immunology piR-
NAs to their non-immunology counterparts, we found that they were 
more likely to exhibit expression perturbations (Fig. 3D), especially in 
some cancer types suitable for immunotherapy, including gastrointes-
tinal [30] and lung cancers [31]. For instance, 1183 and 150 immu-
nology piRNAs presented higher or lower expression patterns in LUSC 
(Fig. 3C), which was approximately twice as high as the expected pro-
portion. Collectively, the immunology piRNAs identified by the ImmPI 
score pipeline shows widespread expression perturbations across mul-
tiple cancer types, differentially expressed piRNAs are more likely to be 
immunology-related piRNAs. 

2.4. piRNA are associated with immune cell infiltration 

Infiltration of immune cells within the tumor immune microenvi-
ronment (TIME) plays critical roles in tumor immunity and response 
efficiency to immunotherapy [32]. Consequently, we hypothesized that 
piRNAs identified by the ImmPI score pipeline play crucial roles in 
regulating the tumor immune microenvironment. Therefore, immu-
nology piRNAs will present significant differences between the TIME 
and paracancerous tissues and correlate with infiltration of immune 
cells. We thus evaluated infiltration of nine primary immune cells 
(namely B cells, CD4/8 T cells, Tregs, T helper cells, macrophages, 
neutrophils, NK cells, and dendritic cells) in each patient on the basis of 
gene expression by several computational algorithms, including 
CIBERSORT [33], EPIC [34], MCP-counter [35], quanTIseq [36], TIMER 
[37], xCell[38], and ImmuCellAI [39]. Relationships between expres-
sion of piRNAs and infiltration of immune cells were calculated by 
Spearman’s rank correlation analysis (|ρ| > 0.2 and P < 0.05), sug-
gesting that a great number of piRNAs associated with infiltration of 
immune cells are also immunologically associated (Fig. 4A and 
Table S5). For instance, of the piRNAs with expression associated with 
immunology in BLCA, 55.61% correlated with T helper cell infiltration. 

The proportion of piRNAs associated with infiltration of CD4 T cells was 
much higher in multiple gastrointestinal cancers (Figs. 4A, 55.70% for 
STAD, 50.34% for READ, 60.91% for CHOL, 61.26% for ESCA, and 
57.16% for PAAD). These results indicate that immunology piRNAs 
identified by the ImmPI score pipeline might play crucial roles in 
regulation of tumor immunity. Additionally, Fisher’s exact test was used 
to evaluate whether these immunology piRNAs are more likely to 
correlate with infiltration of immune cells compared to their 
non-immunology counterparts. The results suggested that a significantly 
higher proportion of immunology piRNAs correlate with infiltration of 
immune cells in the majority of cancer types (Fig. 4B, and Table S6). 

A growing number of analyses have indicated that biomarkers 
generally present tissue-specific expression patterns. Consequently, 
expression of the immunology piRNAs generated from the public small 
RNA-seq profiles of several immune cells was analyzed [40]. The num-
ber of specific immunology piRNAs identified in corresponding immune 
cells from human peripheral blood was significantly higher than that in 
their non-immunology counterparts (GSE100467, Fig. S9A). In addition, 
the immunology piRNAs associated with infiltration of one immune cell 
were more likely to present significantly higher expression in corre-
sponding immune cells from human peripheral blood, including B, 
CD4/8, NK, monocyte, and neutrophil cells (Fig. S9B). 

To further evaluate the potential subtype of immunology piRNAs and 
corresponding biological roles across cancer types, the Immune 
Enrichment (IE) score of each piRNA identified by the ImmPI score 
pipeline was calculated, which was able to estimate the correlation 
between each piRNA and the 17 immune-related pathways from a pan- 
cancer perspective. As a result, 481 piRNAs were defined as tumor- 
immunity-related piRNAs on the basis of specific conditions. We clas-
sified these 481 piRNAs into 3 clusters, which included 146 piRNAs in 
Cluster C1, 229 piRNAs in Cluster C2, and 106 piRNAs in Cluster C3, 
using the consensus clustering method on the basis of the IE scores of 
each piRNA (Fig. 4C), and the clustering result was further validated by 
t-SNE analysis (Fig. 4D). Immune pathways, including antigen process-
ing and presentation, antimicrobials, NK cell cytotoxicity, and the TCR 
signaling pathway, were enriched in Cluster C1, and other immune 
pathways, including chemokines, cytokines, and cytokine receptors, 
were enriched in Cluster C3 (Fig. 4C). 

Next, the association between immune cell infiltration and each 
piRNA across the three clusters was calculated, and the results suggested 
that the piRNAs in Cluster C2 are significantly least associated with 
infiltration of all nine immune cells across cancer types (Fig. 4E, and 
Fig. S10), which further validated the rare immune pathways enriched 
in Cluster C2 compared to others (Fig. 4C). These results indicate that 
the subtypes of immunology piRNAs are robust and present contrasting 
biological roles across cancer types. 

2.5. Tumor-related piRNAs, as evidenced by ranking analysis 

With the knowledge that immunology piRNAs are associated with 
infiltration of immune cells, we further evaluated the potential effects of 
immunology piRNAs on the clinical characteristics and tumor immunity. 
We hypothesized that the correlations identified in various cancer types 
between the immunology piRNAs and immune-related pathways play 

Fig. 3. Validation of immunology piRNAs. (A) The Circos diagram displays the top 360 piRNA–pathway associations across various cancer types. Inside the chart, a 
heatmap depicts the differential expression of piRNAs among cancers. Shades of red and blue indicate up-regulated and down-regulated expression, respectively, with 
color intensity reflecting the extent of expression variations. (B) The congruence of immune–piRNA pathways in the separate CPTAC database for identical cancer 
types is displayed. The bar graphs at the top illustrate the observed/expected ratios from the hypergeometric test, with * ** denoting a p-value below 0.001. The 
Venn diagrams below detail the count of shared piRNA–pathway associations: the top blue section signifies numbers derived from TCGA, while the bottom green 
portion indicates numbers sourced from the CPTAC database. (C) The bar chart illustrates the count of significantly differentially expressed immunology piRNAs 
across various cancers in the TCGA database. Red and blue hues denote up-regulated and down-regulated significantly differentially expressed immunology piRNAs, 
respectively. The Y-axis displays the log-transformed counts for each piRNA. (D) A stratified Chi-square analysis was employed to compare the proportion of 
differentially expressed immunology piRNAs to their non-immunology counterparts. The forest plot, referencing Fig. 3C, illustrates odds ratios for each cancer type. 
Odds ratios depict the likelihood of an event’s occurrence relative to its non-occurrence. Red signifies significance, while gray denotes non-significance. Error bars 
represent the 95% confidence intervals for the odds ratios. 
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crucial roles in regulating cancer development. Therefore, we ranked all 
ImmpiRNAs on the basis of the correlation between piRNA alterations 
and immune-related pathways across cancer types among 17 immune- 
related pathways, and the expression difference of ImmpiRNAs be-
tween precancerous and tumor tissues (Table S3 and Table S7). Then, we 
conducted GSEA analysis on the basis of the ranking of associations of 
ImmpiRNAs and gene sets originating from immune pathways. We 
found that the top ranking ImmpiRNAs are significantly associated with 
most immune pathways in multiple cancer types (Fig. 5A). We analyzed 
the network diagram of the top immunology piRNAs and discovered 
their intricate relationships. Various piRNAs played important roles in 
multiple types of cancer by regulating immune pathways. For instance, 
expression of piR-hsa-8465703 and piR-hsa-312787 presented a signif-
icant association with immune-related pathways in multiple tumor types 
(Fig. 5B, Table S3). The expression level of piR-hsa-8465703 correlated 
positively with most immune pathways in multiple tumor types, such as 
antigen processing and presentation in 14 cancer types, and with NK cell 
cytotoxicity in 10 cancer types (Fig. 5B, Table S3). In essence, these 
findings suggest that incorporating the ImmpiRNA outcomes can aid in 
highlighting cancer-associated piRNAs and offer a pathway-centric 
perspective to deepen our insights into their regulatory influence on 
cancer development. 

2.6. Correlation of immunology piRNAs with prognosis 

To evaluate the prognostic relevance of the potential immunology 
piRNAs, we detected all piRNAs that correlated with patient prognosis, 
including overall survival (OS), disease-free interval (DFS), disease- 
specific survival (DSS), and progression-free interval (PFI), across can-
cer types with p < 0.05. Hundreds of risk and protective piRNAs were 
identified in each cancer type (Fig. 6A and Table S8). Then, the pro-
portion of risk or protective immunology piRNAs was calculated in each 
cancer type, with the immunology piRNAs exhibited significantly higher 
numbers of prognostic piRNAs than their non-immunology counterparts 
across multiple cancer types (30/32 for OS, 19/21 for DFI, 29/32 for 
DSS, 29/32 for PFI). 

Next, the proportion of each piRNA correlating with prognosis was 
also calculated in 32 cancer types, the majority of prognosis-related 
immunology piRNAs were identified in more than one cancer type 
(Fig. 6B). For instance, a number of immunology piRNAs correlated with 
worse prognosis in more than 10 cancer types (piR-hsa-5775896 for OS, 
piR-hsa-33063 for PFI and piR-hsa-5775896 for DSS, Fig. 6C-E). 
Together, our analysis demonstrates that immunology piRNAs are more 
likely to be associated with patient prognosis and rendered promising 
therapeutic strategies for tumor. 

2.7. Cancer subtyping on the basis of immunology piRNAs 

In addition to identifying crucial biomarkers in tumor, cancer sub-
typing is critical for personalized therapies. Consequently, we evaluated 
the extent to which the piRNAs detected by the ImmPI score pipeline can 
be employed for cancer subtyping. Skin cutaneous melanoma (SKCM) is 
the most prevalent type of skin malignancy and is characterized by a 
high level of immune cell infiltration. We thus evaluated the roles of 
immunology piRNAs in SKCM in detail. First, we identified 34 

immunology piRNAs by the ImmPI score pipeline, which were associ-
ated with infiltrations of all nine immune cell types in SKCM (Fig. S11A). 
Particularly, all these piRNAs were significantly correlated with prog-
nosis (Fig. S11B), and the expression levels of these piRNAs were 
significantly associated with each other (Fig. S11C), indicating that they 
might play critical roles in a module pattern during tumorigenesis. 
Furthermore, all SKCM samples were classified into two subtypes based 
on expression of these 34 key immunology piRNAs (Fig. 7A). The ma-
jority of these immunology piRNAs exhibited higher expression patterns 
in the C1 subtype. 

Next, we compared the TIME between the two cancer subtypes, and 
the results indicated that C1 patients had higher infiltration of multiple 
immune cells, including CD4/8 T cells, B cells, and NK cells (Fig. 7B). In 
addition, checkpoints showed higher expression in the C1 cluster 
(Fig. 7C). In addition to validating the difference in immune pathway 
activities in SKCM patients, the results of GSVA analysis based on gene 
signatures revealed no difference in angiogenesis and fibrosis signatures 
between the two cancer subtypes (Fig. S11D). Our results indicated that 
patients in C1 are likely to have ‘hot’ tumors whereas the C2 cluster 
tends towards a ‘cold’ phenotype. Univariate and multivariate Cox 
regression analyses were used to investigate the independent predictive 
value of our subtype. Univariate Cox regression analysis indicated that 
the C2 subtype had worse OS, PFI, and DSS than the C1 subtype 
(Fig. 7D). Multivariate Cox regression analysis indicated that our sub-
type was an independent prognostic factor correlating with OS, PFI, and 
DSS (Fig. 7E-G). 

We investigated its underlying intrinsic immune response mecha-
nisms to reveal the potential mechanism underlying the predictive value 
of our cancer subtype. The C1 subtype had higher expression of MHC- 
related antigen-presenting and costimulatory molecules (Fig. 7H), 
which correlate strongly with enhanced tumor immunogenicity and a 
relatively hotter immune microenvironment. In addition to intrinsic 
immune response mechanisms, several extrinsic components, including 
higher concentrations of immunostimulatory chemokines, T-cell recep-
tor (TCR) diversity, cytolytic activity, and high immunogenicity, were 
identified in the C1 subtype (Fig. 7I), suggesting different extrinsic im-
mune responses between the two subtypes. These results indicated that 
our pipeline is able to identify different cancer clusters with notable 
molecular and immunological diversity, which will contribute to 
personalized tumor treatment. 

2.8. An interactive web portal for tumor immunology piRNAs 

We constructed a comprehensive and interactive ImmPI web 
resource (http://www.hbpding.com/ImmPi) that will aid the biomed-
ical research community in visualizing, searching and browsing immu-
nology piRNAs (Fig. 8). On the basis of immunology piRNAs, we provide 
several entryways for browsing and querying the piRNA-pathway, 
piRNA-immune_cell, piRNA-prognosis, and piRNA-cancer relationships 
across 32 cancer types. Users can enter different browsing pages by 
clicking the bar plots on the homepage, (Fig. 8A). In addition, users can 
enter querying pages to query piRNA-pathway, piRNA-immune_cell, 
piRNA-prognosis, and piRNA-cancer of interest from the menus of the 
homepage. Our web portal offers a search section to browse data on the 
basis of piRNAs, tumor type, immune pathways, prognostic type, 

Fig. 4. The immunology piRNAs correlate with immune cell infiltration in cancers. (A) The proportion of immunology piRNAs correlated with immune cell infil-
tration across cancers. The deeper the red, the larger the portion of the pie chart, indicating a greater relevant proportion. (B) The immunology piRNAs were likely to 
be enriched in piRNAs correlated with the infiltration of nine main immune cells (namely, B cells, CD4 T cells, CD8 T cells, Tregs, T helper cells, macrophages, 
neutrophils, NK cells, and dendritic cells). The dots represent the odds ratio (OR) of Fisher’s exact test and the error bars show the 95% confidence intervals of the OR. 
The numbers inside bar plots show the proportion of cancers, where orange indicates cancers with P-values < 0.05 in two-sided Fisher’s exact test. (C) Heatmap 
showing the mean IE (Immune Enrichment) score of 481 tumor-immunity-related piRNAs in 3 clusters, which included 146 piRNAs in cluster C1, 229 piRNAs in 
cluster C2, and 106 piRNAs in cluster C3, using the consensus clustering method on the basis of IE scores of each piRNAs. (D) The t-SNE analysis used to validate the 
robustness of the clustering analysis, these three piRNA clusters could be distinctly differentiated. (E) Three piRNA clusters showed the significantly different 
correlation with the infiltration of all nine immune cells across cancer types. As consistent with the enrichment analysis results, and Cluster II group had the lowest 
proportion related to immune cells. * for P < 0.05, * * for P < 0.01, * ** for P < 0.001. 
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immune cells or significant levels (Fig. 8B). The tables and diagram 
results of all browsing or querying records are offered to users through 
our portal (Fig. 8C). The GSEA plot, scatter diagram, survival curve, and 
box-whisker plot are all embedded in each record to present the piRNA- 
pathway, piRNA-immune_cell, piRNA-prognosis, and piRNA-cancer 
correlations (Fig. 8C). The results generated in our study can be down-
loaded in the download menu, and the corresponding figures can also be 
downloaded as PDF files (Fig. 8D). The help menu provides an intro-
duction and interpretation guidance for our web portal (Fig. 8D). Our 
valuable web resource will be of enormous interest to the tumor immune 
community, and will provide innovative viewpoints into tumor 
immunotherapy. 

3. Discussion 

Growing evidence has have demonstrated that piRNAs are critical for 
tumorigenesis, especially in the tumor microenvironment. However, 
rare instances have been investigated thus far. In our current study, we 
investigated the global expression landscape of piRNAs across multiple 
cancer types and confirmed a vigorous tumor-type-specific expression 
characteristic of various piRNAs. Our results suggested that piRNAs are 
promising prognostic and/or diagnostic biomarkers for tumor. By using 
the ImmPI score pipeline, thousands of piRNAs were identified to play 
crucial roles in regulating immune pathways in each cancer type, 
immunology piRNAs are more likely to exhibit distinct expression per-
turbations in tumor, which correlate significantly with prognosis and 
infiltration of immune cells. In addition, we demonstrated that ImmPI 
contributes to prioritizing cancer-related piRNAs and ascertaining can-
cer subtypes with different immune patterns. The web-based ImmPI 
resource is the first data portal in the immune-related piRNA field, 
providing a beneficial resource to comprehensively comprehend the 
potential immunology impacts of piRNAs in tumor. 

The results of previous studies have indicated that biomarkers 
generally showed tissue-specific expression patterns. Therefore, the 
expression characteristics of immunology piRNAs were investigated on 
the basis of public small RNA-seq profiles of human peripheral blood 
immune cells [40]. Our analysis demonstrated significantly higher 
expression levels of immunology piRNAs than those of non-immunology 
piRNAs, implying that immunology piRNAs have higher expression 
patterns in human immune cells. In particular, the piRNAs that poten-
tially modulated CD4/8 T or B cell signaling pathways also presented 
higher expression patterns in CD4/8 T or B cells. These results strongly 
indicate their crucial roles in the regulation of immunity. In addition to 
our present pipeline, which can be used for bulk small RNA-seq data for 
multiple tumor types, increasing expression profiles of immune cells 
captured by FACS/MACS as well as computational algorithms for eval-
uating infiltration of the immune cells, including ImmCellAI [39], and 
CIBERSORT [33], promote our understanding of TIME regulation. We 
speculate that integration of specific immune cell sequencing profiles 
and the ImmPI pipeline will improve our comprehension of immune 
regulation and tumoral genetic heterogeneity. 

The ImmPI score pipeline is a model-free approach for detecting 
immunology piRNAs in malignancy. Although various machine-learning 
approaches have been proposed to detect biomarkers in malignancy 
[41], it is arduous to apply in immune regulation due to the restricted 
amounts of experimentally verified immune piRNAs reported in previ-
ous studies. To preliminarily confirm the results generated from ImmPI, 

we investigated whether piRNA–pathway pairs could be reproduced in 
additional cohorts of the same tumor type (Fig. S6, and Table S4, from 
CPTAC cohort). Our analysis showed that the identified piRNA–pathway 
pairs overlapped significantly, indicating that the performance of our 
approach is robust. Expression-associated protein-coding genes rather 
than direct targets were used because the overwhelming majority of 
piRNAs lack known targets. In addition, there is no web-based tool for 
predicting piRNA-targeting sites within a given mRNA or spliced DNA 
sequence in humans. Consequently, we found that about 50% of the 
recognized immunology piRNA-pathway pairs with leading-edge genes 
had an enrichment in predicted targets, a percentage considerably 
higher than other piRNA-pathway pairs (Fig. S12). This suggests that the 
association-based methodology could potentially identify a greater 
number of immune-related piRNAs for functional verification. The 
identified leading-edge genes might also aid in anticipating the piRNAs’ 
targets. A growing array of biotechnologies has been employed to 
pinpoint potential piRNA targets. However, piRNA regulation is context 
specific, and it is still challenging to identify specific targets in the tumor 
context. In addition, piRNAs might play biological roles in various 
patterns, and it is difficult to capture their targets. Thus, we identified 
protein-coding genes associated with expression of piRNAs and then 
evaluated their enrichment in immune-related pathways. Owing to the 
advancement of high-throughput sequencing approaches, it is possible 
to detect context-specific immunology piRNAs and subsequently enrich 
our understanding of their biological roles. 

In addition, our analysis indicated that immunology piRNAs can aid 
in prioritizing tumor-related biomarkers and subtyping. Two subtypes of 
SKCM were identified on the basis of the expression of immunology 
piRNAs, which were found to be indepedently associated with prog-
nosis, including OS, PFI, and DSS. Patients in the C1 (immune-hot) and 
C2 (immune-cold) subgroups had contrasting clinical patterns. The 
abundance of immune cells in the TIME is known to impact prognosis 
[42]. In our study, higher infiltration of immune cells, including CD4 
and CD8 T cells, B cells, and NK cells was identified in the C1 subtype 
characterized by stronger immunogenicity. The immune score calcu-
lated by the whole infiltration level of immune cells in cancers was 
higher in C1 patients, who show elevated antitumor immune activity. In 
addition, checkpoint genes showed higher expression in C1 patients. 
Because of elevated tumor immunogenicity, enhanced antitumor im-
munity, and elevated checkpoint expression, it is apparent that the pa-
tients in the C1 subgroup tend towards a ‘hot’ cancer phenotype, 
indicating that they are more likely to be sensitive to immunotherapy. 
Altogether, these results indicate that the model based on immunology 
piRNAs can be utilized to predict prognostic events and response effi-
ciency to immunotherapy. 

In conclusion, our work reveals the comprehensive landscape of 
piRNAs across multiple cancer types and highlights their functional and 
regulatory roles in regulating tumor immunity for the first time. It is 
crucial to comprehend the impact of immunology piRNAs in cancer. 
Identifying potential piRNAs offers the first perspective of immuno-
therapy, and continued evaluation of the immunology piRNAs detected 
in this study will extraordinarily improve our comprehension of the 
underlying mechanism of tumors and promote more effective 
immunotherapies. 

Fig. 5. Prioritization of cancer-related piRNAs on the basis of immune regulation. (A) The top-ranked piRNAs are enriched in multiple immune signaling pathways. 
Number of cancer types with piRNAs alterations in tumors (outer loop). Yellow bar denotes number of piRNA enriched in signaling pathways across all types of 
cancer (inner loop). The longer the yellow bar, the greater the number is, and the corresponding count was marked inside the pink circle on the edge of the yellow 
bar. Blue lines link the piRNAs and their related immune pathway. The thicker the blue line, the more types of cancer in which a correlation were observed. The size 
of the outermost circle indicated that the larger the circle, the more types of cancer in which the piRNA was detected. A greater proportion of red indicated a higher 
proportion of up-regulated piRNAs, while a greater proportion of blue indicated a higher proportion of down-regulated piRNAs. (B) Four examples of piRNAs 
(piR− hsa− 23210, piR− hsa− 312787, piR− hsa− 545287 and piR− hsa− 8465703) in Sankey diagram significantly enriched in multiple immune signaling pathways 
across cancer types. 
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4. Materials and Methods 

4.1. Collection of immune-related genes 

Seventeen immune pathways were primarily collected on the basis of 
the ImmPort database [43], which has been extensively applied in 
recent immunology studies [21,22,44]. All genes involved in these 
pathways were mapped to Ensembl IDs, and 1811 genes were adopted 
for subsequent analyses (Table S1). 

4.2. Collection and processing of piRNA transcriptomics across cancer 
types 

We downloaded raw small RNA-seq profiles (Level 2) from the TCGA 
database (http://cancergenome.nih.gov/) and recreated the raw FASTQ 
files on the basis of BAM files via bedtools2 [45]. In total, 32 divergent 
TCGA cohorts, each representing a specific tumor, were included in our 
analysis. Subsequently, we trimmed the recreated FASTQ files on the 
basis of the qualification of ‘Phred quality score more than twenty’ and 
‘reads length more than twenty-one nucleotides’ to acquire high-quality 
sequencing reads corresponding to piRNAs through FASTX-Toolkit 
(http://hannonlab.cshl.edu/fastx_toolkit/) [8]. All sequences were 
further remapped to the human reference genome (hg37) via STAR with 
customized piRNA transcript annotation on the basis of the piRBase 
database (version 3.0, http://bigdata.ibp.ac.cn/piRBase) [46]. Expre-
sion of each piRNA was quantified using featureCounts [47]. Based on 
piRBase, all piRNA reads were aligned to the newest reference genome 
through Bowtie to identify underlying piRNAs. When the piRNA genome 
loci overlapped with RefSeq genes or repeat-associated elements, they 
were regarded as gene- or repeat-related piRNAs [48]. Because several 
piRNAs might have different locations, TPM was used to quanlify piRNA 
transcript levels. We retained piRNAs with a TPM greater than 1 and 
expression in more than 70% of samples for subsequent analysis. 

4.3. Genome-wide mRNA expression across pan-cancer 

Genome-wide mRNA profiles across pan-cancer were also down-
loaded from the TCGA database. FPKM and the raw read count of 32 
cancers, quantifying the expression level of mRNAs, were used for 
subsequent analysis. On the basis of the gene annotations generated 
from the HGNC database [49], expression levels of 19,814 
protein-coding genes were obtained for each cancer type. 

4.4. Construction of the ImmPI score to identify potential immunology 
piRNAs 

A computational algorithm, named the ImmPI score, integrating 
piRNA and protein-coding gene transcriptional profiling, was developed 
to identify potential piRNAs regulating immune pathways (Fig. 2A). In 
brief, we sorted all protein-coding genes on the basis of their association 
in expression with a particular piRNA. The sorted gene list for a specific 
piRNA was then presented to each immune-related pathway to investi-
gate whether the genes in the pathway were enriched in the top or 
bottom of this gene list. We calculated the ImmPI score of each piR-
NA–pathway pair and repeated this computational operation for all 
combinations of piRNAs and immune-related pathways. On the basis of 

the permutation test, we identified all piRNA–pathway pairs with 
significantly higher ImmPI scores across cancers. 

Discovery of piRNA-correlated genes. For each piRNA, all protein- 
coding genes were firstly ranked according to the association of their 
transcriptional level with that piRNA. Transcriptional levels of piRNA x 
as well as protein-coding gene y across cancer samples were defined as P 
(x) = (p1, p2, p3, …, pi, …, pn) and G(y) = (g1, g2, g3, …, gj, …, gn), 
respectively. We defined the tumor purity across n samples as T = (t1, t 2, 
t 3, …, t i, …, t n). The partial correlation coefficient (PCC) between the 
transcriptional level of piRNA i and protein coding gene j was estimated 
with consideration of the tumor purity acting as the covariable, i.e., 

PCC(ij) =
RPG − RPT ∗ RGT
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − R2
PT

√

∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − R2
GT

√

where RPG, RPT, and RGT are the Pearson correlation quotiety between 
the transcriptional level of piRNA x and protein coding gene y, the 
transcriptional level of piRNA x and tumor purity, and the transcrip-
tional level of protein coding gene y and tumor purity, respectively. 
Additionally, the P value of the PCC was also defined as P(xy), and the 
rank score (RS) of each piRNA-gene pair was estimated as follows: 

RS(xy) = − log10(P(xy) ) ∗ sign(PCC(xy))

All protein-coding genes were sorted based on RS scores and then 
used for enrichment analysis. 

piRNA modulators of immune-related pathways. Inspired by the 
GSEA algorithm, protein-coding genes from immune-related pathways 
were mapped to the sorted genelist. Furthermore, the enrichment score 
(ES) was calculated on the basis of GSEA. If N genes existed in the sorted 
genelist GL = {l1, l2, l3, …, lN}, the sorted score was calculated by RS(lj) 
= rj. Firstly, the protein-coding genes in immune-related pathway H 
(“hits”) weighted via the RS score and not in S (“misses”) present up to a 
particular position i in GL was assessed as follows: 

Phit(H, i) =
∑

li∈H j≤i

|rj|
p

NR
,whereNR =

∑

li∈H
|rj|

p
,

Pmiss(H, i) =
∑

li∕∈H j≤i

1
(N − NI)

We calculated the ES score on the basis of the maximum deviation 
from zero of Phit− Pmiss. Additionally, the P-value was estimated for each 
immune-related pathway including NI protein-coding genes, as follows: 

p(ES(N,NI) < ESik) =
∑∞

q=− ∞
(− 1)qexp

(
− 2q2ES2

ikn
)
,

n =
(N − NI)NI

N
,

where ESik stands for the ES between immune pathway k and piRNA i, 
the number of protein coding genes in the sorted genelist is denoted by 
N, and the amount of genes in the particular immune pathway is denoted 
by NI. The FDR method was adopted to adjust P-values. In addition, 
accoding to a recent study, the ES score and P-value were combined to 
construct an ImmPI score model, i.e., 

Fig. 6. The association between immunology piRNAs and clinical outcomes. (A) The correlation between immunology piRNAs and patient prognosis was determined 
using the log-rank test (P-value < 0.05). Bar charts display the counts of protective (blue bars) and hazardous (red bars) piRNAs across cancer types, with shading 
illustrating the immunology piRNAs’ proportions. The overhead pie charts indicate the percentage of prognosis-linked immunology piRNAs in relation to non- 
immunology piRNAs. Figures beneath the pie chart depict the total tally of either risk or protective piRNAs. The association between prognosis-related piRNAs 
and immunology piRNAs was assessed using a hypergeometric test, with significant outcomes marked by the pie charts’ black border (P-value < 0.05). OS stands for 
Overall Survival, DFI for Disease-Free Interval, DSS for Disease-Specific Survival, and PFI for Progression-Free Interval. (B) Prognosis-related piRNAs spread across 
varying numbers of cancers, with solid and dashed lines indicating those piRNAs associated with prognosis and those also enriched in immune pathways, respec-
tively. (C) piR-hsa-5775896 was correlated with patients’ worse OS in more than 10 cancer types. (D) piR-hsa-33063 was correlated with patients’ worse PFI in more 
than 10 cancer types. (E) piR-hsa-5775896 was correlated with patients’ worse PFI in more than 10 cancer types. 
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ImmPI_score(i, k) =
{

1 − 2p; ifES(i, k) > 0,
2p − 1; ifES(i, k) < 0.

Therefore, the range of ImmPI scores was from − 1–1. Significantly 
positive piRNA–pathway pairs were identified by ImmPI scores greater 
than 0.995 and FDR less than 0.05, and significantly negative pairs were 
identified by ImmPI scores less than − 0.995 and FDR more than 0.05. 

4.5. Detection of tumor-immunity-associated piRNA 

Based on the ImmPI score of each piRNA–pathway pair across can-
cers, piRNAs correlating with any immune pathways in no less than 15 
cancer types were included for subsequent analysis. In addition, we 
excluded any piRNA whose total number of associations between spe-
cific piRNAs and any immune pathways in all cancer types was no more 
than 25 (Fig. S1). Ultimately, 481 piRNAs were defined as tumor- 
immunity-associated piRNAs in our analysis. The Immune Enrichment 
(IE) score of each tumor immunity-associated piRNA across 32 cancer 
types was estimated on the basis of the ImmPI score. We calculated the 
IE score as follows: 

IE(i, k) =
∑32

c=1
I(ImmPI_score(i, k) ) ∗ sign(ImmPI_score(i, k) ),

whereI(x) =
{

0; if |ImmPI_score(i, k) | < 0.995,
1; if |ImmPI_score(i, k) | ≥ 0.995.

4.6. Infiltration of immune cell across cancer types 

In order to evaluate the correlation of candidate piRNAs and tumor 
immunity, immune cell infiltration across cancer types was estimated by 
six algorithms, including TIMER [50], EPIC [34], MCP-counter [35], 
xCell [38], QUANTISEQ [36], and CIBERSORT [33]. Our major focus 
was on B cells, CD4/8 T cells, T helper cells, Tregs, neutrophils, dendritic 
cells, macrophages/Monocytes, and NK cells. The Spearman correlation 
coefficient (ρ) was firstly estimated between the expression of piRNAs 
and abundances of immune cells. Significant pairs of piRNA-immune 
cells within distinct algorithms were identified on the basis of 
P < 0.05 & |ρ| > 0.2. In comprehensive consideration of the relation-
ships between immune cells and piRNAs, piRNA-immune cell pairs 
(union sets) within the same cell type resulting from distinct computa-
tional algorithms were merged in our analysis. 

4.7. Differential expression of piRNAs and mRNAs 

Tumor types with no less than five paracancerous tissues were used 
for the differential expression analysis. Differentially expressed piRNAs 
and mRNAs based on the raw read count between cancer and para-
cancerous samples were identified using the DESeq2 R package [51]. We 
estimated the adjusted P-values of each piRNA and mRNA using the 
false-discovery rate (FDR) approach. An FDR of < 0.05 and absolute 
log2-fold change of > 1 were regarded as the cut-offs to identify differ-
entially expressed piRNAs and mRNAs [52]. 

4.8. Clinical relevance analysis of piRNAs 

Clinical information across 32 cancer types, including overall sur-
vival (OS), disease-specific survival (DSS), disease-free interval (DFI) or 
progression-free interval (PFI) [53], stage, grade, sex, age, fraction 
genome altered (FGA), tumor mutation burden (TMB), and aneuploidy 
score, was downloaded from the TCGA database. The optimal cut-off of 
each piRNA was ascertained using the surv_cutpoint function of the 
survminer R package to separate the samples into high- or low-expression 
subgroups. Cox proportional hazards regression analysis was applied to 
investigate the prognostic power of all piRNAs. Siginificant prognostic 
piRNAs with positive β values of ‘coxph’ were regarded as risk piRNAs, 
and the negative piRNAs were regarded as protective piRNAs. 

4.9. Subtype analysis on the basis of immunology piRNAs 

To identify piRNAs that might be utilized for categorizing tumor 
patients, we first screened the key immunology piRNAs siginificantly 
associated with infiltration of all nine immune cells in skin cutaneous 
melanoma (SKCM). Next, the ConsensusClusterPlus R package was used 
to divide patients into optimum subgroups by referencing the tran-
scriptional level of these key immunology piRNAs. Expression of piRNA 
was first scaled by the Z-score and then used in subsequent analysis. 

We compared several immune and clinical characteristics of patients 
to characterize subtypes. Immunogenomic indices were accessed from 
the pan-cancer immune landscape analysed by Thorsson et al. [54]. 
Briefly, TCR diversity scores (Shannon entropy and richness) were 
assessed from corresponding transcriptomics [55]. The cytolytic activity 
score (CYT) was estimated by calculating the geometric mean of the 
transcriptional levels of granzyme A (GZMA) and perforin 1 (PRF1) [56]. 
For clinical features, multivariate Cox regression analysis was performed 
to evaluate whether a subtype is an independent prognostic factor. 

4.10. Construction of the ImmPI web portal 

The ImmPI web portal was built with JS and HTML5 as the front-end, 
Rscript 4.2.1 and PHP 7.4 as the back-end. All data resources in the 
ImmPI web portal are stored as * .gz or * . RData. Data retrieval or 
processing is performed by Rscript in our server. The httpd-service is run 
on Apache 2.4. One can visit our portal freely at http://www.hbpding. 
com/ImmPi. 
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Fig. 7. Immunology subtypes of SCKM patients with distinct patterns. (A) The classification of SCKM patients on the basis of the expression of the 34 key immu-
nology piRNAs from TCGA. The Heatmap shows the expression level of the screened 34 key immunology piRNAs in two clustering groups. The majority of these 
immunology piRNAs exhibited higher expression pattern in the C1 subtype. (B) The Heatmap shows the comparison of the infiltration of multiple immune cells 
estimated by multiple methods based on RNA-sequencing data between two immunology subtypes. Patients in the C1 subtype presented higher infiltration of 
multiple immune cells. (C) The boxplot shows the comparison of the expression of immune checkpoints between two immunology subtypes. The checkpoints 
presented higher expression in the C1 subtype. (D) Kaplan-Meier plot indicating that high immunology subtype was significant correlated with better prognosis, 
including OS, PFI, and DSS. (E-G) The Forest plots show independent predictive value of imunology subtypes for DSS (E), OS (F), and DFI (G), after adjusting 
accustomed clinical characteristics. (H) Heatmaps show comparison of the expression of MHC-related antigen-presenting and costimulatory molecules between two 
immunology subtypes. (I) Boxplots show comparison of the expression of immunostimulatory chemokines, T cell receptors (TCR) diversity, cytolytic activity, and the 
immunogenicity between two immunology subtypes. Wilcox test was used in the comparison between subgroups. * * for P < 0.01, * ** for P < 0.001. 
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Fig. 8. Introduction to the ImmPI Online Platform: (A) From the homepage, visitors can navigate through immunology piRNAs based on cancers, pathways, immune 
cells, or indices. (B) The search interface offers various categories like ‘piRNA-Pathway’, ‘piRNA-Cell’, ‘piRNA-Prognosis’, and ‘piRNA-Cancer’. There are options for 
users to fine-tune their search through advanced filtering features. (C) On the results page, a list of piRNAs with corresponding details is displayed. The detailed view 
offers users insights into enrichment plots, correlation diagrams, KM-curves, and differential expression box plots. (D) The ’Download’ section allows users to access 
all the results generated during our study. For assistance and understanding of the ImmPI platform, users can refer to the ’Help’ section, which offers a compre-
hensive guide. 
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