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Cultivated peanut (Arachis hypogaea L.) forms root nodules to enable a symbiotic
relationship with rhizobia for biological nitrogen fixation. To understand the genetic
factors of peanut nodulation, it is fundamental to genetically map and clone the genes
involved in nodulation. For genetic mapping, high throughput genotyping with a large
number of polymorphic markers is critical. In this study, two sets of sister recombinant
inbred lines (RILs), each containing a nodulating (Nod+) and non-nodulating (Nod-) line,
and their Nod+ parental lines were extensively genotyped. Several next generation
sequencing (NGS) methods including target enrichment sequencing (TES), RNA-
sequencing (RNA-seq), genotyping by sequencing (GBS), and the 48K Axiom Arachis2
SNP array, and various analysis pipelines were applied to identify single nucleotide
polymorphisms (SNP) among the two sets of RILs and their parents. TES revealed
the largest number of homozygous SNPs (15,947) between the original parental lines,
followed by the Axiom Arachis2 SNP array (1,887), RNA-seq (1,633), and GBS (312).
Among the five SNP analysis pipelines applied, the alignment to A/B genome followed
by HAPLOSWEEP revealed the largest number of homozygous SNPs and highest
concordance rate (79%) with the array. A total of 222 and 1,200 homozygous SNPs
were polymorphic between the Nod+ and Nod− sister RILs and between their parents,
respectively. A graphical genotype map of the sister RILs was constructed with these
SNPs, which demonstrated the candidate genomic regions harboring genes controlling
nodulation across the whole genome. Results of this study mainly provide the pros and
cons of NGS and SNP genotyping platforms for genetic mapping in peanut, and also
provide potential genetic resources to narrow down the genomic regions controlling
peanut nodulation, which would lay the foundation for gene cloning and improvement
of nitrogen fixation in peanut.

Keywords: genotyping by sequencing, nodulation, peanut, RNA sequencing, single nucleotide polymorphism,
SNP array, target enrichment sequencing
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INTRODUCTION

Peanut (Arachis hypogaea L.) is one of the most important
oilseed crops grown worldwide. As a legume species, peanut
can form a symbiotic relationship with rhizobia to biologically
fix nitrogen, thus reducing the amount of synthetic nitrogen
fertilizers applied in the growing season. The symbiotic process
and molecular mechanisms have been extensively studied in two
model legume species Lotus japonicas and Medicago truncatula,
where rhizobia enter into the host plant via an intracellular
root hair pathway (Oldroyd, 2013). Many genes have been
characterized in the symbiotic pathway and some rhizobial
small RNA fragments were also reported to play a regulatory
role (Ren et al., 2019). In peanut, rhizobia infect plants via
the intercellular crack entry, which is less studied and not
well understood (Peng et al., 2017a). Non-nodulating (Nod-)
peanut plants, first reported by Gorbet and Burton (1979), are
important materials for dissecting the genetic factors of peanut
nodulation. The Nod- peanut plants were first identified in an
F3 population from a cross between two nodulating (Nod+)
genotypes 487A-4-1-2 and PI 262090 (Gorbet and Burton,
1979). Several gene inheritance models were subsequently
proposed by investigating segregation ratios in populations
segregating for nodulation, including the two-gene (Nigam
et al., 1980), and three-gene (Dutta and Reddy, 1988; Gallo-
Meagher et al., 2001) models. However, no nodulation genes
have been either identified or characterized. A transcriptome
study using root samples from two sets of recombinant inbred
lines (RILs) with Nod+ and Nod− phenotype revealed hundreds
of differentially expressed genes (DEGs) upon infection with
rhizobia (Peng et al., 2017a). In addition, the same materials
were morphologically and genetically characterized to initiate
studies on peanut nodulation genes (Peng et al., 2018). A total
of 188 simple sequence repeat (SSR) markers were used for
genetic characterization, and only a few polymorphic SSRs
were obtained between the RILs due to their high genetic
similarity. The graphical genotype maps of the RILs were
subsequently constructed showing candidate genomic regions
controlling peanut nodulation and a total of 22 chromosome
regions potentially related with nodulation were revealed
between two sets of RILs. However, with a limited number
of markers, the maps had a low resolution, which is hard
for further fine mapping. With the aid of next generation
sequencing (NGS) technologies, the map density could be
further improved.

Peanut is an allotetraploid (2n = 2x = 40; AABB; ∼2.7 Gb)
with two sub-genomes, A and B, derived from A. duranensis
and A. ipaensis, respectively (Bertioli et al., 2016). The
available reference genomes of the two diploid ancestors
have made whole-genome resequencing (WGRS) an applicable
approach for high throughput genotyping, which was used for
genotyping a bi-parental population for high-density genetic map
construction and candidate disease resistance gene identification
in peanut (Agarwal et al., 2018). Each sample was sequenced at
2∼5 × coverage. However, considering the large genome size
and high content of repetitive sequences in the peanut genome,
WGRS may still not be the most cost-effective strategy to detect

genetic variations, as the per sample cost is still high especially if
high coverage is expected (Schwarze et al., 2018). Alternatively,
other NGS enabled genotyping methods with reduced genome
complexity can be cost-efficient for high throughput genotyping,
such as RNA-sequencing (RNA-seq) (Clevenger et al., 2015;
Chopra et al., 2016), genotyping by sequencing (GBS) (Tseng
et al., 2016), and target-enrichment sequencing (TES) (Peng et al.,
2017b), which discover genetic variations from a representative
proportion of the genome. In addition, the Axiom Arachis2 array
with 47,837 SNPs can be a cost-efficient and simple method for
high throughput genotyping (Clevenger et al., 2018), though it is
limited to known single nucleotide polymorphisms (SNPs) only.

As the A and B genomes of peanut are highly similar with
a median identity of 93.11% (Bertioli et al., 2016), it has been
a big challenge to identify allelic SNPs due to the confounding
effect of homoeologous SNPs between the two sub-genomes
(Clevenger et al., 2015). Multiple strategies and tools have
been developed to resolve this issue. One option to reduce
the amount of homoeologous SNPs is to exclusively utilize
uniquely mapped reads for subsequent SNP calling (Zhou et al.,
2014; Peng et al., 2017b), which led to a decreased number
of useful SNPs identified. Alternatively, several other methods
have been developed that could use overall mapped reads for
SNP calling and filter out homoeologous SNPs afterward. For
example, SWEEP (Clevenger and Ozias-Akins, 2015), which
utilizes homoeologous SNPs as an anchor to differentiate allelic
SNPs, had been successfully applied in peanut (Clevenger et al.,
2017; Pandey et al., 2017) with a validation rate of 85% through
Sanger sequencing and above 95% through simulation data
(Clevenger and Ozias-Akins, 2015). In addition, a machine-
learning tool called SNP-ML was also developed to predict
allelic SNPs with a validation rate of 75–98% (Korani et al.,
2019). An improved version of SWEEP, named HAPLOSWEEP,
was developed, which applies a haplotype-based method to
identify allelic polymorphisms between genotypes (Clevenger
et al., 2018), and it had a validation rate of 74% through
genotyping by the Axiom Arachis2 array. With these methods
and tools available for the peanut community, currently no
study has been performed to compare these SNP calling and
filtering methods, or to compare the effects of mapping reads
to the concatenated A + B genome or to A and B genomes
separately (A/B).

In this study, to explore the genetic factors and genetic regions
controlling nodulation in peanut, SNPs were identified between
the two original Nod+ parental lines as well as between two
sets of RILs. Three NGS approaches, including TES, RNA-seq,
and GBS were applied and compared for SNP identification. To
summarize and compare different SNP analysis methods, we have
applied and compared two alignment methods (to A+ B genome
or to A/B genome) and various SNP calling and filtering pipelines
using the sequencing data. In addition, the Axiom Arachis2
array was also used for genotyping and served as a SNP cross-
validation platform for identified SNPs. This is the first study to
compare different SNP calling and filtering pipelines for various
NGS data sources in peanut. Results and suggestions from this
study provide insights into SNP identification and genotyping
in peanut. The polymorphic genomic regions between the sister
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RILs revealed candidate genes controlling peanut nodulation,
which will be beneficial for future genetic mapping studies.

MATERIALS AND METHODS

Plant Materials
Two sets of RILs, E4 (Nod−) & E5 (Nod+), and E6 (Nod+) &
E7 (Nod−), as well as their parental lines, PI 262090 (Nod+)
and UF 487A (Nod+) were included in this study. The pedigree
information of these six lines was introduced previously (Peng
et al., 2017a). In brief, the two sets of RILs can be traced
to two different F6 lines, which were deived from the cross
between PI 262090 and UF 487A. They are also parental lines
for two F2 mapping populations (E4 × E5 and E6 × E7) for
genetic mapping of nodulation genes. The morphological and
genetic characterizations of the RILs were previously described
(Peng et al., 2018). The genomic DNA of the six genotypes was
extracted by using the CTAB method (Rogers and Bendich, 1994).
DNA concentration and quality were checked using agarose
gel and NanoDrop.

Probe Design, Evaluation, and Selection
for Target Enrichment Sequencing
To preferably target peanut genes potentially related to
nodulation, a series of genes were included for probe design.
Firstly, the putative orthologous nodulation-related genes and
differentially expressed genes (DEGs) upon infection of rhizobia
from the previous report (Peng et al., 2017a) were included
(referred to as Class I genes). For these peanut genes, the gene
sequences together with 2 Kb upstream and 1 Kb downstream
sequences were subjected to probe design. For the Class I genes, if
there were more than four peanut genes in the same orthologous
group with the nodulation-related gene in model legumes, only
the top four genes (based on Blast score) were included for
subsequent probe selection. Secondly, for the remaining genes
that were annotated in the peanut diploid ancestors’ genomes
(referred to as Class II genes), only the gene coding sequences
were utilized for probe design. The probes were 120 bp long and
had no overlap with each other. A total of 3,982 Class I genes
were obtained from the previous transcriptome study (Peng et al.,
2017a). The sequences of those genes together with the remaining
74,753 Class II gene models in the diploid ancestors’ genomes of
peanut were submitted for probe design.

A probe could capture or hybridize with the DNA fragments
if they share sequence similarity with each other. The
genomic regions sharing sequence similarities with probes
were considered as probe target regions. However, the capture
efficiency would be different for target regions with different
similarities. Thus, the number of target regions was investigated
for the probes under different alignment identity cutoffs
when they were mapped to the genome. The uniqueness and
distribution of the designed probes were further evaluated.

To evaluate uniqueness of the designed probes in the genome,
the probe sequences were mapped back to the diploid genomes
of peanut (A + B) using Blat (Kent, 2002). A hit was defined
under cutoff: e-value ≤ 1e-05; alignment identity = alignment

length × percentage of identity ≥96 (120 bp × 80% = 96 bp).
For easier downstream data analysis, primarily single-hit probes
were selected for synthesis. A unique set of single-hit probes was
obtained by using CD-HIT-EST (-c 0.8 -aL 0.8 -AL 24 -aS 0.8 -AS
24 -n 5 -T 0 -r 1) (Fu et al., 2012). All single-hit probes covering
Class I genes and resistance genes annotated in the genome
were selected. The remaining single-hit probes were selected to
ensure an even distribution throughout the genome. To achieve
this, the genome sequences were chopped into fragments using
EMBOSS (Rice et al., 2000) and one probe was selected from each
fragment, excluding the fragments already covered by previously
selected probes.

The synthesized probes were used to capture the DNA
fragments of the six genotypes. The captured DNA fragments
were sequenced using the Illumina HiSeq 3000 platform
(100 bp paired-end reads). The probe design, synthesis, library
preparation, target enrichment, and sequencing were performed
by Rapid Genomics LLC (FL, United States).

Target Capture Efficiency and Coverage
of Probes
To evaluate the probe target regions, the sequences of designed
probes were aligned to the A + B genomes using Blat following
the same criteria as above. The read coverage for probe target
regions was assessed. In addition, the relationship between read
coverage and target regions’ sequence similarities with probes
was investigated, which could indicate the influence of alignment
identity of probes on capture efficiency. To achieve this, different
alignment identity cutoffs were applied to define a hit, including
96, 90, 84, 78, 72, 66, and 60, which correspond to 80, 75, 70, 65,
60, 55, and 50% match of probe sequences to the genome. The
coordinates of those hits in the genome were extended 100 bp
from both directions (in BED file), which subsequently served as
target regions. Bedtools v2.24.0 (intersect) was used for assessing
read coverage for target regions. The alignment files for both
overall and uniquely mapped reads generated from BWA-mem
(Li and Durbin, 2009), as described in section below, were used.
Thus, in total seven BED files of target regions under different
alignment identity cutoffs, were included for calculating on-target
rate and coverage of reads.

RNA-seq and GBS Data Sets
The RNA-seq data of these six genotypes were retrieved from
the previous root transcriptome study (Peng et al., 2017a),
which were deposited at the Sequence Read Archives (SRA)
of the National Center for Biotechnology Information (NCBI,
accession number SRP093688, BioProject PRJNA354154, and
BioSample SAMN06041692-SAMN06041727). Each genotype
had six cDNA libraries, for a total of 36 cDNA libraries for the six
samples. In total 403,245,464 read pairs (150 bp) were included
for analysis. The raw reads were trimmed with Trimmomatic
(Bolger et al., 2014).

The GBS data were obtained for each genotype previously
as described by Peng et al. (2017b). The restriction enzyme
ApeKI was used for removing repetitive regions to reduce genome
complexity. A total of 17,408,637 single end reads (100 bp) were
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obtained (data deposited in the Sequence Read Archives at NCBI
under accession number of SRP154150). Raw reads from GBS
data were trimmed to 64 bp using Stacks (Catchen et al., 2013).

Read Alignment, SNP Calling and
Filtering
The alignment was performed by two general methods (Table 1).
In the First method, trimmed reads were mapped to A or
B genome (A/B) separately, and all mapped reads were used
for SNP calling (M1, M4; Table 1). In this method, a read
coming from the B genome could be erroneously aligned to the
A genome, since A and B genomes are quite similar (Bertioli
et al., 2016). SNP calling was performed using Samtools 1.3.1
(Li et al., 2009), which was built into the SWEEP pipeline.
The homoeologous SNPs generated were further utilized as an
anchor for subsequent SNP filtering by using SWEEP and a
machine-learning tool SNP-ML (M1). In addition, a haplotype-
based genotyping tool HAPLOSWEEP (M4) was also used. So
M1 was defined as alignment to A/B genome, using overall
aligned reads, and SNP filtering based on SWEEP + SNP-ML
and depth. M4 was defined as alignment to A/B genome, using
overall aligned reads, and SNP filtering using HAPLOSWEEP
(Table 1). In the Second method, trimmed reads were mapped
to the in silico concatenated (A + B) tetraploid genome
(concatenated from diploid genomes), and only uniquely mapped
reads were used for subsequent analysis (M2, M3, M5; Table 1).
In this method, only reads having a unique location in the
tetraploid genome (according to the aligner) were used. SNP
calling was performed using Samtools (Li et al., 2009). SNP
filtering was performed by using conventional filtering based
on read depth only (M2), SWEEP and SNP-ML (M3), or
HAPLOSWEEP (M5). Thus, M2 was defined as alignment to
A + B genome, using uniquely mapped reads, and SNP filtering
based on depth. M3 was defined as alignment to A + B
genome, using uniquely mapped reads, and SNP filtering based
on SWEEP+ SNP−ML and depth. M5 was defined as alignment
to A + B genome, using uniquely mapped reads, and SNP
filtering using HAPLOSWEEP (Table 1).

When analyzing TES and GBS data, Bowtie2/2.3.4.1 (default –
sensitive-local) was used to align reads to A and B genomes
separately (for the First method) followed by SNP filtering, which
was extensively applied previously in peanut (Clevenger et al.,
2017, 2018; Pandey et al., 2017). Due to a low unique mapping
rate from Bowtie2, BWA-mem was used for read alignment (for
the Second method), which was applied in our previous TES
report (Peng et al., 2017b). Uniquely mapped reads from BWA-
mem were extracted by filtering off reads with a mapping quality
of zero and “XA:Z” tag. When analyzing RNA-seq data, a split
aligner Tophat2.1.1 (Kim et al., 2013) was used for both the
First method and the Second method, with one mismatch in
the 20 bp seed and GFF files supplied (Bertioli et al., 2016).
Uniquely mapped reads were extracted by using the tag “NH:i:1”
and a mapping quality of “50.” “–ultimate” option was used in
SWEEP with default settings for other options. For SNP-ML, “-
iM peanut_RNA” was used for TES and RNA-seq data, while
“-iM peanut_DNA” was used for GBS data. For HAPLOSWEEP,

“HAPLOSWEEP_LONGRANGE” was used for TES and RNA-
seq data (paired-end reads), and “HAPLOSWEEP” was used for
GBS data (single-end reads).

Finally, SNPs called from methods M1, M2, and M3 were
filtered based on read depth. A homozygous genotype was called
if there were at least four reads supporting either the reference
or alternate allele. A heterozygous genotype was called if there
were at least two reads supporting the reference and alternate
allele, respectively.

Genotyping With the 48K Axiom Arachis2
Array and Validating SNP Calling Results
From NGS Pipelines
The DNA samples of the six parental genotypes were submitted
to Affymetrix for genotyping using the recently developed 48K
Axiom Arachis2 array. The genotype calling was performed
as previously described (Clevenger et al., 2018). All the SNPs
(between PI 262090 and UF 487A) identified from different
pipelines used were compared with genotyping results from
the SNP array to identify the overlapped or shared SNPs. The
polymorphic SNPs (between PI 262090 and UF 487A) identified
from those pipelines were considered validated or concordant
with the array if they were also polymorphic on the array and had
the same genotypes with those called from the NGS methods. The
validation or concordance rates for the five SNP analysis pipelines
(M1–M5) were subsequently calculated.

RESULTS

Probe Design and Selection for Target
Enrichment Sequencing
A total of 199,673 probes were designed for the 3,982 Class
I genes and 1,678,459 probes were designed for the 74,753
Class II gene models. After mapping the probe sequences to
the genomes (A + B) by Blat, a total of 230,730 probes
had a single unique hit (alignment identity ≥96) to the
genomes. To avoid any redundancy due to genome sequence
duplications, CD-HIT-EST was applied and a total of 219,850
single-hit probes remained. Among the single-hit probes, a total
of 20,212 probes corresponding to 2,072 Class I genes, and
9,582 probes covering 907 resistance genes were first selected
(Supplementary Table S1). In addition, 824 probes with two,
three, or four hits to the genomes were also selected since they
covered the genes having no single-hit probes. This led to a
total of 30,081 probes being selected (Supplementary Table S1)
covering the Class I and resistance genes.

To select the remaining probes covering Class II gene
models, the genome sequences were chopped into 44.3 Kb
fragments using EMBOSS and a total of 56,296 fragments
were obtained. By excluding the 2,783 fragments that were
already covered by the previously selected probes, a total
of 24,922 fragments were covered by the remaining single-
hit probes. Thus, three fragments were randomly excluded
and one probe was selected from each of the remaining
24,919 fragments so that all the selected probes were basically
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TABLE 1 | Five different alignment and SNP filtering pipelines.

Method ID Genome reference Mapped reads used SNP filtering

SWEEP and SNP-ML HAPLOSWEEP Depth-based

M1 A/B Overall Yes No Yes

M2 A + B Unique No No Yes

M3 A + B Unique Yes No Yes

M4 A/B Overall No Yes No

M5 A + B Unique No Yes No

“A/B” indicates alignment to A and B genomes separately. “A + B” indicates alignment to a concatenated A and B genome.

evenly distributed throughout the genome. Finally, a total of
55,000 probes (Supplementary Table S1) were selected for the
TES experiments.

Summary of Sequence Statistics,
Trimming and Alignment
On average, there were 14,211,850 paired-end reads (100 bp)
per sample obtained from TES, 67,207,577 paired-end reads
(150 bp) per sample from RNA-seq, and 2,901,440 single-end
reads (100 bp) per sample from GBS (Supplementary Table S2).
After trimming, 96.89% of the reads remained for TES, 88.29%
for RNA-seq, and all reads remained for GBS (reads trimmed
to 64 bp). When the trimmed reads were aligned to A/B (A
and B genomes separately) genome, on average, the overall
mapping rate was more than 96% to either A or B genome
for TES, more than 53% for RNA-seq, and more than 82% for
GBS. When aligning to the concatenated A + B genome, the
average rate of uniquely mapped reads was 51.6% for TES, 50.26%
for RNA-seq, and 19.31% for GBS (Supplementary Table S2).
The low unique mapping rate for GBS was consistent with its
short read (64 bp) being used for alignment, in contrast with
the 100 bp read length for TES and 150 bp read length for
RNA-seq. Certain level of repetitive sequences may exist in the
GBS reads, which would also cause low unique mapping rate.
Since A and B genomes were quite similar, shorter sequences
were less likely to find a unique location when aligned to
the A+ B genome.

Evaluations of Target Capture Efficiency
and Coverage
After mapping probe sequences to the genomes, under the
alignment identity cutoff of ≥96, there were 50,580 and 48,275
(91.96 and 87.77% of 55,002) probe target regions covered
by reads according to overall and uniquely mapped reads,
respectively (Figure 1A). By decreasing the alignment identity
cutoff, more target regions were available and were covered
by reads. Specifically, with an alignment identity between 60
and ∼66, there were still 149,885 and 132,787 (79.57 and
70.49% of 188,369) target regions covered by overall aligned
reads and uniquely aligned reads, respectively. The average
on-target rates of mapped reads to target regions with an
alignment identity ≥96 were 12.82% for overall mapped reads
and 16.28% for uniquely mapped reads (Figure 1B). The
remaining reads were mapped to target regions with a lower

alignment identity. If considering all target regions with an
alignment identity ≥60, the average on-target rates were 59.81
and 57.69% (Figure 1B), respectively. Thus, probes could still
capture DNA fragments even with 50% sequence similarity.
However, target regions with higher sequence similarities to
probes had higher read coverage (Figure 1C). Under the
alignment identity cutoff of ≥96, the target regions were
covered on average 29.86× and 22.05× considering overall
and uniquely mapped reads, respectively. It was noteworthy
that under cutoff of ≥90, corresponding to ≥75% sequence
similarity, the average read coverage was 33.68× and 20.85× for
overall and uniquely mapped reads, respectively (Figure 1C).
The capture efficiency for cutoff 90 was comparable to that
of cutoff 96. However, as the alignment identity of the probes
was reduced, the average coverage of the reads captured
by the probe was reduced as well. Thus, a probe could
capture DNA fragments with a high and optimal efficiency if
the probe sequence had ≥75% sequence similarity with the
fragment sequences.

SNP Calling for NGS Data
The alignment, SNP calling and filtering for three different NGS
methods, TES, RNA-seq, and GBS data were performed using five
different pipelines (Table 1). As there were more polymorphisms
between PI 262090 and UF 487A, which were the two original
parental lines of E4, E5, E6, and E7, the SNPs identified or
validated between these two genotypes were summarized and
compared among the five pipelines for the three NGS approaches
(Table 2). Since these six parental genotypes were not included
into the samples for developing the Axiom Arachis2 array, the
randomly overlapped SNPs between the ones identified from
the five pipelines and those placed on the array were used for
SNP calling cross-validation. For TES data, the largest number
of SNPs (22,584) was from M2, followed by M4 (10,157), M1
(7,540), M5 (2,694), and M3 (1,283) (Table 2). However, the
largest number of homozygous or genome-specific SNPs were
identified from M4 (10,157), more than twice the number from
M2 (4,438). Similarly, for RNA-seq data, the largest number
of SNPs was from M2 (14,684), followed by M1 (1,199), M4
(901), M3 (297), and M5 (288) (Table 2). Most homozygous
SNPs were also identified from M4 (901), which was higher than
M2 (787). For GBS data, 278 SNPs were identified from M4,
followed by M2 (171), M1 (161), M5 (15), and M3 (9). Most
homozygous SNPs were called from M4 (278) and M2 (37). For
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FIGURE 1 | (A) Probe target regions, (B) on-target rate of mapped reads, and (C) reads coverage for target enrichment sequencing data.
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TABLE 2 | Summary of SNPs between PI 262090 and UF 487A from five different methods using target enrichment sequencing RNA sequencing, and genotyping by
sequencing data and concordance rate with array-overlapped SNPs.

Data source SNP analysis method No. of array-overlapped/total SNPs No. of concordant SNPs with the array

Total Heterozygous Homozygous Total Heterozygous Homozygous

TES M1 88/7,540 86/7,316 2/224 17 (19.32%) 17 (19.77%) 0

M2 92/22,584 21/18,146 71/4,438 57 (61.96%) 9 (42.86%) 48 (67.61%)

M3 13/1,283 12/2,938 1/132 5 (38.46%) 4 1

M4 44/10,157 – 44/10,157 36 (81.82%) – 36 (81.82%)

M5 30/2,694 – 30/2,694 23 (76.67%) – 23 (76.67%)

RNA-seq M1 30/1,199 26/1,175 4/24 8 (26.67%) 4 (15.38%) 4

M2 108/14,684 82/13,897 26/787 33 (30.56%) 10 (12.20%) 23 (88.46%)

M3 13/297 11/285 2/18 3 (23.08%) 2 1

M4 17/901 – 17/901 14 (82.35%) – 14 (82.35%)

M5 9/288 – 9/288 6 (66.67%) – 6 (66.67%)

GBS M1 1/161 0/159 1/2 − – –

M2 1/171 0/134 1/37 − – –

M3 0/9 0/9 0/0 − – –

M4 1/278 – 1/278 − – –

M5 0/15 – 0/15 − – –

TES indicates target enrichment sequencing; RNA-seq indicates RNA sequencing; GBS indicates genotyping by sequencing.

all three data sources, M4 and M2 identified the largest amount
of homozygous SNPs.

Genotyping With the Axiom Arachis2
Array and the Concordance With NGS
Methods
Genotyping using the Axiom Arachis2 array revealed 23,060
SNP loci with high quality genotypes called for PI 262090
and UF 487A (Supplementary Table S3). Of the 23,060 SNP
loci, 3,531 SNPs were polymorphic between PI 262090 and UF
487A, including 2,056 homozygous SNPs and 1,475 heterozygous
SNPs (Supplementary Table S3). After comparison, the SNPs
identified using HAPLOSWEEP, either using A/B or A + B as
the reference, always had a higher validation rate than other SNP
analysis methods based on the aforementioned overlapped SNPs
(81.82% for M4, 76.67% for M5) for TES data (Table 2). The
validation rate was ∼79% considering all data points. M2 had a
lower concordance rate than M4 and M5, but the concordance
rate for homozygous SNPs was 67.61%. All other pipelines either
had too few SNPs overlapped with the array or a low concordance
rate. Similarly, for the RNA-seq data, M2, M4, and M5 revealed a
high concordance rate with the SNP array for homozygous SNPs
(Table 2). For GBS data, there were too few SNPs from the five
pipelines overlapping with those from the SNP array, therefore,
they were not included for comparison.

The non-validated SNPs among the overlapped or shared SNP
loci were specifically investigated. For M1, most of the non-
validated SNPs proved to be polymorphic on the array. However,
the genotype calls from sequence data did not match those from
the array. Among the 88 overlapped SNPs, 57 (64.77%) of them
were called as heterozygous SNPs from sequence data, but as
homozygous SNPs from the array. This result showed that M1
was able to identify true polymorphic loci but may not assign a

correct genotype due to the alignment of homoeologous reads
while the sub-genome specific haplotype cannot be differentiated.
In contrast, for the HAPLOSWEEP-based approaches M4 and
M5, most of the genotype calls from sequence data matched those
from the array (Table 2). For the remaining non-validated SNPs
from M4 and M5, almost all of them proved to be polymorphic
on the array, however, with either PI 262090 or UF 487A showed
a heterozygous genotype, which most likely were homoeologous
SNPs. Those SNPs on the array could be used as dominant
markers. Similarly for M2, the most common non-validated
SNP type (22 out of the 92 overlapped SNPs) was classified
as a homozygous SNP from sequence data but was called as a
heterozygous SNP from the array.

Comparison of Different Platforms
The overall called and cross-validated SNPs among the five
pipelines from TES and RNA-seq were further compared
(Figure 2). For both TES and RNA-seq data, a small proportion
(<50%) of called SNPs were shared between M1 and M2, M2 and
M4, or between M2 and M5 (Figures 2A,B). When comparing
the validated SNPs, for TES data, 17 (73.91%; out of 23) of the
SNPs from M5 (using A + B as the reference) were already
covered by M4 (using A/B as the reference) (Figure 2C), both of
which applied HAPLOSWEEP. However, only a small proportion
(14 out of 57, 24.56%) of the SNPs from M2 overlapped with M4,
although both revealed a high validation rate for homozygous
SNPs (Figure 2C). This was also observed for RNA-seq data, in
which only 4 (12.12%) out of 33 SNPs from M2 were covered by
M4 (Figure 2D). These results showed that M2 and M4/M5 were
able to identify different portions of true homozygous SNPs out
of the existing true polymorphisms.

The performance of SNP calling and features of the three NGS
methods as well as the Axiom Arachis2 SNP array were compared
(Table 3). TES revealed the highest amount of homozygous SNPs
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FIGURE 2 | Comparison of identified and concordant SNPs among the five SNP analysis pipelines for target enrichment sequencing and RNA-sequencing data. For
panels (A,B), the number outside shows the total number of SNPs identified from each method. For panels (C,D), the number before “/” shows the number of
validated SNPs, the number after “/” shows the number of SNPs from each method that are overlapped with the Axiom Arachis2 SNP array.

(15,947), followed by the Axiom Arachis2 array (1,887), RNA-
seq (1,633), and GBS (312) (Table 3). The per sample cost for
TES was high compared to other methods, but its per sample
per SNP cost was lower than RNA-seq and GBS. However, TES
required pre-knowledge of DNA sequences for probe design.
The lowest per sample per SNP cost came from the Axiom
Arachis2 array, which also required the least amount of analysis
efforts. All three NGS methods required bioinformatics analysis
of sequencing data.

Construction of Graphical Maps
Containing Polymorphic Regions
Between E4 & E5 and E6 & E7
Among the homozygous SNPs between PI 262090 and UF
487A from the Axiom Arachis2 array, 1,859 (90.68%; out of

2,050 SNPs with high-quality genotypes) were monomorphic
between E4 and E5; 1,519 (74.94%; out of 2,027 SNPs with
high-quality genotypes) were monomorphic between E6 and
E7. By combining the filtered SNPs identified from the three
NGS methods as well as those from the Axiom Arachis2
array, a total of 19,607 non-redundant homozygous SNPs
between PI 262090 and UF 487A were obtained. Among those
homozygous SNPs, a total of 222 and 1,200 were further
obtained between E4 & E5 and E6 & E7, respectively, after
filtering. Thus, they were placed on the graphical genotype
maps (Figures 3, 4). A total of 75 polymorphic genome regions
were obtained for E4 & E5, and 512 polymorphic genome
regions were obtained for E6 & E7, which mostly covered
and refined those genomic regions revealed by SSR markers
(Peng et al., 2018) and potentially harbor genes controlling
peanut nodulation. Within the 75 candidate regions of E4 &
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TABLE 3 | Comparison of target enrichment sequencing, RNA sequencing,
genotyping by sequencing, and the Axiom Arachis2 array.

Items TES* RNA-seq GBS Axiom Arachis2
array

Pre-knowledge of DNA
sequences

Yes No No Yes

Efforts of bioinformatics
analysis

High High High Low

Price/sample ∼$450 ∼$260 ∼$35 ∼$28

No. of homozygous
SNPs identified

15,947 1,633 312 1,887

Per SNP per sample cost ∼$0.0282 ∼$0.1592 ∼$0.1122 ∼$0.0148

TES indicates target enrichment sequencing; RNA-seq indicates RNA sequencing;
GBS indicates genotyping by sequencing. *For 55K probes, including probe
design and synthesis.

E5, there were a total of 67 DEGs and 26 putative orthologous
nodulation-related genes, among which CLE13, ENOD16, NFR5,
and NSP2 were also DEGs (Supplementary Table S4). Within
the 512 candidate regions of E6 & E7, there were a total
of 217 DEGs and 39 putative orthologous nodulation-related
genes, among which CLE13, ENOD16, and RIP1 were also
DEGs (Supplementary Table S4). Those genes could serve as
candidate genes controlling peanut nodulation for further genetic
and fine mapping.

DISCUSSION

In this study, we mainly focused on identifying the polymorphic
regions between two pairs of sister RILs, E4 & E5, as well
as E6 & E7, which are near-isogenic lines. For mapping or
fine-mapping the genes controlling nodulation, polymorphic
markers differentiating the near-isogenic sister lines are critical
and are challenging to develop due to (1) allopolyploid nature
of the cultivated peanut and (2) near-isogenic nature of
the two pairs of sister lines. Therefore, in this study, we
implemented multiple NGS-enabled SNP genotyping methods
and SNP calling pipelines to identify reliable and sufficient
number of SNP markers.

Single nucleotide polymorphisms have been extensively used
for genotyping due to several favorable features such as
abundance and high throughput. With the advancement of
research in peanut genomics and genetics, especially the advent
of reference genomes (Bertioli et al., 2016) and SNP arrays
(Clevenger et al., 2017, 2018; Pandey et al., 2017), more choices
of SNP genotyping became available for the peanut research
community. For genetic mapping studies, WGRS approach can
theoretically provide the highest resolution of marker densities.
However, for crop species like peanut with a large genome
size (∼2.7 Gb), it would still be costly, to have enough
sequencing data to meet the requirement of coverage and
depth for accurate SNP identification. Alternatively, numerous
approaches, such as TES, RNA-seq, and GBS, which reduce
the genome complexity by sequencing a partial genome, may
be more cost-effective while still able to provide a decent
number of markers. In addition, the Axiom Arachis2 array

(Clevenger et al., 2018) is another choice, which involves the
least computational analysis efforts. This study utilized six peanut
samples to compare SNP identification using sequencing data
from different high throughput genotyping methods, TES, RNA-
seq, GBS, as well as SNP array. This comparison between
the different high throughput genotyping platforms provided
an insight into the performance and the number of useful
markers that can be generated from each platform. In the
past few years, SNP marker development in allotetraploid
peanut with highly identical sub-genomes used to be slow
due to the presence of homoeologous SNPs (Clevenger et al.,
2017). However, with the availability of tools such as SWEEP
and HAPLOSWEEP, great progress has been made, which
will greatly benefit the whole peanut research community. In
addition to these tools, multiple analysis pipelines have also
been applied for SNP identification. With so many pipeline
options available, a comparison of them was needed to
provide a better idea of how they differ from each other and
which one outperformed the rest. Current research intended
to answer these questions by applying different alignment,
SNP calling and filtering methods with different sequencing
approaches for SNP identification. Furthermore, the resulting
SNPs revealed the polymorphic genomic regions between the
sister RILs, which can narrow down the candidate regions
harboring genes controlling peanut nodulation, and likely
facilitate future genetic mapping and fine mapping of nodulation
genes in peanut.

Target Enrichment Sequencing
Unlike RNA-seq and GBS, which focus on genic regions or
restriction site-surrounding regions, TES was able to focus on
genes or genomic regions of interest. In this approach, the
DNA fragments captured by custom-designed probes based on
sequence homology were sequenced. Researchers can preferably
design probes covering genes of interest. TES was firstly
applied in peanut by using probes designed from expressed
sequence tags as the sequence source for probe design (Peng
et al., 2017b). In the current study, the reference genomes
of the two diploid ancestors of cultivated peanut were used
for probe design. In order to target symbiosis related and
disease resistance related genes in peanut, a total of 20,212
probes were designed to cover all the putative nodulation-
related genes and 9,582 probes to cover resistance genes. The
remaining ∼24K probes were selected for an even distribution
throughout the genome. Therefore, the overall density of the
probes was ∼49 Kb/probe given the peanut genome size
of 2.7 Gb. Out of the 78,574 peanut gene models, 26,653
(33.9%) of them were tagged by this probe set. This set
of TES probes would be useful for not only mapping the
genes related to nodulation or disease resistance, but also for
genome association analysis of any traits considering the probe
density and coverage.

During the probe selection process, single-hit probes were
preferably selected, which led to the average unique mapping
rate of the five samples to be 51.60%, much higher than our
previous report (22.55%; Peng et al., 2017b). In addition, 91.96%
of the target regions of current probe set was covered by reads
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FIGURE 3 | Graphical map showing polymorphic genomic regions between E4 and E5. Each line represents a homozygous SNP. Each circle represents a
candidate gene.

with an average depth of 29.86×, which was also much higher
than our previous report (average depth <20 × considering
90% of target regions; Peng et al., 2017b). Thus, utilization of
the unique hit of probes in the genome is critical to improve
the rate of uniquely mapped reads and depth of sequences
captured by the probe set. Based on our data, probes can be
very efficient in capturing DNA fragments when they have
at least 75% sequence similarity with the target fragments
(Figure 1C). Therefore, when applying TES, we should be
aware that off-target capturing would be common specifically

for the species with closely related genomes or duplicated
regions in the genome.

Comparison of Different NGS
Approaches and the Axiom Arachis2
Array
The three NGS data sources and the Axiom Arachis2 array
identified different numbers of SNPs between PI 262090 and UF
487A. Considering only the homozygous SNPs, TES identified
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FIGURE 4 | Graphical map showing polymorphic genomic regions between E6 and E7. Each line represents a homozygous SNP. Each circle represents a
candidate gene.

the largest number of SNPs, followed by the SNP array, RNA-
seq, and GBS (Table 3). This could be explained from several
perspectives. Firstly, as TES is focused on genomic sequences,
more polymorphisms are expected than that from RNA-seq
representing the conserved transcribed gene regions. The low
number of SNPs from GBS could be explained by the low

coverage of sequencing data obtained. As there were only 2,056
homozygous SNPs between PI 262090 and UF 487A obtained
from the SNP array, and even fewer SNPs for E4 & E5 and E6
& E7, the Axiom Arachis2 SNP array may not be suitable for
future genotyping of the mapping populations with E4 & E5
and E6 & E7 as the parental lines. TES can be considered as a
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choice due to the large number of polymorphisms discovered.
Moreover, the sample per SNP cost of TES is still low compared
to the other NGS methods and comparable to that of the Axiom
Arachis2 SNP array.

Comparison of Different SNP Analysis
Pipelines
From the results of comparisons between the five different
pipelines for peanut SNP calling, several points can be drawn.
(1) The concordance rate of heterozygous SNPs was always
low between TES and RNA-seq. This could be caused by false
positive SNPs derived from the misalignment of reads from
homoeologous regions on the genome. (2) The alignment to
A/B genome followed by SWEEP and SNP-ML filtering (M1)
revealed a considerably smaller proportion of homozygous SNPs
than the alignment to A + B genome followed by traditional
filtering (M2), and HAPLOSWEEP approaches M4, and M5. As
SWEEP was not able to differentiate haplotypes, by using A/B
genome as the reference, a lot of true homozygous SNPs could
be called as heterozygous SNPs due to misalignment. (3) M2
revealed a decent concordance rate (67.61%) of homozygous
SNPs and could identify new and true polymorphisms that
were not found by the HAPLOSWEEP approach. (4) When
using HAPLOSWEEP, the alignment to A/B genome (M4)
revealed more homozygous SNPs than alignment to the A + B
genome (M5), however, M5 could also identify new and true
polymorphisms that were not covered by M4. In summary, none
of the pipelines above could cover all possible polymorphisms
between the genotypes. However, the best option among the
five analysis pipelines was to align the reads to A/B genome
followed by HAPLOSWEEP, which can yield the highest amount
of homozygous SNPs with a high concordance rate with the
SNP array, similar to the rate reported in the recent study
(74%) (Clevenger et al., 2018). Alternatively, a better choice
would be applying multiple pipelines to get non-redundant SNPs.
As an example, methods M2 and M4 may complement each
other and would yield more homozygous SNPs if both were
applied for analysis.

In this study, we used the concatenated A + B genomes
from the diploid wild peanut species (Bertioli et al., 2016) as
the reference for SNP calling instead of using the tetraploid
genomes recently published (Bertioli et al., 2019; Zhuang et al.,
2019). One of our main goals in this study was to compare
the SNP calling capability using different pipelines and NGS
platforms to discover maximum numbers of SNPs in cultivated
peanut. This comparison would be reliable as long as the same
reference was used for comparison of different platforms or
pipelines and the SNPs between the reference and all reads
were filtered out. The diploid and tetraploid genomes were
highly similar (Bertioli et al., 2019; Zhuang et al., 2019), thus
using either genomes as reference would not change the major
findings in this study. Particularly, the Arachis2 SNP array, the
tool used for cross-validation of the SNP callings was designed
based on the wild diploid genome and the probes designed for
TES were also referred to the diploid genomes. Therefore, in
this study, a concatenated A + B genome from wild diploid

peanut was used for alignment to achieve a good consistency
in comparison.

Candidate Genomic Regions Controlling
Peanut Nodulation
The two sets of sister RILs used in this study were selected at the
F6 generation, derived from the cross between PI 262090 and UF
487A (Peng et al., 2017a). The Nod+ and Nod− RILs, specifically
for E4 and E5, were highly identical. Taking advantage of the
nearly isogenic nature between the two pairs of sister RILs with
one nodulating and the other non-nodualating, we speculated
that polymorphic regions between the sister RILs should harbor
any potential candidate genes controlling nodulation. In this
study, to identify highly confident homozygous SNPs between
the RILs, only the homozygous SNPs polymorphic between PI
262090 and UF 487A as well as between the RILs were included
as highly confident SNPs and were placed on the graphical maps.
The graphical genotype of these two pairs of RILs allowed us to
visualize the polymorphic genome regions harboring candidate
genes. The polymorphic regions on the graphical genotype
maps could provide guidance for future genetic mapping of
nodulation genes in peanut, although these regions were quite
big containing a large number of genes since no mapping and
fine mapping strategies were applied yet in the current study. We
specifically listed out the DEGs involved in nodulation and any
orthologs of nodulation related genes as candidates, subsequently
obtained a relatively large number of candidates in the genome.
These large number of candidate genes was coming from the
preliminary comparisons between the two pairs of near-isogenic
RILs. Further mapping and fine-mapping strategies should be
applied to narrow down and pinpoint the causative genes for
non-nodulations in our non-nodulating lines, which will be
conducted in a different study.

CONCLUSION

Based on the findings from this study, several suggestions were
made for future SNP identification studies in peanut. SNPs
included in the Axiom Arachis2 array were mostly discovered
from 21 peanut genotypes, which may not be representative
enough to cover all the genome polymorphisms. Axiom Arachis2
array would be a good choice for genotyping populations
developed from or related to the genotypes used for the initial
SNP discovery. However, if the populations to be genotyped are
not related with the initial genotypes for the development of
the Axiom Arachis2 array, then other NGS approaches should
be considered. If genes or genomic regions of interest are to
be focused, TES should be preferably considered, since the
potential candidate regions can be specifically included for
SNP identification. Among the SNP calling pipelines to be
used for NGS data analysis, the best performing pipeline is
to align the reads to A/B genome followed by SNP filtering
using HAPLOSWEEP. To identify a larger number of true
homozygous SNPs, other pipelines, such as the alignment to
A + B genome with traditional SNP filtering, can be combined
with HAPLOSWEEP.
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