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Abstract: Oxaliplatin (OXAL) is regarded as a platinum-based anti-neoplastic agent. However, its
perturbations on membrane ionic currents in neurons and neuroendocrine or endocrine cells are
largely unclear, though peripheral neuropathy has been noted during its long-term administration.
In this study, we investigated how the presence of OXAL and other related compounds can interact
with two types of inward currents; namely, hyperpolarization-activated cation current (Ih) and
membrane electroporation-induced current (IMEP). OXAL increased the amplitude or activation rate
constant of Ih in a concentration-dependent manner with effective EC50 or KD values of 3.2 or 6.4
µM, respectively, in pituitary GH3 cells. The stimulation by this agent of Ih could be attenuated
by subsequent addition of ivabradine, protopine, or dexmedetomidine. Cell exposure to OXAL (3
µM) resulted in an approximately 11 mV rightward shift in Ih activation along the voltage axis with
minimal changes in the gating charge of the curve. The exposure to OXAL also effected an elevation
in area of the voltage-dependent hysteresis elicited by long-lasting triangular ramp. Additionally,
its application resulted in an increase in the amplitude of IMEP elicited by large hyperpolarization
in GH3 cells with an EC50 value of 1.3 µM. However, in the continued presence of OXAL, further
addition of ivabradine, protopine, or dexmedetomidine always resulted in failure to attenuate the
OXAL-induced increase of IMEP amplitude effectively. Averaged current-voltage relation of membrane
electroporation-induced current (IMEP) was altered in the presence of OXAL. In pituitary R1220 cells,
OXAL-stimulated Ih remained effective. In Rolf B1.T olfactory sensory neurons, this agent was also
observed to increase IMEP in a concentration-dependent manner. In light of the findings from this
study, OXAL-mediated increases of Ih and IMEP may coincide and then synergistically act to increase
the amplitude of inward currents, raising the membrane excitability of electrically excitable cells, if
similar in vivo findings occur.
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1. Introduction

Oxaliplatin (OXAL, Eloxatin®) belongs to a family of platinum-based chemotherapeutic
compounds. In combination with 5-fluorouracil, this drug has been ever-increasingly used in
the treatment of advanced colorectal or gastric cancer [1–3]. Despite the good safety profile, its use
has been well-established to confer susceptibility to peripheral neuropathy, affecting sensory and
motor nerve fibers, explaining its unsuitability for long-term treatment [1,4–10]. However, the ionic
mechanism of OXAL-induced actions through which it effects peripheral neuropathy still remains
largely unanswered.

There is growing evidence to show that the neurotoxicity of OXAL is closely connected to its
modulations on functional activities of different ionic channels present in the surface membrane
of electrically excitable cells [7,11–14]. For example, OXAL has been demonstrated to suppress
different types of voltage-gated K+ or Na+ currents in various preparations, such as myelinated axons,
sciatic-nerve preparations, and motoneuron-like cells [11,13–16]. Of interest, this agent was also
recently reported to activate Ih in isolated dorsal root ganglion neurons, and this action is thought to
be implicated in its modifications of pain sensation [17–20].

Hyperpolarization-activated cation current (Ih) is a key determinant of repetitive electrical activity
in heart cells, and in a variety of neurons, neuroendocrine, and endocrine cells [21–27]. This type
of ionic current can conduct Na+ and K+ ions, and the current activation of its own accord can act
to depolarize membrane potential, thereby adequately reaching the threshold required for action
potential generation [22,28]. It is regarded to be carried by channels of the hyperpolarization-activated
cyclic nucleotide-gated (HCN) gene family, named HCN1, HCN2, HCN3, and HCN4 [28]. Generation
of HCN1-, HCN2-, and HCN4-deficient mice has highlighted the important role of these channels in
regulation of pacemaker activity [26,29]. Of interest, previous reports have shown the ability of either
MEL55A, an inhibitor of Ih, or dexmedetomidine to ameliorate OXAL-induced pain sensation [18,19,30].

Membrane electroporation (MEP) applies an external electrical field to effect a considerable
increase in the electrical conductivity and permeability of the plasma membrane [31–33]. Such a
maneuver has been tailored to electrotransfer membrane-impermeant molecules, including DNAs,
anti-neoplastic drugs, and antibodies, into cells’ interiors. Specifically, by applying an electrical field
to the cells that just surpasses the capacitance of cell membrane, the membrane transiently becomes
destabilized and permeable. Consequently, different substances can readily enter the cell. Notably,
MEP-induced current (IMEP) combined with antineoplastic agents has been increasingly considered as
a new therapeutic maneuver for facilitating the uptake of chemotherapeutic agents that do not easily
cross the cell membrane and for the treatment of internal tumors [34,35]. However, few studies have
investigated the OXAL effect on IMEP.

A recent report showed the ability of OXAL administration to elevate serum prolactin
level [36]. OXAL was also reported to disrupt the endocrine axis of ACTH-cortisol and
renin-angiotensin-aldosterone [37]. The treatment of OXAL is also likely to alter the functional
activity of endocrine cells, including pituitary cells. However, how this compound interacts with
membrane ion channels in endocrine cells remains largely unknown.

Therefore, in this study we tried to explore the effect of OXAL or other related compounds on ionic
currents (e.g., Ih and IMEP) in pituitary tumor (GH3) cells. Whether the IMEP in olfactory ensheathing
(Rolf T1.B) cells is subject to be perturbed by OXAL was also examined. Our findings revealed that
OXAL is able to stimulate both Ih and IMEP with similar potency, which will summate to affect electrical
behaviors of electrically excitable cells. These stimulatory effects presented herein tend to be acute in
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onset and are not thought to be mediated through the formation of platinum-DNA adducts, and they
might conceivably account for pharmacological or toxicological actions of OXAL occurring in vivo.

2. Results

2.1. The Effect of OXAL on the Amplitude and Kinetics of Hyperpolarization-Activated Cation Current (Ih)
Recorded from GH3 Cells

In the first stage of whole-cell voltage-clamp current recordings, we explored if OXAL had any
perturbations on Ih in these cells. Cells were bathed in Ca2+-free Tyrode’s solution and the recording
pipette was filled with K+-containing solution. The compositions of these solutions are described in
Materials and Methods. The purpose for using Ca2+-free solution in our whole-cell recordings was to
avoid possible modifications by extracellular Ca2+ of Ih. As shown in Figure 1Aa, upon membrane
hyperpolarization from −40 to −100 mV with a duration of 2 s, the cation inward current with a
slowly activating time course was readily evoked. This type of hyperpolarization-activated current
was sensitive to inhibition by CsCl, tramadol, and ivabradine. In agreement with previous studies
described in different types of neurons, and neuroendocrine or endocrine cells, it was hence identified
as an Ih [24,27,38,39]. Of interest, addition of OXAL immediately led to an increase in the amplitude of
Ih in these cells. For example, as cells were exposed to 3 µM OXAL, current amplitude at the level of
−100 mV significantly increased from 109 ± 18 to 168 ± 27 pA (n = 8, p < 0.05). After washout of the
agent, current amplitude returned to 113 ± 22 pA (n = 7, p < 0.05).

Apart from its reduction in Ih amplitude, the time course of Ih activation during the 2 s membrane
hyperpolarization from −40 to −100 mV was noted to decrease in the presence of OXAL (Figure 1Ab).
For example, addition of 3 µM OXAL produced a significant shortening of activation time constant (τ)
of Ih from 648 ± 24 to 581 ± 21 ms (n = 8, p < 0.05). In an attempt to evaluate quantitative estimate
of OXAL-mediated stimulation of Ih, the values of activation time constants of Ih observed in these
cells were further analyzed. The time courses for Ih activation in the presence of different OXAL
concentrations were fitted using a single-exponential function by virtue of least-squares minimization
procedure. The concentration dependence of Ih activation during long-step hyperpolarizing pulse is
illustrated in Figure 1B. It is evident from the present observations that cell exposure to OXAL led
to a concentration-dependent increase in the rate constant (i.e., 1/τ) of Ih activation by membrane
hyperpolarization. It was also observed to display a linear relationship between 1/τ and the OXAL
concentration with a correlation coefficient of 0.95 (Figure 1B). The forward and backward rate
constants from minimum kinetic scheme detailed above in Materials and Methods were then derived
and estimated to be 0.236 s−1µM−1 and 1.528 s−1, respectively; thereafter, the value of the dissociation
constant (KD = k−1/k+1*) turned out to be 6.47 µM. Moreover, the concentration-dependent effect of
OXAL on Ih amplitude measured at the end of 2 s hyperpolarizing pulse was constructed and plotted
(Figure 1C). The EC50 value required for OXAL-mediated stimulation of Ih seen in GH3 cells was
calculated to be 3.2 µM, a value which is similar to the KD value analyzed on the basis of the first-order
reaction scheme.
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Figure 1. The effect of OXAL on hyperpolarization-activated cation current (Ih) recorded from 
pituitary GH3 cells. (Aa) Representative whole-cell Ih traces obtained in the absence (1) and presence 
of 1 μM OXAL (2) or 0.3 μM DEX (3). The upper part in (A) indicates the voltage protocol used. In 
(Ab), the activation time courses of Ih taken in control (1) and during cell exposure to 1 μM OXAL (2), 
and 3 μM OXAL (3) were fitted by single exponentials (indicated by smooth lines) with values of 644, 
612, and 585 ms, respectively. Notably, the data points for each trajectory were reduced for clarity. In 
(B), the reciprocal of activation time constant (i.e., 1/τ) versus the OXAL concentration was 
constructed and plotted. Data points shown in square circles were fitted by a linear regression, 
indicating that there is a molecularity of one. From minimum reaction scheme described in Materials 
and Methods, blocking (k+1*) and unblocking (k−1) rate constants for OXAL-induced stimulation of Ih 
were calculated to be 0.236 s−1μM−1 and 1.528 s−1, respectively. Mean ± SEM (n = 8–11 for each point). 
(C) Concentration-dependent stimulation of OXAL on Ih in response to membrane hyperpolarization 
(mean ± SEM; n = 9 for each point). Current amplitude was measured at the end of each 
hyperpolarizing pulse from −40 to −100 mV with a duration of 2 s. The continuous line overlaid onto 
the data points was fitted by the Hill equation, as detailed in Materials and Methods. 

2.2. Comparisons of the Effects of OXAL, OXAL Plus Ivabradine, OXAL Plus Protopine, and OXAL Plus 
Dexmedetomidine on Ih Amplitude 

We further examined the effects of OXAL, protopine, demedetomidine, OXAL plus ivabradine, 
OXAL plus protopine, and OXAL plus dexmedetomidine on the amplitude of Ih in GH3 cells. Similar 
to the OXAL action, addition of protopine (3 μM) or dexmedetomidine (3 μM) alone could suppress 
Ih amplitude by 69% and 73%, respectively. As depicted in Figure 2, still in the presence of 3 μM 
OXAL, subsequent addition of either ivabradine (3 μM), protopine (10 μM), and dexmedetomidine 
(3 μM) could effectively attenuate OXAL-mediated stimulation of Ih elicited by long-lasting 
membrane hyperpolarization. Ivabradine is an inhibitor of Ih [28,40], dexmedetomidine was 
previously observed to induce analgesia through a mechanism linked to the inhibition of Ih [30], and 
protopine was reported to suppress multiple types of ionic currents [41]. The experimental 
observations indicate that further addition of either ivabradine, protopine, or dexmedetomidine 
could attenuate OXAL-mediated increase in Ih amplitude identified in GH3 cells, and that the addition 
of protopine or dexmedetomidine alone was able to suppress Ih. 

Figure 1. The effect of OXAL on hyperpolarization-activated cation current (Ih) recorded from pituitary
GH3 cells. (Aa) Representative whole-cell Ih traces obtained in the absence (1) and presence of 1
µM OXAL (2) or 0.3 µM DEX (3). The upper part in (A) indicates the voltage protocol used. In
(Ab), the activation time courses of Ih taken in control (1) and during cell exposure to 1 µM OXAL
(2), and 3 µM OXAL (3) were fitted by single exponentials (indicated by smooth lines) with values
of 644, 612, and 585 ms, respectively. Notably, the data points for each trajectory were reduced for
clarity. In (B), the reciprocal of activation time constant (i.e., 1/τ) versus the OXAL concentration
was constructed and plotted. Data points shown in square circles were fitted by a linear regression,
indicating that there is a molecularity of one. From minimum reaction scheme described in Materials
and Methods, blocking (k+1*) and unblocking (k−1) rate constants for OXAL-induced stimulation of Ih

were calculated to be 0.236 s−1µM−1 and 1.528 s−1, respectively. Mean ± SEM (n = 8–11 for each point).
(C) Concentration-dependent stimulation of OXAL on Ih in response to membrane hyperpolarization
(mean± SEM; n = 9 for each point). Current amplitude was measured at the end of each hyperpolarizing
pulse from −40 to −100 mV with a duration of 2 s. The continuous line overlaid onto the data points
was fitted by the Hill equation, as detailed in Materials and Methods.

2.2. Comparisons of the Effects of OXAL, OXAL Plus Ivabradine, OXAL Plus Protopine, and OXAL Plus
Dexmedetomidine on Ih Amplitude

We further examined the effects of OXAL, protopine, demedetomidine, OXAL plus ivabradine,
OXAL plus protopine, and OXAL plus dexmedetomidine on the amplitude of Ih in GH3 cells. Similar
to the OXAL action, addition of protopine (3 µM) or dexmedetomidine (3 µM) alone could suppress
Ih amplitude by 69% and 73%, respectively. As depicted in Figure 2, still in the presence of 3 µM
OXAL, subsequent addition of either ivabradine (3 µM), protopine (10 µM), and dexmedetomidine
(3 µM) could effectively attenuate OXAL-mediated stimulation of Ih elicited by long-lasting membrane
hyperpolarization. Ivabradine is an inhibitor of Ih [28,40], dexmedetomidine was previously observed
to induce analgesia through a mechanism linked to the inhibition of Ih [30], and protopine was reported
to suppress multiple types of ionic currents [41]. The experimental observations indicate that further
addition of either ivabradine, protopine, or dexmedetomidine could attenuate OXAL-mediated increase
in Ih amplitude identified in GH3 cells, and that the addition of protopine or dexmedetomidine alone
was able to suppress Ih.
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different from control (p < 0.05) and ** significantly different from OXAL (3 μM) alone group (p < 
0.05). 
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Figure 2. The effects of OXAL (3 µM), ivabradine (3 µM), protopine (3 µM), dexmedetomidine (DEX, 3
µM), OXAL (3 µM) plus ivabradine (3 µM), OXAL (3 µM) plus protopine (10 µM), and OXAL plus
DEX (3 µM) on Ih amplitude in GH3 cells (mean ± SEM; n = 7–11 for each bar). Cells were bathed in
Ca2+-free Tyrode’s solution and the recording pipette was filled with K+-containing solution. Current
amplitude was measured at the end of 2-s hyperpolarizing pulse from −40 to −100 mV. * Significantly
different from control (p < 0.05) and ** significantly different from OXAL (3 µM) alone group (p < 0.05).

2.3. The Effect of OXAL on the Current versus Voltage (I–V) Relationship of Ih

The effects of OXAL on Ih measured at a family of hyperpolarizing steps was further studied.
The averaged I–V relationships of Ih measured at the end of hyperpolarizing pulses in the control and
during the exposure to 3 µM OXAL are illustrated in Figure 3A,B. Notably, from these I–V curves of
the current, during the exposure to 3 µM OXAL, the macroscopic Ih conductance measured at the end
of voltage steps ranging between −80 and −130 mV was significantly increased to 2.06 ± 0.05 nS (n = 8,
p < 0.05) from a control value of 2.87 ± 0.08 nS (n = 8).

2.4. The Effect of OXAL on the Steady-State Activation Curve of Ih

To characterize the inhibitory effect of OXAL on Ih, we also tested if the exposure to this drug might
result in the modifications on the steady-state activation curve of Ih in GH3 cells. Figure 3C illustrates
the activation curve of Ih obtained in the absence and presence of OXAL (3 µM). Furthermore, as shown
in Figure 3D, the Ih trajectories evoked in response to a 1 s downslope ramp from −40 to −150 mV with
and without addition of 3 µM OXAL were examined. The observations were quite indistinguishable
from the experimental results derived from those elicited by a family of maintained rectangular pulses
(Figure 3B). It is, therefore, evident from the present data that the presence of OXAL exerts stimulatory
action on the amplitude and gating of Ih during long-lasting membrane hyperpolarizations.
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Figure 3. The inhibitory effects of OXAL on averaged I–V relationship of Ih measured from GH3 cells.
In these experiments, we bathed cells in Ca2+-free Tyrode’s solution and filled the recording pipette
by using K+-containing solution. (A) Representative whole-cell Ih traces obtained in the absence
(upper part) and presence of 3 µM OXAL (lower part). Arrowhead indicates zero current level and the
uppermost part in (A) is the voltage protocol applied. (B) Averaged I–V relationships of Ih measured at
the end of hyperpolarizing pulses in the control (closed symbols) and during cell exposure to 3 µM
OXAL (open symbols; each point indicates the mean ± SEM (n = 9). (C) The effect of OXAL (3 µM) on
the steady-state activation curve of Ih (mean ± SEM; n = 9 for each point). �: control; �: in the presence
of 3 µM OXAL. Continuous curves were well fitted by a Boltzmann function, as described in Materials
and Methods. (D) I–V relationship of Ih elicited in response to a long-lasting downsloping ramp pulse
from −40 to −150 mV. Inset indicates the voltage protocol used. a: control; b: 3 µM OXAL.

2.5. The Effect of OXAL on Voltage-Dependent Hysteresis of Ih Elicited in Response to a Long-Lasting
Triangular Ramp Pulse

The voltage-dependent hysteresis of Ih has been previously demonstrated to exert a high influence
on electrical behaviors such as action potential (AP) firing [42–44]. For this reason, we further explored
whether there is possible voltage-dependent hysteresis existing in Ih recorded from GH3 cells. In this
set of experiments, we exploited a long-lasting triangular ramp pulse with a duration (i.e., 0.11 V/s) for
measurement of the hysteretic properties, as whole-cell configuration was established. It is evident
from Figure 4A that the trajectory of Ih elicited by the upsloping (i.e., depolarization from −150 to
−40 mV) and downsloping (hyperpolarization from −40 to −150 mV) ramp pulse as a function of time
was virtually distinguishable between these two limbs. The current amplitude elicited during the
upsloping limb of triangular voltage ramp was higher than that by the downsloping limb; that is, there
is a voltage-dependent hysteresis for this current; namely, the relationship of Ih versus membrane
potential. As the ramp speed became reduced, the hysteresis degree for Ih was progressively raised.
Of interest, as the examined cell was exposed to OXAL (3 µM), Ih amplitude evoked in the upsloping
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limb of long-lasting triangular ramp was observed to increase to a greater extent than that measured
from the downsloping limb. For example, in controls, Ih values at the level of −110 mV elicited during
the upsloping and downsloping limbs of triangular ramp pulse were measured to be 186 ± 19 and
123 ± 12 pA (n = 9), respectively, the values of which were found to differ significantly (p < 0.05).
Specifically, as cells were exposed to 3 µM OXAL, the amplitudes of triangular ramp-induced forward
and backward Ih taken at the same level of membrane potential were significantly raised to 236 ± 23
and 156 ± 17 pA (n = 9, p < 0.05), respectively.
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Figure 4. The effect of OXAL on the voltage-dependent hysteresis measured from GH3 cells.
(A) Representative current trace elicited by long-lasting, 2 s triangular (i.e., upsloping and downsloping)
ramp pulse between−150 and−40 mV. Insert in (A) is the voltage protocol applied during the recordings.
(A) Voltage hysteresis (i.e., forward or reverse current versus voltage relationship) of Ih measured in the
absence (a) and presence of 3 µM OXAL (b). Arrow depicts the direction of ramp-elicited Ih in which
time passes. The current trace labeled a was the control and that labeled b was taken in the presence of
3 µM OXAL. (B) Summary bar graph showing the effect of OXAL and OXAL plus ivabradine on the
∆area (as indicated in shaded area in (A)) of voltage hysteresis (mean ± SEM; n = 9 for each bar). ∆Area
taken with or without addition of OXAL is indicated as shaded area in (A). * Significantly different
from control (p < 0.05) and ** significantly different from 3 µM OXAL alone group (p < 0.05).

We next quantified the degree of voltage-dependent hysteresis on the basis of the differences in
areas under the curves (indicated in shaded area) in the forward (upsloping) and reverse (downsloping)
directions, as described by the arrows in Figure 4B. It was seen that for Ih in GH3 cells, the degree of
voltage hysteresis increased with slower ramp speed, and that the presence of DEX led to a conceivable
reduction in the amount of such hysteresis. Figure 4B illustrates a summary of the data showing the
effects of OXAL and OXAL plus ivabradine on the hysteretic area under the curve between forward and
backward current traces. For example, except for the increase of Ih magnitude, addition of OXAL (3 µM)
significantly elevated the area by about 1.8 fold, elicited in response to such a long-lasting triangular
voltage ramp; moreover, the subsequent application of 3 µM ivabradine significantly decreased area
by 60%.

2.6. The Effect of OXAL on Membrane Electroporation-Induced Current (IMEP) in GH3 Cells

Previous studies have demonstrated the presence of IMEP elicited by large membrane
hyperpolarization in different types of cells [31–33,45,46]. In another series of experiments, we
raised the question of whether the presence of OXAL has possible modifications on this type of
ionic current. We bathed cells in Ca2+-free Tyrode’s solution, and whole-cell current recordings were
performed. As described in previous studies [31,45,46], when the cell was maintained at −80 mV, the
hyperpolarizing pulse from −80 to −200 mV with a duration of 300 ms was applied to evoke IMEP.
As shown in Figure 5A, as cells were exposed to OXAL, the amplitude of IMEP was progressively
enhanced. For example, at the level of −200 mV, the presence of 3 µM OXAL significantly increased
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IMEP amplitude from 307 ± 18 to 716 ± 67 pA (n = 9, p < 0.05). After washout of the agent, current
amplitude returned to 317 ± 23 pA (n = 7, p < 0.05). When K+ in the pipette solution was replaced with
equimolar concentration of NMDG+, this current could still be induced by addition of 3 µM OXAL,
although current amplitude was relatively smaller.
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Figure 5. The stimulatory effect of OXAL on membrane electroporation-induced inward current
(IMEP) in GH3 cells. Cells were immersed in Ca2+-free Tyrode’s solution and the examined cells were
maintained at −80 mV. (A) Representative IMEP traces elicited by membrane hyperpolarization from
−80 to −200 mV (as indicated in the upper part). Arrowhead is zero current level; a: control; b: 1 µM
OXAL; c: 3 µM OXAL; d: 10 µM OXAL. (B) Concentration-dependent stimulation of IMEP by OXAL
(mean ± SEM; n = 8 for each point). (C) Summary bar graph showing effects of OXAL, OXAL plus
ivabradine, OXAL plus protopine, OXAL plus DEX (dexmedetomidine), and OXAL plus LaCl3 (mean
± SEM; n = 9 for each bar). Current amplitude was taken at the end of hyperpolarizing pulse from −80
to −200 mV. The smooth line represents least-squares fit to a Hill function detailed in Materials and
Methods. * Significantly different from control (p < 0.05) and ** significantly different from 3 µM OXAL
alone group (p < 0.05). (D) Averaged I–V relationships of IMEP obtained in the absence (closed squares)
and presence (open squares) of 3 µM OXAL (mean ± SEM; n = 9 for each point). As the whole-cell
mode was firmly established, the cells were maintained at −80 mV and a family of voltage pulses
ranging between −200 and −40 mV with a duration of 300 ms at increments of +20-mV were applied.
Current amplitude was measured at the end of each voltage pulse.

The relationship between the OXAL concentration and the percentage increase of IMEP was
constructed (Figure 5B). The half-maximal concentration required for its stimulation of IMEP was
estimated to be 1.3 µM. However, in the continued presence of 3 µM OXAL, subsequent addition of
ivabradine (3 µM), protopine (10 µM), or dexmedetomidine (3 µM) was observed to fail to attenuate its
stimulation of IMEP (Figure 5C). Conversely, further addition of LaCl3 (10 µM) reversed OXAL-induced
increase in IMEP, as evidenced by a significant reduction of IMEP to 412 ± 34 pA (n = 8, p < 0.05).
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The averaged I–V relationship of IMEP with or without addition of OXAL is illustrated in
Figure 5D. Notably, following the application of 3 µM OXAL, the amplitude of IMEP elicited in response
to membrane hyperpolarization was increased throughout the entire voltage-clamp steps examined.
The threshold for elicitation of IMEP in the control was observed to be around −100 mV, while that
for current elicitation during cell exposure to 3 µM OXAL became depolarized to −80 mV. Moreover,
cell exposure to OXAL (3 µM) significantly raised the slope of the linear fit of IMEP measured at the
voltages between −120 and −200 mV from 2.96 ± 0.13 to 5.75 ± 0.32 nS (n = 8, p < 0.05). Therefore, as
GH3 cells were continuously exposed to OXAL, the I–V relationship of hyperpolarization-induced
IMEP can be modified.

2.7. The Stimulatory Effect of OXAL on Ih in Pituitary R1220 Cells

We further wanted to test if Ih in other types of endocrine pituitary cells (e.g., pituitary R1220
cells) could be perturbed by OXAL. This type of rat pituitary cell was originally from neonatal, day-8
rats and cryopreserved in primary cultures [47]. As illustrated in Figure 6, within 2 min of exposing
cells to OXAL (1 µM), the Ih amplitude during hyperpolarizing step was progressively increased, in
combination with an increase in activation rate of this current. The presence of 1 µM OXAL increased
current amplitude from 299 ± 13 to 366 ± 18 pA (n = 7, p < 0.05). Moreover, in the continued presence
of OXAL, subsequent addition of ivabradine (3 µM) was able to attenuate OXAL-induced inhibition of
Ih, as evidenced by the reversal of Ih amplitude to 312 ± 15 pA (n = 7, p < 0.05). These experimental
results reflect that the OXAL-mediated stimulation of Ih in this type of pituitary cell is indistinguishable
from that mentioned above in GH3 cells.
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Figure 6. The stimulatory effect of OXAL on Ih in rat pituitary R1220 cells. Cells were immersed in
Ca2+-free Tyrode’s solution and the examined cells were maintained at −40 mV. (A) Representative Ih

traces elicited by a 2 s step hyperpolarization from −40 to −110 mV (as indicated in inset). a: control; b:
1 µM OXAL; c: 1 µM OXAL plus 3 µM ivabradine. (B) Summary bar graph showing effects of OXAL (1
µM), OXAL (1 µM) plus ivabradine (IVA, 3 µM) on Ih amplitude (mean ± SEM; n = 7 for each bar).
Current amplitude was taken at the end of hyperpolarizing pulse from −40 to −110 mV. * Significantly
different from control (p < 0.05).
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2.8. Stimulatory Effect of OXAL on IMEP Identified in Rolf B1.T Cells

In a final set of recordings, we further examined if the presence of OXAL could cause any effects
on IMEP inherently in Rolf B1.T cells. The results showed that addition of OXAL effectively increased
IMEP in a concentration-dependent manner (Figure 7A). For example, as cells were exposed to 3 µM
OXAL, the current measured at the level of −200 mV was significantly raised to 1102 ± 185 pA from a
control of 192 ± 32 pA (n = 9, p < 0.01). Moreover, as shown in Figure 7B, subsequent addition of LaCl3
(10 µM), still in the presence of 3 µM OXAL, was effective at attenuating OXAL-mediated increase of
IMEP amplitude, although the inability of ivabradine to alter its stimulation of IMEP was demonstrated
in these cells. It is clear from the results that the biophysical or pharmacological properties of IMEP are
virtually distinguishable from those of Ih, despite the ability of both currents to be elicited by membrane
hyperpolarizations. Additionally, in accordance with the experimental observations described above
in GH3 cells, OXAL was effective at increasing IMEP identified in this type of olfactory neuron.
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Figure 7. The effect of OXAL on IMEP in Rolf B1.T olfactory ensheathing cells. In these experiments,
cells were bathed in Ca2+-free Tyrode’s solution and the pipette was filled with K+-containing solution.
(A) Representative IMEP traces obtained in the control (a) and during the exposure to 1 µM OXAL (b),
3 µM OXAL (c), or 10 µM OXAL (d). The voltage protocol used is indicated in the upper part. Note
that the presence of OXAL produces a progressive increase in IMEP. (B) Summary bar graph showing
the effects of OXAL, OXAL plus LaCl3, and OXAL plus ivabradine on IMEP in these cells (mean ± SEM;
n = 7–8 for each bar). * Significantly different from control (p < 0.05) and ** significantly different from
3 µM OXAL along group (p < 0.05).

3. Discussion

The present study provides us with evidence showing that the presence of OXAL is able to
exert dual stimulatory actions on two types of ionic currents—Ih and IMEP. It is important to note
that the OXAL concentration used in this study is closely similar to that achieved in the plasma of
treated patients (i.e., 3.6–5.6 µM) [48]. The stimulation by this agent of Ih seen in GH3 cells was not
instantaneous and occurred in a time and concentration-dependent fashion, although the KD value
(i.e., 6.4 µM) for the stimulation of Ih tends to be greater than EC50 value (i.e., 3.2 µM) for its increase
of Ih amplitude. Therefore, any perturbations of Ih or IMEP induced by OXAL depend not simply on
the OXAL concentration, but also on different factors, such as membrane potential, intracellular Ca2+

concentration, and cell volume.
In accordance with earlier studies [24,27,38,39], the present results demonstrated that pituitary GH3

and R1220 cells could functionally express a hyperpolarization-activated cation currents recognized
as Ih. There are four mammalian subtypes (HCN1, HCN2, HCN3, and HCN4) which have been
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cloned to date [43,49,50]. It has been demonstrated that different HCN isoforms might combine to
constitute macroscopic Ih existing in different types of neurons and endocrine or neuroendocrine
cells [25,38,50]. As HCN2, HCN3, or mixed HCN2 + HCN3 channels are functionally expressed in
GH3 cells [24], OXAL-induced stimulation of Ih in native cells does not tend to be isoform specific,
although our experimental results showed that OXAL could modify the amplitude and gating of Ih in
GH3 and R1220 cells. Because of the importance of Ih (i.e., HCNx-encoded currents) in contributing to
excitability and automaticity of electrically excitable cells [18,22,28,38,40,50], findings from the present
results could provide novel insights into electrophysiological and pharmacological properties of OXAL
or other structurally related compounds [19,20].

Previous studies have demonstrated the ability of OXAL to stimulate transient receptor potential
(TRP) ankyrin channels, the activity of which could be linked to nerve injury [51]. One might thus expect
that the TRP superfamily of cation channels in GH3 cells could be elicited by the presence of OXAL.
The earlier studies have reported the presence of IMEP in response to membrane hyperpolarization in a
variety of cells including GH3 cells [32,33,45,46]. It is important to note that, being distinguishable from
those of Ih [23,28,49], the biophysical properties of macroscopic IMEP exhibit themselves as virtually
stochastic, but obviously not deterministic, together with variable activation time course elicited by
membrane hyperpolarization [31,45,46]. Therefore, it seems unlikely that IMEP stimulated by OXAL
seems unlikely to be mediated by the activity of TRP or TRP-like channels.

The present observations led us to speculate that stimulation of both Ih and IMEP caused by OXAL
may account significantly for its neurological or adverse reactions [4,5,52]. A previous report showed
that HCN2 is elevated after oxaliplatin-induced neuropathic pain and that HCN2-mediated pain might
be mediated through the upregulation of NR2B and the activation of the CaMKII/CREB cascade in
spinal neurons [19]. The effects of OXAL on membrane ionic currents described herein were noted to
be rapid in onset, and they should be upstream of the formation of platinum-DNA adducts occurring
inside the nucleus [4,52].

Previous studies have shown that conventional MEP might be sufficiently large to porate
cytoplasmic organelles inside the cell [53]. LaCl3 was reported to prevent the mitochondrial morphology
transition induced by chemical injury with reactive oxygen species in Arabidopsis [54]. It is important
to speculate that OXAL-induced stimulation of MEP-induced channels presented herein contributes to
its activation of mitochondrial permeability transition pore. Our results are in parallel with a scenario
showing the role of mitochondrial mechanism in platinum-induced peripheral neuropathy [55,56].
It remains to be studied to what extent the presence of OXAL can enhance MEP-elicited channels
which indirectly activate the intrinsic pathway to apoptotic or necrotic changes by inducing change in
mitochondrial permeability transition pore.

Voltage-dependent hysteresis of Ih is thought to exhibit a substantial role in influencing the
electrical behavior of electrically excitable cells such as GH3 cells. In agreement with previous
observations [42–44], the Ih natively existing in GH3 cells was described to undergo either a hysteretic
change in its voltage dependence, or a mode shift in which the voltage sensitivity in gating charge
movements of the current depends on the previous state of the channel [42,43]. In this study, we
also examined the possible perturbations of OXAL on such a non-equilibrium property of Ih in GH3

cells. Our results clearly demonstrated that the presence of this agent was capable of enlarging
such hysteresis involved in the voltage-dependent elicitation of Ih. However, further application of
ivabradine, still in the presence of OXAL, could attenuate OXAL-mediated increase in the area of
voltage-dependent hysteresis.

Membrane hyperpolarization was not produced by the operation of delayed-rectifier K+ currents
and voltage-gated Na+ currents. However, from a model nerve cell system, a recent report showed the
presence of hyperpolarization-mediated change in the conduction during action potential firing [57],
suggesting that either Ih, IMEP or both in response to membrane hyperpolarization might have the
propensity to perturb the conduction along the axon during electrical firing. In this study we were
unable to observe suppressive effect of OXAL (3 µM) on proliferating GH3 cells. OXAL-mediated
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stimulation of Ih or IMEP might not be linked to its suppression of cell growth. In pituitary R1220
cells, which have been cryopreserved in primary cultures, the presence of OXAL was also capable
of increasing Ih amplitude and further addition of ivabradine reversed its stimulation of this current.
Therefore, the GH3 cells are not the only anterior pituitary cell types to functionally express HCN
channels [25,38]. However, it would be worthwhile to explore whether OXAL-mediated stimulatory
effects on Ih or IMEP could differentially occur in pituitary tumor (GH3) cells and in freshly isolated
pituitary lactotrophs. Further studies focusing on different cell hosts, including human pituitary cells,
will be required. Also, varying cellular environments to distinguish the behavior of normal cells from
tumor cells will shed the light to the avidity of oxaliplatin and its interactive modes through which it
exerts the effects on Ih and IMEP.

In agreement with several studies [7,11,13,15,16], the OXAL action in vivo is not exclusively
connected to the formation of platinum-DNA adducts [4,52]. Collectively, the experimental results
presented herein led us to propose that the perturbation by OXAL of Ih and IMEP (Figure 8) is another
intriguing mechanism, through the ability of it and other structurally related compounds to interfere
with cell behaviors, particularly in electrically excitable cells [51], if similar in vivo findings occur.
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4. Materials and Methods 

4.1. Chemicals, Drugs, and Solutions 
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4. Materials and Methods

4.1. Chemicals, Drugs, and Solutions

Oxaliplatin (OXAL; Eloxatin®, trans-1-diaminocyclohexane oxaliplatinum, C8H14N2O4Pt,
(PubChem CID: 43805)) was acquired from Sanofi-Aventis (New York, NY, USA); ivabradine,
protopine (4,6,7,14-tetrahydro-5-methylbis[1,3]benzodioxolo[4,5-c:5′,6′-g]azecin-13(5H)-one) was from
Sigma-Aldrich (St. Louis, MO, USA); and dexmedetomidine (DEX) was from Abbott Laboratories
(Abbott Park, IL, USA). All culture media, horse serum, fetal calf or bovine serum, L-glutamine, and
trypsin/EDTA were obtained from Invitrogen (Carlsbad, CA, USA), unless otherwise indicated, while
other chemicals, including EGTA, HEPES, LaCl3, aspartic acid, and N-methyl-D-glucamine+ (NMDG+),
were of the highest purity and analytical grade.

The composition of normal Tyrode’s solution used in this study was as follows (in mM): NaCl
136.5, KCl 5.4, CaCl2 1.8, MgCl2 0.53, glucose 5.5, and HEPES-NaOH buffer 5.5 (pH 7.4). To record Ih

or IMEP, we filled the patch electrode with the following solution (composition in mM): K-aspartate
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130, KCl 20, KH2PO4 1, MgCl2 1, Na2ATP 3, Na2GTP 0.1, EGTA 0.1, and HEPES-KOH buffer 5 (pH 7.2).
The medium or solution was commonly filtered using a 0.22 µm pore filter.

4.2. Cell Preparations

GH3 pituitary tumor cells, acquired from the Bioresources Collection and Research Center
((BCRC-6005); Hsinchu, Taiwan), were maintained in Ham’s F-12 medium supplemented with 15%
horse serum (v/v), 2.5% fetal calf serum (v/v), and 2 mM L-glutamine in a humidified environment of
5% CO2/95% air. The clonal strain Rolf B1.T cell line was acquired from Sigma-Aldrich (lot number
03071601; St. Louis, MO, USA). This cell line was originally isolated from cultures of adult rat olfactory
nerve cells. Cells have an antigenic phenotype which closely resembles that of olfactory ensheathing
cells [58,59]. Rolf B1.T cells were grown in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad,
CA, USA) supplemented with 2 mM L-glutamine and 10% fetal bovine serum (v/v). Rat pituitary
cells (number R1220), which were originally isolated from neonate day-8 rats, were acquired from
ScienCell Research Laboratories, Inc. (Excel Biomedical, Taipei, Taiwan), and they were grown in
Epithelial Cell Medium (number 4101; ScienCell) [47,58,59]. The culture medium was refreshed every
2–3 days and cells underwent passaged when they reached confluence. Cell viability was assessed by
the methylthiazole tetrazolium (MTT) salt assay. The experiments were commonly performed after 5
or 6 days of subcultivation (60–80% confluence).

4.3. Electrophysiological Measurements

Shortly before the experiments, cells were harvested and an aliquot of cell suspension was
transferred to a home-made recording chamber mounted on the fixed stage of CKX-41 inverted
microscope (Olympus, Tokyo, Japan). Cells were bathed at room temperature (20–25 ◦C) in normal
Tyrode’s solution, the composition of which was indicated above. The recording electrodes were
made of Kimax-51 glass capillaries (Kimble, Vineland, NJ, USA) by using either a PP-83 vertical
puller (Narishige, Tokyo, Japan) or a P-97 Flaming/Brown horizontal puller, and their tips were then
fire-polished with an MF-83 microforge (Narishige; London, UK). The electrodes used had a resistance
of 3–5 MΩ and were filled with different internal solutions as detailed above. Patch-clamp whole cell
recordings were performed at room temperature in standard patch-clamp technique by use of either
an RK-400 amplifier (Bio-Logic, Claix, France), or an amplifier of Axopatch-200B or Axoclamp-2B
(Molecular Devices, Sunnyvale, CA, USA). The junction potential between the pipette and bath solution
was nulled after the pipette entered the bath but immediately before seal formation was made, and
whole-cell data were hence corrected.

4.4. Data Recordings and Analyses

The signals, consisting of potential and current traces, were stored online on an ASUS VivoBook
Flip-14 touchscreen laptop computer (TP412U; Taipei, Taiwan) at 10 kHz through a Digidata 1440A
interface (Molecular Devices, Sunnyvale, CA, USA). During the experiments, the latter device was
controlled by pCLAMP 10.7 (Molecular Devices). Current signals were low-pass filtered at 3 kHz with
an FL-4 four-pole Bessel filter (Dagan, Minneapolis, MN, USA). The data were analyzed offline using
either pCLAMP 10.7 (Molecular Devices), OriginPro (OriginLab, Northampton, MA, USA), or various
custom-made macros created from Microsoft ExcelTM 2019.

To assess percentage increase (i.e., y) of OXAL on the stimulation of Ih or IMEP, the OXAL
concentration required to increase 50% of current amplitude was determined using a modified Hill
function in the following form:

y =
Emax × [OXAL]nH

ECnH
50 + [OXAL]nH

, (1)

where [OXAL] denotes the OXAL concentration applied; nH is the Hill coefficient; EC50 is the
concentration required for a 50% increase, and Emax is the OXAL-maximal mediated increase in Ih



Int. J. Mol. Sci. 2020, 21, 396 14 of 17

or IMAP. Current amplitude during cell exposure to 100 µM OXAL was taken as 100%, and those at
various concentrations of OXAL were analyzed and then compared.

The stimulatory effect of OXAL on Ih measured from GH3 cells is explained by using a
state-dependent stimulator that preferentially binds to the open state of the HCN channel. A minimal
first-order kinetic scheme was derived as follows:

C
α
�
β

O
k+1
∗[OXAL]
�
k−1

O ·OXAL (2)

where [OXAL] is the OXAL concentration; α and β are the voltage-gated rate constants for the opening
and closing of the HCN channel, respectively; k+1

* and k-1 are the rate constants used for forward
and backward reaction by OXAL; and C, O, and O·OXAL indicate the closed, open, and open-bound
state, respectively.

The forward (i.e., on) and reverse (i.e., off) rate constants, k+1* and k−1, were determined from
the activation time constants (τ) of Ih obtained during cell exposure to different OXAL concentrations.
From the first-order reaction scheme, the rate constants collected could then be assessed using an
equation of the form:

1
τ
= k∗+1 × [OXAL] + k−1 (3)

where k+1* or k−1 was respectively derived from the slope or from y-axis intercept at x-coordinate = 0
(i.e., [OXAL] = 0) of a linear function interpolating the reciprocal time constants (1/τ) with respect to
the OXAL concentration (i.e., [OXAL]).

To characterize the stimulatory effects of OXAL on Ih, the steady-state activation curve of the
current with respect to command potential was constructed and compared. The relationships between
the membrane potentials and the normalized amplitudes of Ih with and without addition of 3 µM
OXAL were least-squares fitted with a Boltzmann function written as:

I
Imax

=
1

1 + exp


−

(
V−V 1

2

)
qF

RT


, (4)

where Imax denotes the maximal activated Ih or IMEP; V is the potential in mV; V1/2 is the membrane
potential for half-maximal activation; q is the apparent gating charge; and F, R, and T is Faraday’s
constant, the universal gas constant, and the absolute temperature, respectively.

4.5. Statistical Analyses

Curve parameter estimation was performed by a nonlinear or linear, least-squares fitting routine.
We made assertions about the variability of means that could be collected from a random cohort derived
from the population concerned; therefore, the standard error could have been more appropriate than
the standard deviation. Data were hence presented as the means ± standard errors of the means (SEMs),
with sample sizes (n) which indicate the number of cells collected to analyze the results, and error
bars were plotted as SEMs. The paired or unpaired Student’s t-test or a one-way analysis of variance
(ANOVA) followed by post-hoc Fisher’s least-significance difference test for multiple comparisons,
were implemented for statistical analyses. The nonparametric Kruskal–Wallis test was, however,
utilized, if normality underlying ANOVA tended to be violated. A probability level of <0.05 was used
to define significance.
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